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Physical cues have emerged as critical influencers of cell function during

physiological processes, like development and organogenesis, and

throughout pathological abnormalities, including cancer progression and

fibrosis. While ion channels have been implicated in maintaining cellular

homeostasis, their cell surface localization often places them among the first

few molecules to sense external cues. Mechanosensitive ion channels (MICs)

are especially important transducers of physical stimuli into biochemical signals.

In this review, we describe how physical cues in the tumor microenvironment

are sensed by MICs and contribute to cancer metastasis. First, we highlight

mechanical perturbations, by both solid and fluid surroundings typically found

in the tumor microenvironment and during critical stages of cancer cell

dissemination from the primary tumor. Next, we describe how Piezo1/2 and

transient receptor potential (TRP) channels respond to these physical cues to

regulate cancer cell behavior during different stages ofmetastasis. We conclude

by proposing alternative mechanisms of MIC activation that work in tandem

with cytoskeletal components and other ion channels to bestow cells with the

capacity to sense, respond and navigate through the surrounding

microenvironment. Collectively, this review provides a perspective for

devising treatment strategies against cancer by targeting MICs that sense

aberrant physical characteristics during metastasis, the most lethal aspect of

cancer.
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Introduction

Cells possess complex mechanisms to tightly regulate the

molecular machinery involved in proliferation, migration and

apoptosis. In contrast, cancer cells frequently lack critical

checkpoints and/or homeostatic mechanisms, resulting in

sustained proliferation and/or decreased apoptosis, which lead

to the formation of primary tumors and enhanced invasion into

the surrounding stroma, thereby often culminating in the

formation of metastases (Hanahan and Weinberg, 2011).

Traditionally, genetic modifications and biochemical factors

have been implicated in transforming resident cells into

metastatic cancer cells. More recently, however, physical cues

have emerged as critical mediators of this transformation (Emon

et al., 2018).

The extracellular matrix (ECM) provides biochemical and

biophysical cues which can influence cancer progression and

metastasis. The ECM is an intricate three-dimensional (3D)

network composed of proteoglycans and fibrous proteins, such

as collagens, elastins, fibronectins and laminins, which provides

structural support to tissues (Winkler et al., 2020). These fibers

provide critical attachment points for cells to facilitate the proper

development and organization of tissues (Rozario and

DeSimone, 2010). Additionally, the ECM provides docking

sites for cytokines, growth factors, and other bioactive

molecules which promote the growth, differentiation and

maintenance of cells by engaging intracellular signaling

pathways (Taipale and Keski-Oja, 1997; Schonherr and

Hausser, 2000). Aberrant changes in ECM structure and

organization can perturb tissue homeostasis by promoting

abnormal cell proliferation, elevated contractility, and

transformation due to transcriptional changes (Wozniak et al.,

2003; Paszek et al., 2005; Ondeck et al., 2019; Stowers et al., 2019).

As tumor cells proliferate, the surrounding ECM undergoes

further architectural changes which impact cellular physiology,

resulting in a sustained feedforward loop that contributes to

disease progression (Bonnans et al., 2014; Winkler et al., 2020).

Cancer cells in the primary tumor experience mechanical

compression, hydraulic pressure, fluid viscosity, substrate

stiffness and viscoelasticity (Wisdom et al., 2018; Nia et al.,

2020; Park et al., 2020) (Table 1). As cells disseminate from

the primary tumor and invade into the local tissue

microenvironment, they encounter additional mechanical

forces due to the organization and structure of the ECM.

Cancer cells must navigate a variety of topographical features,

such as ECM fibers, small pores and channel-like tracks with

prescribed physical properties to reach the vasculature (Paul

et al., 2017). Fiber architecture and cross-linking density regulate

TABLE 1 Physical cues encountered by cancer cells during the metastatic cascade.

Physical force Description

Compression Pushing force applied to a structure. A growing tumor can apply pushing forces on the surrounding tissue, which in turn also causes
compression on the tumor

Contact guidance Describes the tendency of cells to change their orientation based on surrounding geometrical patterns, such as nano/microgrooves
on substrates or the direction of ECM fibers

Elasticity Describes the ability of a material to resist deformation and return to its original size and shape when external forces are removed. A
material that is fully elastic recovers its size and shape immediately after the applied load is removed

Hydraulic resistance Fluid pressure felt by a moving object from the surrounding fluid, which must flow to accommodate the object movement. Many
factors can influence hydraulic resistance, including the viscosity of the surrounding fluid, the geometry in which the fluid is
enclosed, and the presence of any obstacles to flow

Interstitial Fluid Pressure (IFP) A pushing force exerted on an object immersed in interstitial fluid due to the presence of hydraulic pressure. The hydraulic pressure
can arise from osmotic pressure in the fluid and also hydrostatic pressure from the presence of gravity. Osmotic pressure is the force
arising from the entropy of mixing water with other solutes, which drives water flow from a low to a high concentration
compartment, thereby increasing hydraulic pressure in the high concentration compartment

Shear stress Shear stress arises from friction between layers of moving fluids or between solid and fluid layer interfaces. Shear stress can be
experienced by a body floating in a fluid stream or along the wall of a fluid conduit, such as a blood vessel wall

Stiffness The ratio between the applied force and the deformation of the object experiencing force. A stiffer object requires more applied
force to achieve the same deformation

Tension Pulling or stretching force exerted upon a structure. Tension is the opposite of compression. Stretching force on the membrane
(tension) around an ion channel can activate the ion channel

Topography Describes the arrangement of physical features that affect the roughness of a surface, including curvature, columns, grooves, and
other nano/micro factors

Turbulent Flow Fluid motion characterized by random fluctuations in pressure and velocity due to the irregular movement of fluid particles. In
contrast, laminar flow describes the smooth movement of fluid in parallel layers with no disruptions

Viscoelasticity Describes both the elastic and viscous properties of a material. Most biological materials are viscoelastic, rather than elastic, and
exhibit a time-dependent delay in deformation and relaxation in response to external forces. Viscoelastic materials also dissipate a
fraction of energy it took to deform them, resulting in some permanent deformation after external forces are removed

Viscosity Describes the resistance of a fluid to change shape at a given flow rate (i.e., resistance to flow) due to internal friction between
molecules in the fluid
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ECM porosity, stiffness and viscoelasticity (Yamada and Sixt,

2019; Chaudhuri et al., 2020). Extracellular fluid, which hydrates

the ECM, also exerts osmotic pressure and hydraulic resistance

(Table 1) due to hydrostatic pressure and fluid viscosity on

migrating cells (Li et al., 2020a). Once cancer cells enter the

vasculature, they must withstand shear stress caused by blood

flow to disseminate throughout the body (Shen and Kang, 2020).

Thus, cancer cells must sense, integrate and interpret a multitude

of physical forces during each step of the metastatic cascade to

successfully colonize distant organs/tissues (Figure 1).

Mechanosensitive ion channels (MICs), or stretch-activated

ion channels, are a family of pore-forming proteins that play an

important role in sensing and transducing physical stimuli. Their

cell surface localization often places them among the first few

molecules to sense external physical cues and initiate intracellular

biochemical cascades in a process known as

mechanotransduction (Patel et al., 2010; Ranade et al., 2015;

Canales Coutiño and Mayor, 2021). To sense complex physical

cues and changes within the microenvironment, MICs facilitate

Ca2+ entry into cells through a mechanism known as channel

gating (Table 2). This process requires a threshold level of

membrane tension to initiate a conformational change from a

closed to open state. The gating process can also depend on

transmembrane voltage, which is regulated by ion channels

(Yellin et al., 2018; Li et al., 2020a). Mechanosensitive gating

mechanisms can be broadly categorized into 2 types: 1) direct

mechanosensing, which is regulated by physical changes in the

cell membrane, and 2) indirect mechanosensing, which is

regulated by intracellular signaling cascades (Patel et al., 2010;

Ranade et al., 2015; Petho et al., 2019).

Compressive forces in the primary tumor, fluid shear stress in

the blood vessels, and other mechanical stimuli that cause local

changes in cell membrane curvature, composition and tension

can directly open MICs such as Piezo1/2, transient receptor

potential cation channel subfamily C member 1 (TRPC1), and

transient receptor potential cation channel subfamily V member

4 (TRPV4) (Petho et al., 2019). Alternatively, mechanosensitive

molecules on the plasma membrane can indirectly trigger MIC

activation through a multi-step process involving several

intermediate signaling molecules. This mechanism typically

FIGURE 1
Schematic depicting the contribution of various physical cues during different steps of the metastatic cascade. In the primary tumor, cancer
cells experiencemechanical compression and hydraulic pressure as well as different levels of substrate stiffness, viscoelasticity and extracellular fluid
viscosity. Following primary tumor cell dissemination, invading cancer cells encounter substrate stiffness and viscoelasticity, mechanical
compression, fluid viscosity, solid barriers, confined tracks, and other topographies within the local tissue microenvironment. During
intravasation, cancer cells experience shear stress caused by blood flow and continue to be exposed to this physical cue while in circulation. The
viscosity of blood is also elevated relative to interstitial fluids, which potentially impacts cell behavior. As cancer cells arrest to the vascular
endothelium and extravasate out of the bloodstream, they experience shear stress from the blood flow. Taken together, cancer cells are exposed to
many different physical forces during the metastatic cascade which they must sense, integrate and interpret to engage appropriate cellular
mechanisms for efficient dissemination. Schematic created with BioRender.com.
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TABLE 2 Mechanosensitive ion channels and their gating mechanisms.

Ion channel Structure and mechanism
of activation

Piezo 1/2 High-resolution cryo-electron microscopy (EM) studies reveal that Piezo1/2 forms a homotrimeric complex with a cationic
permeable pore (Ge et al., 2015). Specifically, mouse Piezo1 has a three-bladed, propeller-shaped structure with three long
intracellular beams that pivot together like a lever in response to mechanical force (Saotome et al., 2018; Zhao et al., 2018). Further
studies combining cryo-EM with high-speed atomic force microscopy demonstrate that Piezo1 undergoes a reversible, flattening
deformation when force is applied (Lin et al., 2019), effectively opening the central pore for cation-selective permeation (Coste
et al., 2012; Lin et al., 2019). Recent studies employing biochemical assays also indicates that Piezo1 channel can be mechanically
gated by the actin cytoskeleton via a cadherin-β-catenin-vinculin complex, thus suggesting that a force-from-filament model can
work together with force-from-lipid model (Wang et al., 2022). However, further characterization needs to be performed, especially
on the molecular-structural front, to determine how exactly such forces are transmitted. Piezo channels also possess an inactivation
gate that is sensitive to membrane voltage and prevents further mechanical stimulation until channels are reset by outward
permeation (Moroni et al., 2018)

TRPC1 TRPC1 is activated through intracellular signaling pathways that involve G-protein-coupled receptors, phospholipase C (PLC) and
IP3 or the depletion of intracellular Ca

2+ stores (Clapham, 2003; Trebak et al., 2007; Baudel et al., 2020). Namely, STIM1 senses Ca2+

depletion in the endoplasmic reticulum and recruits Orai1 channels in the plasma membrane to replenish Ca2+ stores (Cheng et al.,
2011). Local increases in Ca2+ concentration due to Orai1-mediated Ca2+ influx subsequently stimulate TRPC1 trafficking and
insertion into the plasma membrane (Cheng et al., 2011). Once localized to the plasma membrane, TRPC1 directly contributes to
store-operated Ca2+ entry by facilitating Ca2+ influx in response to STIM1 gating (Yuan et al., 2007; Cheng et al., 2011)

TRPC5 TRPC5 channels are activated by elevated levels of extracellular Ca2+, La3+ and Gd3+ and G-protein coupled receptors (Clapham,
2003; Blair et al., 2009; Ningoo et al., 2021). In the latter pathway, PLC-mediated hydrolysis of phosphatidylinositol 4,5-
bisphosphate (PIP2) into diacylglycerol also activates protein kinase C (PKC), which directly controls the sensitivity of TRPC5 to
PIP2 via phosphorylation (Ningoo et al., 2021). TRPC5 does not exhibit a strong preference for Ca

2+ and also passes Na+ (Clapham,
2003)

TRPM2 TRPM2 assembles into a tetramer with a three-tiered architecture: the top tier contains S1-S6 transmembrane and TRP helices, the
middle tier contains an MHR4 domain and the rib helix, while the bottom tier contains an N-terminal MHR1/2 domain and a
C-terminal NUDT9H domain that is gated by ADP ribose, a metabolic product of NAD (Wang et al., 2018b; Huang et al., 2018).
Upon ADP ribose binding, NUDT9H undergoes a conformational change that triggers the rotation of MHR1/2. Ca2+ binding
subsequently tilts the TRP helix, twists the MHR and rotates the gating S6 helix to open the channel (Wang et al., 2018b; Huang
et al., 2018). TRPM2 conducts Ca2+ and Na+ with equal permeability (Clapham, 2003)

TRPM4 TRPM4 forms a homotetrameric channel with multiple transmembrane and cytosolic domains, which assemble into a three-tiered
architecture: the top tier contains S1-S6 transmembrane and the TRP domain like TRPM2, the middle tier contains a linker helical
domain with 12 helices (LH1-LH12), while the bottom tier contains an N-terminal nucleotide-binding domain, an ankyrin repeat
domain and a C-terminal coiled-coil helix (Guo et al., 2017; Duan et al., 2018a). The N-terminal nucleotide-binding domain and
the C-terminal coiled-coil regulate tetrameric assembly of the channel (Guo et al., 2017). ATP binding to TRPM4 causes a
conformational change in the nucleotide-binding domain that disrupts the bottom-tier tetrameric assembly and inhibits channel
activity (Guo et al., 2017; Duan et al., 2018a). Calmodulin and PKC phosphorylation can also modulate the sensitivity of TRPM4
(Nilius et al., 2005). On the other hand, channel gating may be controlled by the C-terminal coiled coil domain, which can slide
within the central hole like a piston (Guo et al., 2017). Unlike other TRP channels, TRPM4 is impermeable to divalent cations.
Instead, TRPM4 has a selectivity filter for monovalent cations that preferentially permits Na+ in response to PIP2 and Ca2+ (Duan
et al., 2018a)

TRPM7 The quaternary structure of TRPM7 is similar to other TRPM channels with a few notable differences (Duan et al., 2018b).
TRPM7 possesses a short helix between S2 and S3 that is one helical turn shorter than in TRPM2 and TRPM4 (Duan et al., 2018b).
This change may affect channel gating upon changes in membrane bilayer composition and thickness. The selectivity filter of
TRPM7 also differs from TRPM4 by one amino acid, which is essential for divalent cation permeation of Ca2+ and Mg2+ (Duan
et al., 2018b). Furthermore, the hydrophobic loops and two helices belonging to the N-terminal domain are anchored to the inner
leaflet of the plasma membrane in TRPM7 (Duan et al., 2018b). The movement of this region may produce additional
conformational changes, resulting in large vertical and rotational motions of the N-terminal domain. Finally, the C-terminus of
TRPM7 contains a protein kinase domain, which is proteolytically cleaved in a cell-type-specific manner, translocates to the
nucleus, and phosphorylates histones leading to changes in gene expression (Krapivinsky et al., 2014). In addition to Ca2+ andMg2+,
TRPM7 is permeable to other divalent cations and monovalent cations (Krapivinsky et al., 2014). TRPM7 is constitutively active,
however its activity is strongly repressed by intracellular concentrations of Mg2+, Ba2+, Sr2+, Zn2+ Mn2+, Cl− and Br−, low
intracellular pH, Mg-nucleotides, polyamines, and PIP2 hydrolysis (Fleig and Chubanov, 2014)

TRPV2 TRPV2 is a TRPV channel subfamily member that forms a tetrameric Ca2+-permeable cation channel. The central ion pathway is
formed by transmembrane segments S5-S6, which are flanked by S1-S4 voltage-sensor-like domains (Liao et al., 2013; Huynh et al.,
2016) from adjacent subunits. Like other TRP channels, TRPV2 contains two constrictions or gates: an upper gate resides at the
selectivity filter in the outer pore region while a lower gate is comprised of the distal end of S6 (Huynh et al., 2016). Both upper and
lower gates are closed in the apo state, whereas the presence of agonists causes gate opening (Huynh et al., 2016). Unlike true
voltage-gated ion channels, the S1-S4 domain remains static during channel activation; however, it provides an external surface for
ligand binding (Liao et al., 2013; Huynh et al., 2016). Channel opening occurs following a series of conformational changes that
begin with an upward shift of the intracellular ankyrin repeat domain. The pore helix subsequently exhibits a clockwise twist which
causes allosteric changes in the upper and lower gate (Huynh et al., 2016; Zubcevic et al., 2016). Detailed structural analysis suggests
that TRPV2 can accommodate partially hydrated Ca2+, Na+ and K+ ions, as well as large organic cations, in the apo state (Huynh
et al., 2016). Conversely, PIP2 and ERK phosphorylation regulate the functions of TRPV2 (Santoni et al., 2020)

(Continued on following page)
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relies on the ability of G-protein coupled receptors to detect

changes in the extracellular environment and induce a

conformational change in MICs, such as transient receptor

potential cation channel subfamily M member 7 (TRPM7)

and TRPV4 (Petho et al., 2019). Self-generated forces arising

from actomyosin contractility can also lead to the activation of

MICs in migrating cells (Lee et al., 2021). For example, tension in

actin cytoskeletal scaffolds and enhanced signaling through

integrins (cell-matrix interactions) and cadherins (cell-cell

interactions) can indirectly influence the gating of MICs

(Petho et al., 2019).

While the role ofMICs in nerves and sensory cells involved in

sight, smell, taste and touch is well-characterized (Ranade et al.,

2015), their expression and function in cancer progression has

recently received attention (Adapala et al., 2016; Dombroski

et al., 2021; Karki and Tojkander, 2021; Yankaskas et al.,

2021). Given that cancer cells are subject to a multitude of

forces that continuously change with the local

microenvironment, it is important to understand how MICs

regulate cell behavior during each step of the metastatic cascade.

Here, we provide a comprehensive overview of physical cues that

cancer cells experience and how MICs allow cells to sense and

interpret these forces. In particular, we discuss the roles of

Piezo1/2, TRPC1, TRPC5, TRPM2, TRPM4, TRPM7, TRPV2,

and TRPV4 in mechanosensing and cancer metastasis.

Piezo1/2 Mechanosensitive Ion Channels

Piezo1 (Fam38A) and Piezo2 (Fam38B) are mechanically-

activated cation channels located in the plasma membrane of

vertebrates (Coste et al., 2010). Structurally, they are pore-

forming membrane proteins with numerous transmembrane

regions that are directly activated by mechanical stimuli

applied to the cell membrane like other MICs (Table 2);

however, they do not share sequence homology with any

known ion channels or receptors. Compared to other MICs,

which can be activated by both mechanical and chemical stimuli,

Piezo1/2 are the only channels primarily gated by mechanical

stimuli (De Felice and Alaimo, 2020), including compression,

shear stress, membrane stretching, poking, and suction (Table 1).

Since their discovery in 2010, the physiological roles of Piezo

channels have been extensively studied. Piezo1 was initially

identified in mouse neuroblastoma cells as a critical mediator

of mechanically-activated currents, but subsequently found to be

expressed in the bladder, colon, lungs, kidneys and skin (Coste

et al., 2010). Piezo1 plays essential regulatory roles in bone

anabolism (Li et al., 2019a), iron metabolism (Ma et al.,

2021), innate immunity (Solis et al., 2019), vascular

development (Ranade et al., 2014a) and erythrocyte volume

homeostasis (Cahalan et al., 2015; Cinar et al., 2015).

Piezo1 is also required for neurogenesis (Pathak et al., 2014),

cell migration (Hung et al., 2016; Mousawi et al., 2020) and

axonal pathfinding and growth (Koser et al., 2016). Additionally,

Piezo1 controls epithelial cell numbers by inducing cell division

in sparse environments and cell extrusion in crowded

environments (Gudipaty et al., 2017), and regulates

endosomal trafficking for efficient cytokinetic abscission of

nascent daughter cells (Carrillo-Garcia et al., 2021).

Consequently, Piezo1 expression is required for embryonic

development (Ranade et al., 2014a).

Piezo2, which shares ~42% sequence homology with Piezo1,

was identified in dorsal root and trigeminal ganglia sensory

neurons, where it facilitates a subset of kinetically distinct

mechanically-activated currents involved in somatosensation

and proprioception (Coste et al., 2010; Chesler et al., 2016).

Piezo2 is also expressed in the bladder, colon, lungs, kidneys and

skin (Coste et al., 2010). Like Piezo1, Piezo2 participates in a

diverse set of mechanisms, including Merkel cell sensitivity to

light touch, itch, mechanical pain, proprioception, baroreflex,

TABLE 2 (Continued) Mechanosensitive ion channels and their gating mechanisms.

Ion channel Structure and mechanism
of activation

TRPV4 TRPV4 forms a symmetric tetramer like TRPV2 with six transmembrane domains (S1-S6); however, S4-S5 linker adopts an
ordered loop structure than an ɑ-helix (Deng et al., 2018). In typical voltage-gated ion channels, the ɑ-helix functions are a
mechanical lever to couple voltage-sensor activation and pore opening. Consequently, the absence of this linker in TRPV4 results in
a different gating mechanism. The S1-S4 domain rotates ~90° counter-clockwise around the S4 helix, which moves S3 towards the
central pore and creates an extensive packing interface with S5-S6 of the adjacent subunit (Deng et al., 2018). In this unique
conformation, S3 intimately contacts S6 for virtually its entire length, forming a molecular zipper (Deng et al., 2018). As a result,
gating stimuli acting on S1-S4 may exert force on S6 through S3 to open the channel gate (Deng et al., 2018). In contrast to other
TRPV channels, the ion conduction pore of TRPV4 contains only one intracellular gate, with the narrowest region at residue M714
(Deng et al., 2018). The selectivity filter of TRPV4 is also remarkably wide, allowing the conduction of Na+, K+ and Ca2+ even when
hydrated (Deng et al., 2018). Thus, TRPV4 is a nonselective cation channel with higher permeability for divalent ions, such as Ca2+,
Ba2+ and Mg2+, than monovalent ions, such as Na+, Cs+ and K+ (Voets et al., 2002). Endogenous TRPV4 agonists include
arachidonic acid, endocannabinoid anandamide, epoxyeicosatrienoic acids and phorbol derivatives (Clapham, 2003). Additionally,
PIP2 regulates TRPV4 sensitivity to temperature and hypotonicity through a phosphoinositide-binding site,121KRWRK125

(Garcia-Elias et al., 2013). TRPV4 can also be inhibited or potentiated in a Ca2+ concentration-dependent manner and function as
an inwards or outward rectifier (Voets et al., 2002)
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breathing and bladder control (Szczot et al., 2021). Piezo2 is

primarily involved in mechanosensation; however, global

knockout of gene expression results in perinatal lethality

(Ranade et al., 2014b) like Piezo1 (Ranade et al., 2014a).

Thus, there are likely many other functions of Piezo2 that

remain to be identified.

A growing body of evidence indicates that the expression and

function of Piezo1/2 are altered in cancer. Piezo1 is abnormally

expressed in tissues typically exposed to high levels of mechanical

stress. Specifically, breast (Li et al., 2015), colorectal (Sun et al.,

2020), gastric (Wang et al., 2021) and prostate (Han et al., 2019)

cancer exhibit elevated levels of expression, as well as gliomas

(Zhou et al., 2020) and oral squamous cell carcinoma (OSCC)

(Hasegawa et al., 2021). Piezo2 is also upregulated in breast

cancer (Pardo-Pastor et al., 2018) and gliomas (Yang et al., 2016).

Mechanosensitive transient receptor
potential channels

The TRP superfamily of MICs consists of 7 different

subfamilies based on sequence homology, including TRPA,

TRPC, TRPM, TRPML, TRPN, TRPP, and TRPV, all of

which are expressed in mammalian cells except for TRPN

(Montell, 2005). TRP channels are primarily localized to the

plasma membrane and endoplasmic reticulum and can be

activated by various stimuli such as heat, tension, pH,

osmolarity and pressure (Table 1) (Pedersen and Nilius, 2007;

Patel et al., 2010). Most TRP channels function as tetramers with

six putative transmembrane segments (S1-S6) and a pore-

forming re-entrant loop between S5 and S6. Except for

TRPM4 and TRPM5, most TRPs are also non-selective cation

TABLE 3 Ion channels involved in tuning cell behavior in response to physical cues.

Ion
channel

Physical cue Roles

Piezo1 Confinement (Hung et al., 2016) Cell motility (Yang et al., 2014; Hung et al., 2016; Zhang et al., 2018; Han et al., 2019)
Mechanical perturbations (Coste et al., 2012; Ranade et al., 2015;
Woo et al., 2015; Cox et al., 2016)

Cell proliferation (Zhang et al., 2018; Han et al., 2019; Sun et al., 2020; Hasegawa et al.,
2021; Wang et al., 2021)

Voltage (Moroni et al., 2018) Invasion (McHugh et al., 2012; Li et al., 2015; Etem et al., 2018; Huang et al., 2019; Yu
et al., 2021)

Piezo2 Narrow pores (Pardo-Pastor et al., 2018) Cell proliferation (Yang et al., 2016; Etem et al., 2018)
Mechanical perturbations (Coste et al., 2012; Ranade et al., 2015;
Woo et al., 2015; Cox et al., 2016)

Invasion (McHugh et al., 2012; Yang et al., 2016; Jiang et al., 2017; Etem et al., 2018;
Pardo-Pastor et al., 2018; Huang et al., 2019)

Voltage (Moroni et al., 2018) Cell motility (McHugh et al., 2012; Yang et al., 2016; Etem et al., 2018; Pardo-Pastor
et al., 2018; Huang et al., 2019)

TRPC1 Pressure (Li et al., 2019c) Cell proliferation (El Hiani et al., 2009; Sobradillo et al., 2014; Faouzi et al., 2016;
Zhang et al., 2020; Sun et al., 2021)
Cell motility (Fabian et al., 2008; Dong et al., 2010; Zhang et al., 2020; Sun et al., 2021)
Invasion (He et al., 2012; Sobradillo et al., 2014)

TRPM2 Oxidative stress (Perraud et al., 2005; Huang et al., 2018) Cell motility (Li et al., 2016; Lin et al., 2018; Almasi et al., 2019; Lin et al., 2021)
Cell proliferation (Almasi et al., 2018; Lin et al., 2018; Lin et al., 2021)
Invasion (Lin et al., 2018; Almasi et al., 2019; Lin et al., 2021)

TRPM4 Membrane stretch (Morita et al., 2007) Cell proliferation (Kappel et al., 2019)
Cell motility (Cáceres et al., 2015; Kappel et al., 2019; Sagredo et al., 2019)
Invasion (Cáceres et al., 2015; Kappel et al., 2019; Sagredo et al., 2019)

TRPM7 Shear stress (Yankaskas et al., 2021) Hydraulic resistance (Zhao et al.,
2019; Zhao et al., 2021)

Intravasation (Yankaskas et al., 2021)
Track choice during cell migration (Zhao et al., 2019) and morphology (Zhao et al.,
2021)
Cell proliferation (Sun et al., 2014a; Wang et al., 2014; Gao et al., 2017; Liu et al.,
2019b; Su et al., 2019)
Cell motility (Chen et al., 2010; Middelbeek et al., 2012; Meng et al., 2013; Sun et al.,
2014a; Wang et al., 2014; Gao et al., 2017; Liu et al., 2019b; Su et al., 2019; Yang et al.,
2020a; Lefebvre et al., 2020)
Invasion (Meng et al., 2013; Wang et al., 2014; Gao et al., 2017; Liu et al., 2019b; Su
et al., 2019; Yang et al., 2020a)
Apoptosis (Su et al., 2019)

TRPV2 Membrane stretch (Mihara et al., 2010; Shibasaki et al., 2010) Cell proliferation (Kudou et al., 2019)
Cell motility (Liu and Wang, 2013; Kudou et al., 2019; Kato et al., 2022)
Invasion (Liu and Wang, 2013; Kudou et al., 2019; Kato et al., 2022)
Apoptosis (Kudou et al., 2019)

TRPV4 Stiffness (Adapala et al., 2016; Cappelli et al., 2019; Sharma et al.,
2019)

Cell motility (Mrkonjić et al., 2015; Lee et al., 2017a; Ou-Yang et al., 2018; Li et al.,
2020c; Zhang et al., 2021)
Invasion (Ou-Yang et al., 2018; Yang et al., 2020b; Zhang et al., 2021)
Extravasation (Lee et al., 2016)

Frontiers in Cell and Developmental Biology frontiersin.org06

Bera et al. 10.3389/fcell.2022.954099

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.954099


channels that permit Na+, K+, Ca2+ and/or Mg2+ influx to varying

degrees depending on their specific structure. Increased cation

entry can affect cellular function directly or by enhancing

intracellular signaling cascades which lead to the downstream

release of calcium (Pedersen and Nilius, 2007; Petho et al., 2019).

Importantly, TRP channels also regulate the proliferation,

differentiation, migration, invasion and chemoresistance of

cancer cells by sensing osmotic perturbations, shear forces and

hydrostatic pressure (Clapham, 2003; Liedtke et al., 2003; Gomis

et al., 2008; Mendoza et al., 2010; Shen et al., 2015; Zhao et al.,

2019; Yankaskas et al., 2021; Zhao et al., 2021) (Table 1). Several

members of the TRP superfamily also participate in actin

remodeling and focal adhesion dynamics in response to

mechanical stimuli (Kobayashi and Sokabe, 2010; Shen et al.,

2015; Zhao et al., 2019). TRP channels implicated in

mechanotransduction mechanisms that regulate cancer cell

migration, invasion and metastasis include, among others,

TRPC1, TRPC5, TRPM2, TRPM7, TRPM4, TRPV2 and

TRPV4 (Table 3) (Patel et al., 2010; Canales et al., 2019).

Physical cues encountered at the primary
tumor site

Cancer arises from defects in regulatory circuits that control

normal cell processes. Several lines of evidence suggest that

tumor cells acquire a self-sufficiency in growth signals, an

insensitivity to growth suppression, limitless replicative

potential, sustained angiogenesis and the ability to evade

apoptosis (Hanahan and Weinberg, 2011). These

characteristics enable tumor cells at the primary site to

outgrow and dominate their local tissue environment.

Cells encounter a variety of physical forces within the

primary tumor, including mechanical compression, hydraulic

pressure and fluid viscosity (Figure 1; Table 1). As described

earlier, MICs are a diverse group of ion channels that allow cells

to sense, interpret and respond to a multitude of mechanical

stimuli (Ranade et al., 2015). Thus, a detailed understanding of

these forces is required to contextualize how MICs may be

involved in the first few steps of the tumor cell transformation

and the initiation of cancer metastasis.

Compressive and radial stresses
As murine or human cancer cells proliferate in the mammary

fat pad of mice, the total tumor volume expands and deforms the

surrounding tissue, leading to the accumulation of compressive

stress upwards of 150 mm Hg (20 kPa) (Stylianopoulos et al.,

2012; Jain et al., 2014). Increasing tumor volume also generates

mechanical compression in the tumor (Figure 1; Table 1). The

accumulation of compressive stress is evident from force balance

and the observed stress relaxation of tumor halves when excised

tumors are cut along their longest axis; without the application of

any external load, “cutting” releases internal stress, resulting in

simultaneous bulging at the center and retraction at the

boundary of the tumor, which are indicative of compression

in the intratumoral region and radial stress at the periphery,

respectively (Stylianopoulos et al., 2012).

Compressive stress in the tumor interior can influence the

shape of the tumor mass and alter cancer cell biology, resulting in

enhanced invasiveness (Nia et al., 2020). Stress levels equivalent

to those encountered in the native breast tumor

microenvironment drive cancer cells towards a more invasive

phenotype (Tse et al., 2012) by altering gene expression profiles

that remodel the ECM and tumor vessels (Demou, 2010; Rivron

et al., 2012), thereby facilitating tumor dissemination out of a

primary tumor mass. For example, compression can enhance

breast cancer cell migration by inducing the formation of new

adhesion contacts with the substrate via localized fibronectin

secretion (Tse et al., 2012), and increase invasion by engaging

matrix metalloproteinases (MMPs) (Luo et al., 2022). In

particular, mechanical compression of breast cancer cells

stimulates Ca2+ influx through Piezo1, leading to Src/ERK

pathway activation, invadopodia formation, increased matrix

degradation and enhanced cell invasion (Luo et al., 2022). The

localization and function of Piezo1 is dependent on the integrity

of caveolae in the cell membrane as knockdown of Cav-1

abrogates Ca2+ influx and cell invasion (Luo et al., 2022).

High compressive stress inside spheroid models of breast

cancer also promotes an invasive phenotype by facilitating

water flow across cell boundaries from the tumor core to the

periphery and invasive front via gap junctions (Han et al., 2020).

Interestingly, this pattern of cell volume regulation is preserved

in tissue samples from human patients; namely, cells positioned

progressively further from the tumor core exhibit greater

volumes (Han et al., 2020). Of note, high stress can induce

growth arrest and apoptosis of murine mammary carcinoma

cells in the interior of tumor spheroids, while anisotropic forces

can pattern tumor volume increase in the direction of least stress

(Cheng et al., 2009).

Hydraulic pressure
The hydraulic environment around tumors is largely

determined by the composition of fluids combined with the

structure and organization of blood and lymphatic vessels

(Koumoutsakos et al., 2013). Dynamic ECM deformation

enhances microvascular network formation in vitro by altering

gene expression (Ruehle et al., 2020). Compressive stresses can

also pinch blood and lymphatic vessels at the tumor interior and

transform the cross-sectional area of such vessels at the

peritumoral region into elliptical shapes. The compression of

leaky blood vessels, which are frequently associated with cancer

progression (Hashizume et al., 2000), results in elevated

interstitial fluid pressure (IFP) (Table 1) (Cheng et al., 2009)

by increasing fluid flux from the vasculature into interstitial

spaces (Figure 1). Concurrently, compression of lymphatic

vessels results in improper drainage of excessive interstitial

Frontiers in Cell and Developmental Biology frontiersin.org07

Bera et al. 10.3389/fcell.2022.954099

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.954099


fluids, which further increases IFP (Jain and Baxter, 1988; Baxter

and Jain, 1989). Overall, the haphazard and leaky tumor

vasculature contributes to higher IFP, which can drive local

breast cancer cell dissemination and metastasis (Haessler

et al., 2012; Li et al., 2020a).

Elevated IFP at the tip of three-dimensional (3D)

aggregates of human breast cancer (MDA-MB-231) cells

increases invasion by enhancing the expression of genes

associated with epithelial-to-mesenchymal transition

(EMT), namely Snail and vimentin (Piotrowski-Daspit

et al., 2016). Interestingly, increased IFP at the invasive tips

also enhances the expression of the epithelial marker

E-cadherin (Piotrowski-Daspit et al., 2016), whose role in

breast cancer progression is debated, yet has been

demonstrated to support metastasis (Kowalski et al., 2003;

Padmanaban et al., 2019). Elevated IFP also increases the

volume, motility and invasiveness of human lung cancer

(CL1-5 and A549) cells due to ERK1/2 pathway activation

(Kao et al., 2017). Hydrostatic pressure initiates a cascade of

caveolin-1, Akt1/2, ERK1/2 and cortactin phosphorylation

which enhances filopodia formation and drives the

increased expression of aquaporin 1 (AQP1), Snail and

vinculin (Kao et al., 2017). Importantly, hydrostatic

pressure does not significantly enhance the volume,

motility or proliferation of normal lung epithelial (BEAS-

2B) cells due to negligible changes in the expression of

AQP1 and the phosphorylation status of caveolin-1 and

ERK1/2 (Kao et al., 2017).

Extracellular fluid viscosity
The viscosity of extracellular fluids also constitutes an

important physical parameter that varies throughout the

human body during both healthy and diseased states

(Figure 1; Table 1). The fluids surrounding primary tumors

have elevated viscosity due to deregulated blood circulation

(Sun et al., 2007) and increased amounts of ECM degradation

(Ellis, 2001). Additionally, resident epithelial and cancer cells

secrete macromolecules, such as mucins, which further increase

fluid viscosity (Ellis, 2001). Magnetic resonance elastography

studies of patient samples reveal local upregulation of shear

viscosity at tumor sites, with malignant breast tumor masses

displaying 3-fold greater shear viscosity than benign tumors

(Sinkus et al., 2005; Kumar et al., 2018). Although magnetic

resonance electrograms measure the material properties of bulk

tumor masses, a recent development in molecular rotor-based

fluorescent sensors has enabled the measurement of fluid

viscosities in vivo (Yin et al., 2021). Importantly, in vivo

imaging of a viscosity-activated fluorescent probe in mice

bearing murine breast tumors confirmed the existence of

significantly elevated fluid viscosity in tumors compared to

native tissues (Yin et al., 2021). Unfortunately, it remains

elusive how cells in the primary tumor respond to

physiologically-relevant values of viscosities. Further work is

required to elucidate the impact of extracellular fluid viscosity

on cancer cell behavior and uncover the molecular mechanisms

that are engaged by this physical cue.

Mechanical properties and geometrical
constraints during cell invasion into the
local microenvironment

ECM structure surrounding primary tumor sites is often

modified compared to native tissues (Winkler et al., 2020)

resulting in unique topographies which cells can use to invade

out of the primary tumor region. Cancer cells can remodel the

ECM by promoting the secretion and deposition of additional

matrix components; altering the organization of fibers through

proteolytic cleavage and chemical modifications; and applying

mechanical forces on existing fibers (Winkler et al., 2020). In

turn, cells can sense and respond to material properties and the

architecture of ECM fibers (Sharma et al., 2013; Doyle et al., 2015;

Mukherjee et al., 2019). Increased collagen deposition, alignment

and cross-linking affect the stiffness (Micalet et al., 2021) and

viscoelasticity (Mierke, 2021) of the local microenvironment and

establish migration paths for cells to escape the primary tumor

(Figure 1).

Substrate stiffness
ECM deposition, modification and organization during

cancer progression contribute to increased matrix stiffness or

elasticity (Figure 1; Table 1). In the case of breast cancer, shear

wave elastography reveals that tumor stiffness increases with

tumor grade and disease progression; benign lesions measure

~45 ± 40 kPa whereas malignant lesions can reach ~147 ± 40 kPa

(Athanasiou et al., 2010; Bae et al., 2017). Nanoscale atomic force

microscopy indentation of breast tissue samples also

demonstrates a dramatic stiffening of invasive ductal

carcinomas (>5 kPa) compared to normal tissue (~0.4 kPa)

(Paszek et al., 2005). Additionally, stromal stiffness at the

invasive edge of tumors is 4-fold greater than non-invasive

regions (Paszek et al., 2005).

Collagen is the most abundant ECM component deposited

during breast cancer progression (Schedin and Keely, 2011; Naba

et al., 2014). Increased stromal collagen in mice promotes tumor

initiation, cancer cell invasion and lung metastasis (Provenzano

et al., 2008). Accordingly, elevated collagen is a risk factor for

breast cancer (Li et al., 2005). Increased collagen crosslinking and

stiffening of the ECM promote focal adhesion formation and

enhanced phosphoinositide 3-kinase (PI3K) activity in human

mammary epithelial cells. Along these lines, inhibition of lysyl

oxidase (LOX)-mediated collagen crosslinking decreases focal

adhesions, reduces PI3K activity, and impedes tumor progression

in mice (Levental et al., 2009). Deregulated ECM architecture

also affects the progression of many other cancer types, including

colon (Birk et al., 2014), prostate (Kapinas et al., 2012) and
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ovarian (Nadiarnykh et al., 2010) cancer. It is important to note

that the stiffness of the local microenvironment varies

considerably due to tumor heterogeneity (Plodinec et al.,

2012). Tissue stiffness also varies widely throughout the body

(Handorf et al., 2015). Thus, cancer cells must constantly sense

and adapt to local changes in stiffness as they disseminate from

the primary tumor and migrate towards the vasculature

(Figure 1).

Cells can sense the rigidity and topography (Table 1) of the

underlying ECM through cell-matrix adhesions (Box 1) (Geiger

et al., 2009), which connect the cellular cytoskeleton to the local

microenvironment. More recently, the role of MICs in substrate

stiffness sensing has also emerged. For example, primary mouse

chondrocytes cultured on polydimethylsiloxane (PDMS) exhibit

elevated Ca2+ signaling with increasing stiffness (2–197 kPa);

TRPV4 preferentially mediates Ca2+ influx on stiffer (197 and

78 kPa) substrates, whereas Piezo1/2 facilitates Ca2+ influx on

softer (54 and 2 kPa) substrates (Du et al., 2021). In the context of

prostate cancer, TRPV4 expression in murine tumor endothelial

cells regulates Ca2+ influx and Rho activity in response to

substrate stiffness (Adapala et al., 2016). Endothelial cells with

diminished levels of TRPV4 exhibit reduced mechanosensitivity,

which increases cell migration on stiffer substrates and decreases

VE-cadherin at cell-cell junctions, leading to abnormal

angiogenesis, enhanced tumor growth, and enhanced lung

metastasis (Adapala et al., 2016; Cappelli et al., 2019).

It has been postulated that local stretching of the plasma

membrane near focal adhesions (Box 1) activates MICs, which

ultimately control cell migration by regulating actomyosin

contractility and the fate of focal adhesions (Kobayashi and

Sokabe, 2010). Ca2+ flickers have been observed near

adhesions in migrating human embryonic lung fibroblasts

(Wei et al., 2009). Rapid local application of an RGD

sequence recognized by integrins enhances flicker activity. In

contrast, TRPM7 knockdown and myosin inhibition prevent

flicker production (Wei et al., 2009). Ca2+ entry through

membrane-associated channels impacts adhesion dynamics by

activating calpain, a cysteine protease (Khorchid and Ikura,

2002) that cleaves several adhesion components, including

integrin (Du et al., 1995), focal adhesion kinase (FAK) (Chan

et al., 2010) and talin (Franco et al., 2004). In fact, calpain-

mediated proteolysis of talin is a rate-limiting step during

adhesion turnover (Franco et al., 2004); calpain inhibition

decreases integrin release from the cell membrane, leading to

a reduction in cell speed (Huttenlocher et al., 1997). Accordingly,

human glioma (U87), breast cancer (T47D) and embryonic

kidney (HEK) cells expressing a defective form of

TRPV4 exhibit long protrusions with large, elongated

adhesions that prevent migration (Mrkonjić et al., 2015). In

contrast, cells overexpressing wildtype TRPV4 possess very

few and small adhesions (Mrkonjić et al., 2015).

TRPV4 inhibition in human mesenchymal stem cells also

Box 1 | Cell-matrix adhesions are important structures that facilitate cancer cell migration and mechanosensing. Adhesions are composed of
integrins and cytoplasmic proteins that form a <200 nm plaque containing at least 156 components with 690 interactions (Zaidel-Bar et al.,
2007a; Kuo et al., 2011). There are four main classes of adhesions which are distinguished by their size, protein composition and lifetime:
nascent adhesions, focal complexes, focal adhesions and fibrillar adhesions (Wolfenson et al., 2013). Nascent adhesions at the leading edge of
migratory cells are <1 μm in diameter, primarily composed of integrins, talin and paxillin, and have a lifespan <60 s (Laukaitis et al., 2001; Zaidel-
Bar et al., 2003;Wolfenson et al., 2013). Nascent adhesions mature into focal complexes upon vinculin recruitment and attachment to the actin
cytoskeleton (DePasquale and Izzard, 1987). Mechanical force promotes the recruitment of more scaffold proteins and strengthening of the
adhesion-actin cytoskeleton link, leading to the formation of focal adhesions (Galbraith et al., 2002; Choi et al., 2008). Focal adhesions are
larger than focal complexes (1 μm wide × 3–5 μm long), contain zyxin, and have a considerably longer lifetime (>8.5 min) (Zaidel-Bar et al.,
2003; Zaidel-Bar et al., 2007b). Continued force application transitions focal adhesions into fibrillar adhesions, which are significantly longer,
contain tensin, and have a very long lifetime (~42 min) (Pankov et al., 2000; Zaidel-Bar et al., 2007b). Cells typically form adhesions along ECM
bundles of collagen and fibronectin (Harunaga and Yamada, 2011; Doyle et al., 2015). Nascent adhesions are initially formed at the leading edge
of cells in a force- and stiffness-independent fashion (Nayal et al., 2006; Choi et al., 2008). Many of these small adhesions quickly decay while a
few continue to increase in size andmove towards the cell interior (Parsons et al., 2010). Substrate stiffness increases the fraction of adhesions
that mature into large complexes (Discher et al., 2005) by unmasking additional binding sites on adhesion proteins (Horton et al., 2016; del Rio
et al., 2009). Adhesions on stiff matrices also experience stronger forces from actomyosin contraction, and generate stronger frictional forces
on the actin cytoskeleton (Walcott and Sun, 2010). For this reason, collagen crosslinking andmatrix stiffening promote adhesion formation and
maturation (Levental et al., 2009; Provenzano et al., 2009; Walcott et al., 2011). Increased ECM stiffness also induces EMT (Wei et al., 2015),
which is associated with tumor cell dissemination, immune evasion and chemoresistance (Aiello and Kang, 2019). Mesenchymal cell migration
is highly dependent on adhesion dynamics. Accordingly, upregulation of proteins that enhance actin cytoskeleton and adhesion dynamics is
often observed in invasive and metastatic cancer cells, while inhibition of these mediators is beneficial in blocking cell migration (Yamaguchi
and Condeelis, 2007;Wendt and Schiemann, 2009). Force fluctuations within adhesions are converted into biochemical signals through a focal
adhesion kinase (FAK)/phosphopaxillin/vinculin signaling pathway (Plotnikov et al., 2012). Other studies have also identified FAK (Klein et al.,
2009; Wang et al., 2019), vinculin (Plotnikov et al., 2012; Stutchbury et al., 2017), talin (del Rio et al., 2009; Austen et al., 2015; Elosegui-Artola
et al., 2016) and zyxin (Yoshigi et al., 2005; Hirata et al., 2008) as mechanosensitive proteins required for substrate stiffness sensing. These
proteins allow cells to rapidly respond to changes in substrate stiffness (Pelham and Wang, 1997; Lo et al., 2000) and migrate towards stiffer
areas almost immediately after substrate stretching or compression (Lo et al., 2000) through a process known as durotaxis (DuChez et al.,
2019). Mathematicalmodels of steady-state cell speed suggest cellsmigrate optimally within a narrow range of stiffnesses, with soft or very stiff
substrates both resulting in less cell migration (Pelham and Wang, 1997; Dokukina and Gracheva, 2010). In agreement with this hypothesis,
glioma (U251) cells exhibit preferential migration towards substrates with a stiffness of 10 kPa from both softer and stiffer regions (Bangasser
et al., 2017). Small adhesions formed on soft substrates fail to support traction forces required for cell migration. Conversely, stiffer substrates
induce cell spreading, adhesion formation, and adhesion maturation, which collectively result in slower migration (Discher et al., 2005).
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decreases tensile forces across vinculin and dramatically blocks

collagen fibril assembly in vitro (Gilchrist et al., 2019). Moreover,

TRPV4 activation in human breast cancer (4T07) cells enhances

Akt and FAK phosphorylation and transendothelial migration

(Lee et al., 2017a). Piezo1 has also been shown to enhance the

growth of human glioblastoma stem cells and promote tumor

development by activating integrin/FAK signaling (Chen et al.,

2018). Piezo1 knockdown cells fail to assemble focal adhesion

structures which halts a positive feedback loop that otherwise

allows glioma cells to remodel the local ECM, increase tissue

stiffness, and further enhance Piezo1 activity (Chen et al., 2018).

As such, doxycycline-mediated shRNA knockdown of

Piezo1 suppresses tumor growth and prolongs the survival of

mice (Chen et al., 2018). Interestingly, TRPV4 expression in

normal mouse primary epidermal keratinocytes has been shown

to regulate transforming growth factor β (TGFβ)-induced EMT

and nuclear translocation of Transcriptional coactivator with

PDZ-binding motif (TAZ) in response to matrix stiffness

(Sharma et al., 2019); however, these findings remain to be

investigated in cancerous cells.

Viscoelasticity
While stiffness is an important prognostic factor that

enhances metastatic phenotypes, it is important to note that

most biological tissues and ECMs are not purely elastic

(Chaudhuri et al., 2020). Tissues exhibit a time-dependent

mechanical response and dissipate a fraction of energy it took

to deform them, a property known as viscoelasticity (Table 1).

Soft tissues, such as brain, liver and lung, generally exhibit

viscous moduli that are 10%–20% of their elastic moduli

(Chaudhuri et al., 2020). Even hard tissues, such as bone and

cartilage, display viscoelastic behaviors with viscous moduli that

are about 10% of their elastic moduli (Chaudhuri et al., 2020).

Thus, most biological tissues undergo permanent deformation

following the application of external force. Importantly, magnetic

resonance elastography (Sinkus et al., 2007) and ultrasonic strain

imaging (Bayat et al., 2018) and elastography (Kumar et al., 2018)

reveal that malignant lesions are more viscoelastic than benign

lesions.

Malignant tumors have increased collagen density (Li et al.,

2005) with collagen fibers that are structurally different from

those of normal ECM stroma (Provenzano et al., 2006). Elevated

collagen concentrations, the elongation of individual fibers, and

the formation of new crosslinks substantially increase plasticity

(Figure 1) (Ban et al., 2018). Viscoelastic 2D substrates enhance

the migration of human fibrosarcoma (HT-1080), breast

carcinoma (MDA-MB-231), and mammary epithelial cells by

promoting the formation of filopodial protrusions and nascent

adhesions; fascin1, formin and myosin-X facilitate filopodia

formation, while integrin β1, Arp2/3, Rac1 and myosin

participate in adhesion-based motility (Adebowale et al.,

2021). Importantly, MDA-MB-231 cells in viscoelastic 3D

matrices with a stiffness of ~1.8 kPa can extend invadopodia

and mechanically enlarge the gel pores to enhance migration

through the ECM (Wisdom et al., 2018). Human chondrocytes

are able to sense changes in substrate viscoelasticity via TRPV4,

which in turn regulates the phosphorylation of glycogen synthase

kinase 3β (GSK3β) (Agarwal et al., 2021). However, the

molecular mechanisms through which cancer cells sense

substrate viscoelasticity remain unknown and the effect of

viscoelasticity on cancer cell metastasis requires further

investigation. Nevertheless, these results implicate

viscoelasticity as an important physical cue that affects cell

migration and invasion.

Contact guidance along topographical features
Cells can align to nano- and micro-scale topographical

features of the substrate and migrate along them using contact

guidance (Table 1) (Martinez et al., 2009; Paul et al., 2016).

Second harmonic generation (SHG) imaging of human breast

cancer biopsies and mouse tumors shows that collagen fibers are

increasingly aligned in invasive versus benign stages of cancer

and in more aggressive tumors (Provenzano et al., 2006; Conklin

et al., 2011). Intravital imaging also demonstrates that breast

cancer cell invasion out of the primary tumor is predominantly

oriented along aligned collagen fibers (Condeelis and Segall,

2003; Provenzano et al., 2006). Remarkably, primary tumor

explants from mice cultured in a randomly organized collagen

matrix can realign collagen fibers to promote outward migration

of individual cancer cells along radially oriented fibers

(Provenzano et al., 2006). Consequently, collagen fiber

alignment relative to the breast tumor interface is an

independent prognostic marker for disease progression (Li

et al., 2005; Zunder et al., 2020) and survival (Paul et al., 2016).

Cancerous and non-cancerous cells can wrap around

suspended fibers that are 0.1–1 μm in diameter and alter their

protrusion dynamics depending upon the fiber curvature

(Mukherjee et al., 2019). For example, human glioblastoma

(U251) cells seeded on suspended nanofibers migrate faster

and more persistently on 1D geometries than on 2D

orthogonal fibers, and cells on closely spaced parallel fibers

achieve even faster speeds than on single fibers (Estabridis

et al., 2018). These three migratory behaviors are successfully

recapitulated by a mathematical model that uses motor-clutch

based force transmission (Chan and Odde, 2008), highlighting

the role of topographical cues during glioblastoma cell migration

(Estabridis et al., 2018). The stiffness and length of fibers also

affects the migration speed and phenotype of human glioma

(DBTRG-05MG) cells (Sharma et al., 2013). Motile cells can also

align parallel to ridges on a 2D surface. Interestingly, using

laminin-coated ridges with sub-micron features, the migratory

phenotype of 14 patient-derived glioblastoma samples in

response to platelet-derived growth factor (PDGF) could

predict the tumor recurrence in the clinic (Smith et al., 2016).

Besides the direct sensing of native topographical cues by

cancer cells, cancer associated fibroblasts (CAFs), which are
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abundantly present in the tumor microenvironment, alter the

ECM architecture by producing collagen, fibronectin, and many

other matrix components (Winkler et al., 2020). CAFs can also

secrete LOX (Karagiannis et al., 2012; Liu et al., 2019a) and

interact with collagen-rich ECM through focal adhesions to align

fibers via RhoA-mediated activation of myosin light chain

activity (Gaggioli et al., 2007; Goetz et al., 2011). Taken

together, deregulated ECM architecture provides distinct

topographical cues that facilitate tumor cell invasion into the

surrounding tissue. Thus, contact guidance along ECM fibers and

topographical features act as clinically relevant physical cue of

cancer progression.

Confined tracks and microchannels
The ECM contains pores of varying sizes from 1 to 20 μm in

diameter and narrow tube-like tracks that are 3–30 μm in width

and up to 600 μm long, due to the organization and cross-linking

of matrix components (Wolf et al., 2009). Cancer cells can

physically widen or enzymatically degrade the surrounding

ECM to create their own migration tracks (Bremer et al.,

2001; Fisher et al., 2009; Wisdom et al., 2018), follow paths

created by other cancer cells and CAFs (Gaggioli et al., 2007;

Patsialou et al., 2013), or move through pre-existing channel-like

tracks present in the native environment (Friedl and Alexander,

2011; Weigelin et al., 2012) (Figure 1).

Cells typically adapt to the local environment and migrate

through the ECM by selecting the path of least resistance

(Renkawitz et al., 2019; Yamada and Sixt, 2019; Zhao et al.,

2019). To migrate through small channels and openings

efficiently, cells rely on mechanosensitive mechanisms that

detect changes in confinement and modulate their migration

strategy accordingly (Hung et al., 2013). Using microfabricated

PDMS devices and substrate printing methods, it was shown that

confinement increases Ca2+ influx in Chinese Hamster Ovary

(CHO) cells via the stretch-activated cation channel Piezo1 to

reduce the activity of cyclic AMP (cAMP)-dependent protein

kinase A (PKA) near the plasma membrane (Hung et al., 2016).

Similarly, Ca2+ influx through Piezo2 was shown to facilitate

efficient migration of brain metastatic MDA-MB-231 cells

through narrow channels by modulating the activity of RhoA

and the formation and orientation of stress fibers and focal

adhesions (Pardo-Pastor et al., 2018). One possible

mechanism linking Piezo2 and RhoA activation involves Fyn

kinase recruitment and calpain activation at the leading edge of

migrating cells (Pardo-Pastor et al., 2018). The coordinated

activity of these proteins is known to regulate focal adhesion

dynamics and stress fiber formation (Pardo-Pastor et al., 2018).

Remarkably, cells can squeeze through confining pores

narrower than their resting dimensions by distorting the

shape of their cell body and organelles; however, as the largest

and stiffest cellular component, the nucleus determines the

smallest pore size cells can pass through without degrading

the surrounding matrix (Friedl et al., 2011; Wolf et al., 2013).

Indeed, MMP-independent migration linearly decreases with

pore size until the nucleus deforms down to ~10% of its

original cross section, at which point cells are no longer able

to traverse the physical constraint (7 μm2 for tumor cells, 4 μm2

for T cells and 2 μm2 for neutrophils) (Wolf et al., 2013). Cells

with reduced lamin-A expression possess more malleable nuclei

and migrate through pores more quickly; however, the chance of

apoptosis is increased due to nuclear envelope (NE) rupture

which promotes DNA damage (Harada et al., 2014; Denais et al.,

2016; Raab et al., 2016; Mistriotis et al., 2019). DNA damage

repair pathways are rapidly recruited following NE rupture to

mitigate apoptosis; inhibiting their activation substantially

increases cell death after nuclear rupture (Denais et al., 2016;

Raab et al., 2016). Even in the absence of NE rupture, mechanical

deformation of the nucleus is sufficient to cause DNA damage

(Shah et al., 2021). Thus, there is a delicate balance between

enhanced cell migration and DNA damage in confinement.

The nucleus can help cells probe paths of different cross-

sectional area and direct cell entry into channels with the least

resistance by serving as a mechanical gauge (Renkawitz et al.,

2019). Cells can measure the degree of spatial confinement via

Ca2+ release from internal stores. Vertical compression of the

nucleus in human cervical cancer (HeLa-Kyoto) cells triggers

unfolding of the inner nuclear membrane and the activation of

cytosolic phospholipase A2 (cPLA2), which increases lipid

arachidonic acid (ARA) production, Ca2+ release from internal

stores, and myosin II activity (Lomakin et al., 2020; Venturini

et al., 2020). Such mechanotransduction allowed cells to rapidly

adapt (<1 min) their behavior to changing tissue environments,

yet the responses were stable over time (>60 min) (Lomakin

et al., 2020; Venturini et al., 2020). Given that MICs, such as

Piezo1 (Gudipaty et al., 2017) can be found on the nuclear

membrane, it will be interesting to investigate how the

nucleus and Ca2+ permeable MICs potentially act as a

comprehensive mechanosensory module.

Hydraulic pressure and resistance
As cancer cells migrate out of the primary tumor and begin to

overcome the multitude of obstacles posed by the ECM, they are

also subjected to a variety of physical forces imposed by the

extracellular fluid (Figure 1). For example, cells uptake and

discharge water during confined cell migration and/or displace

a column of fluid ahead of them, which generates hydraulic

resistance (Table 1) (Stroka et al., 2014a; Li et al., 2020a).

Neutrophil-like cells are capable of sensing small changes in

hydraulic pressure on the order of ~1 Pa and display bias towards

the path of lower hydraulic resistance when presented with

multiple confining paths (Prentice-Mott et al., 2013).

Similarly, cancer cells choose the path of least resistance

during confined migration (Zhao et al., 2019). In particular,

hydraulic pressure triggers Ca2+ influx through TRPM7 in

HT1080 and MDA-MB-231 cells to generate a thick cortical

actin meshwork with an elevated density of myosin-IIA, which
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directs cell entry into channels of less resistance (Zhao et al.,

2019). CRISPR/Cas9 knockout of TRPM7 blinds cells to

hydraulic resistance and causes them to choose migratory

paths based on cross-sectional area (Zhao et al., 2019).

TRPM7 not only influences the directional navigation of

cancer cells but also provides cells with plasticity to counter

elevated hydraulic resistances (Zhao et al., 2021). Elevated

hydraulic resistance induces a shift in cell migration

phenotype from amoeboid to mesenchymal (Zhao et al.,

2021), which relies on the formation of actin-rich lamellipodia

and integrin-based cell-matrix adhesions rather than membrane

blebs (Friedl and Wolf, 2010; Pankova et al., 2010). This

transition occurs via intricate modulation of actomyosin

turnover machinery initiated by TRPM7-mediated calcium

signaling (Zhao et al., 2021), and promotes faster cell

migration through confinement (Wisniewski et al., 2020; Zhao

et al., 2021). Elevated hydraulic resistance is not only

encountered during cell migration through confined spaces

with stiff channel walls; different ECM architectures can also

influence the resistance faced by cells in 3D (Maity et al., 2019).

In fact, collagen or ECM permeability can play a major role in

dictating the hydraulic resistance experienced by a cell (Maity

et al., 2019). Taken together, the hydraulic pressure and

resistance of static fluids significantly influences the

detachment of cancer cells from the primary tumor and the

migratory path taken by cells as they traverse the ECM.

Extracellular fluid viscosity
Tumor sites possess increased fluid resistance and likely

contain interstitial fluids with elevated viscosities (Jain et al.,

2014); however, the contribution of these forces towards cancer

cell dissemination and metastasis has largely been overlooked.

Most cell migration studies to date have been exclusively

performed using media which has a viscosity close to that of

water (0.77 cP at 37°C). In contrast, the viscosity of interstitial

fluid can reach 3.5 cP (Wells and Merrill, 1961; Yao et al., 2013;

Gonzalez-Molina et al., 2018), while whole blood has a viscosity

of 4–6 cP, which can be further elevated in pathological

conditions (Rosenson et al., 1996). Several clinical studies

demonstrate that fluid viscosity is correlated with negative

outcomes in cancer patients. Elevated hematocrit levels

increase the viscosity of whole blood which enhances

metastasis in melanoma patients (Dintenfass, 1977). Similarly,

high whole blood viscosity is associated with advanced stages of

head and neck carcinoma (Khan et al., 1995). Increased whole

blood viscosity is also associated with extrahepatic metastasis and

reduced survival of patients with hepatocellular carcinoma (Han

et al., 2021). Moreover, elevated plasma viscosity has been

reported as an independent prognostic marker for the overall

survival of breast cancer patients (Han et al., 2021). Thus, the role

of physiologically relevant extracellular fluid viscosity in cancer

cell migration and metastasis should be urgently investigated. Of

note, supraphysiological viscosities (40–64.7 cP) induce

increased motility and cell spread area in hepatic carcinoma

cells (Gonzalez-Molina et al., 2018). However, it is unknown how

cells sense and respond to fluid viscosities typically encountered

in vivo.

Fluid flow and shear stress encountered in
the vasculature

Blood and lymphatic vessels in the human body provide a

conduit for migrating tumor cells to travel throughout the

body and colonize distant organs and tissues (Figure 1). To

successfully form metastatic colonies, cancer cells must first

intravasate through the endothelial lining of the bloodstream.

In vitro studies reveal that MDA-MB-231 cells can create

disruptions at least 20 μm in width to cross tissue-engineering

microvessels (Wong and Searson, 2017). Disruption of

endothelial cell-cell junctions is believed to be a key

mediator of intravasation (Chiang et al., 2016); however,

cancer cells can also enter the vasculature through pre-

existing openings. For example, human breast cancer

(MDA-MB-435) cells in zebrafish can intravasate into the

bloodstream where it is actively being remodeled, but not at

intact vessels (Stoletov et al., 2007). Murine mammary

carcinoma models frequently display intercellular holes in

tumor-associated vasculature (Hashizume et al., 2000).

Tumor vasculature is predominantly leaky due to

proteolytic degradation, remodeling/angiogenesis, paracrine

signaling (such as the secretion of tumor necrosis factor

(TNF)α) and hypoxia which disrupt the normal function of

endothelial cells (Chiang et al., 2016). For this reason,

intravasation typically occurs in the vicinity of the tumor

where angiogenesis-induced capillary sprouts grow (Chiang

et al., 2016). As mentioned previously,

TRPV4 downregulation in murine endothelial cells also

destabilizes tumor vessel integrity due to abnormal stiffness

sensing and reduced VE-cadherin expression at cell-cell

contacts (Adapala et al., 2016; Cappelli et al., 2019).

Fluid flow and shear stress during intravasation
Once cells enter the vasculature, they must withstand shear

stress (Table 1) at the vessel wall (Figure 1). Due to the nature of

fluid flow in conduits with a cylindrical cross section, shear stress

is maximal at the blood vessel walls and ranges from 1 to 4 dyn/

cm2 in venous circulation and 4–30 dyn/cm2 in arterial

circulation (Turitto, 1982) with notable variations between

different organs within the body. For example, turbulent

blood flow (Table 1) in the heart can raise shear stress levels

to as high as 1,000 dyn/cm2 (Moose et al., 2020). Shear stress is

detrimental to the survival of cancer cells and leads to “metastatic

inefficiency” (Weiss, 1990; Chiang et al., 2016). Using

microfluidic devices that apply physiologically relevant levels

of shear stress (0.5–5 dyn/cm2), it was recently shown that
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normal human dermal fibroblasts avoid exposure to regions of

fluid flow, while HT-1080 cells readily enter such regions

(Yankaskas et al., 2021). This finding is consistent with prior

computational modeling showing that tumor cell intravasation

predominantly occurs at sites of low shear stress (0.2–6 dyn/cm2)

(Stapor et al., 2011). The behavior of normal fibroblasts is driven

by elevated expression of TRPM7, which senses and activates

RhoA-driven myosin-II contractility at the cell edge exposed to

shear stress, and causes the reversal of migration direction via a

calmodulin/IQGAP1/Cdc42 pathway (Yankaskas et al., 2021). As

such, overexpression of TRPM7 in fibrosarcoma cells restores

sensitivity to fluid shear stress, which markedly reduces their

ability to intravasate in vivo (Yankaskas et al., 2021). Taken

together, the integrity of the endothelial barrier and the level of

shear stress generated by blood flow regulates the location and

extent of intravasation.

Shear stress during circulation
Fluid flow in the circulatory system facilitates the transport of

cancer cells throughout the body; however, cells must withstand

shear stress for distant colonization (Table 1). Most circulating

tumor cells (CTCs) that enter the circulation undergo apoptosis

due to shear stress. Indeed, isolated CTCs shed from human colon

adenocarcinoma (LS174T) cells and its highly metastatic subline

(LS LiM 6) display a high degree of apoptosis compared to the

native tumor population in mice (Swartz et al., 1999). Breast and

prostate cancer patients also exhibit many apoptotic cells in their

CTC population (Larson et al., 2004; Kallergi et al., 2013).

Nevertheless, transformed cells are more resistant to fluid shear

stress than their non-transformed counterparts (Barnes et al.,

2012). Cancer cells can employ several strategies to cope with

high variations in shear stress. For example, human prostate cancer

(PC-3) cells become significantly stiffer upon exposure to shear

stress compared to untransformed prostate epithelial (PrEC LH)

cells, indicating a higher level of mechanical adaptability in cancer

cells (Chivukula et al., 2015). PC-3, MDA-MB-231 and urinary

bladder cancer (TCCSUP) cells can also activate RhoA signaling to

protect themselves from shear-induced damage by restructuring

the actin cytoskeleton using formin (Moose et al., 2020). Resistance

to fluid shear stress is dependent on actomyosin contractility.

Consequently, pre-treating PC-3 cells with myosin-II inhibitor

delays metastasis formation in mice (Moose et al., 2020).

Shear stress during extravasation
Blood flow velocity can also affect the ability of CTCs to

arrest and extravasate out of the vasculature (Table 1) by

controlling the effectiveness and availability of ligand-

mediated adhesion to the endothelial lumen. Blood flow

velocities below 400–600 μm/s allow CTCs to arrest and

adhere to endothelial cells in zebrafish embryos and mouse

brain capillaries (Follain et al., 2018). Early arrest is mediated

by weak adhesions composed of CD44 and integrins ɑvβ3 which

are subsequently stabilized by integrins ɑ5β1 that bind fibronectin

(Osmani et al., 2019). Of note, CD44 is a functional P-selectin

ligand (Napier et al., 2007; Konstantopoulos and Thomas, 2009),

which can also bind to E-selectin (and L-selectin) (Hanley et al.,

2005; Hanley et al., 2006; Thomas et al., 2008), thereby mediating

tumor cell tethering to endothelial cells under flow. Interestingly,

a certain level of blood flow is required to promote the

extravasation of CTCs, as reducing blood flow with lidocaine

significantly decreases the percentage of cells that exit the

vasculature in zebrafish embryos (Follain et al., 2018). This

phenomenon is primarily driven by endothelial cells, which

increase fibronectin deposition on their luminal surface in

response to shear stress (Osmani et al., 2019). Similarly,

in vitro studies using transendothelial assays show that

hemodynamic shear stress increases the extravasation of

MDA-MB-231 cells by inducing intracellular reactive oxygen

species (ROS) production and ERK1/2 pathway activation (Ma

et al., 2017). Accordingly, antioxidant suppression of ROS

reduces tumor cell extravasation in vitro and in zebrafish (Ma

et al., 2017). In a separate study, metastatic PC-3 cells were

seeded on the luminal surface of PDMS tubes with a stiffness of

17 MPa and subjected to wall shear stress of 0.05 dyn/cm2 (Lee

et al., 2017b) to mimic the stiffness of vascular walls and shear

stress within interstitial or initial lymphatics (Swartz and Fleury,

2007; Resto et al., 2008). Fluid shear stress in this setting

promoted an invasive phenotype characterized by filopodia

(Lee et al., 2017b). Cells exposed to shear stress also migrated

faster due to upregulated ROCK/LIMK/cofilin signaling, which

induced Yes-associated protein (YAP)-mediated

mechanotransduction and gene signature changes (Lee et al.,

2017b). A recent study using a high-resolution humanoid blood

flow model found that blood flow alone can predict to a high

degree the distribution of metastatic site for a given primary

tumor (Font-Clos et al., 2020). Thus, cells which can successfully

withstand shear stresses found within the vasculature constitute a

critical nucleator of secondary metastatic colonies.

Mechanosensitive ion channel expression
influences cancer progression

MICs play a key role in sensing various mechanical stimuli in

the primary tumor, local microenvironment and the vasculature

due to direct mechanosensing in many cancer cell types

(Table 3). In addition to the mechanotransduction pathways

described above, MICs have been reported to regulate numerous

other intracellular biochemical pathways that influence cancer

progression. While it is currently unknown how these pathways

are linked to mechanical forces, it is evident that MICs play a

diverse role in promotingmetastatic phenotypes. In the following

section, we provide an overview of how Piezo1/2, TRPC1,

TRPC5, TRPM2, TRPM4, TRPM7, TRPV2 and TRPV4 affect

cancer cell behavior. Channel characteristics and mechanisms of

activation are summarized in Table 2.
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Piezo1/2
Piezo1 overexpression is associated with poor outcomes in

breast and colon cancer patients due to enhanced cell migration

and invasion, respectively (Tables 2, 3) (Li et al., 2015; Sun et al.,

2020). In particular, Piezo1 promotes the proliferation and

migration of human colorectal cancer (SW-480 and HCT-116)

cells via mitochondrial calcium uniporter (MCU), hypoxia-

inducible factor (HIF)-1ɑ and vascular endothelial growth

factor (VEGF) (Sun et al., 2020). Gastric cancer patients with

Piezo1 upregulation also exhibit increased distant metastasis due

to enhanced cell proliferation and motility (Yang et al., 2014;

Zhang et al., 2018; Wang et al., 2021). Piezo1 enhances the

migration of human gastric cancer cells by modulating the

activity of Rho GTPase family members (Zhang et al., 2018),

altering the expression of integrin subunits via Trefoil factor

family 1 (TFF1) (Yang et al., 2014), and inducing the expression

EMT-associated genes via HIF-1ɑ (Wang et al., 2021).

Conversely, Piezo1 knockdown decreases the migration,

proliferation and metastasis of human gastric cancer cells by

reducing mitochondrial membrane potential and the expression

of p53, p21, several cyclin dependent kinases, and VEGF (Wang

et al., 2021).

Immunohistochemistry analysis of malignant and benign

prostate cancer tissues shows that Piezo1 is elevated with

disease progression (Han et al., 2019). Overexpression of

Piezo1 promotes tumorigenesis by enhancing Akt/mTOR

pathway activation. In particular, Piezo1 promotes cell cycle

progression via cyclin D1 and cyclin dependent kinase 4 (Han

et al., 2019). Accordingly, Piezo1 downregulation in human

prostate cancer (DU145) cells reduces proliferation and

migration in vitro and tumor growth in vivo (Han et al., 2019).

RNA sequencing and microarray analyses reveal that

Piezo1 expression is correlated with higher grades of glioma

and worse clinical outcome (Zhou et al., 2020). Gene ontology

analysis shows that high levels of Piezo1 are correlated with

tumor microenvironment-related genes that encode proteins

involved in ECM organization, angiogenesis and cell

migration, including MMPs, mitogen-activated protein kinase

(MAPK) family members and PI3K family members (Zhou et al.,

2020). Piezo2 is also a crucial regulator of glioma cell growth,

migration and invasion. Piezo2 promotes a favorable tumor

microenvironment with increased vascular density and leakage

by inducing Ca2+-dependent Wnt/β-catenin signaling in

endothelial cells (Yang et al., 2016). Interestingly,

Piezo2 knockdown in murine glioma (GL261) cells is

sufficient to abrogate these environmental changes, suggesting

a potential cross-talk between glioma and endothelial cells that

supports tumor growth and reduces apoptosis (Yang et al., 2016).

Piezo1 also plays a key role in the pathogenesis of OSCC.

Immunohistochemistry analysis of surgical specimens shows that

Piezo1 expression in OSCC tissues is elevated compared to

normal tissues (Hasegawa et al., 2021). Increased YAP activity

in human OSCC enhances Piezo1 mRNA transcript levels

(Hasegawa et al., 2021). Piezo1 overexpression subsequently

activates ERK1/2 and p38 MAPK pathways through increased

Ca2+ influx, leading to the enhanced migration and proliferation

of OSCC cells (Hasegawa et al., 2021).

Interestingly, both Piezo1 and Piezo2 are downregulated in

non-small cell lung cancer (NSCLC) tumor tissue compared to

matched adjacent normal tissue (Huang et al., 2019).

Accordingly, higher mRNA expression of Piezo channels is

correlated with better overall survival, especially for patients

with lung adenocarcinoma (Huang et al., 2019). Loss of

Piezo1 reduces focal adhesion formation and calpain activity,

switching normal human bronchial epithelial (16HBE) cells to an

ameboid mode of migration (McHugh et al., 2012). Actin

cytoskeletal re-arrangement and increased expression of tensin

4 in Piezo1 knockdown cells also results in faster 2D migration

speeds and enhanced 3D invasion (McHugh et al., 2012).

Additionally, Piezo1 promotes anchorage independent growth

leading to formation of more colonies on soft agar (McHugh

et al., 2012).

TRPC1
TRPC1 is a crucial MIC involved in the regulation of cancer

cell migration and metastasis (Canales Coutiño and Mayor,

2021). TRPC1 mediates mechanosensation in response to

plasma membrane tension changes, such as pressure and fluid

flow (Table 3); however, it is activated through intracellular

signaling pathways (Table 2). TRPC1 plays a key role in cell

polarity and directed cell migration via Ca2+ signaling events in

the lamellipodium (Fabian et al., 2008). TRPC1 silencing in

transformed renal epithelial cells causes a partial loss in cell

polarity which impairs the speed and directionality of migrating

cells (Fabian et al., 2008). Reduced expression of TRPC1 in

CNE2 nasopharyngeal tumor cells also inhibits cell migration

and invasion through transwell inserts with 8 μmpores (He et al.,

2012). Additionally, TRPC1 knockdown in breast cancer cells

reduces ERK1/2 phosphorylation and cell cycle progression (El

Hiani et al., 2009; Faouzi et al., 2016). TRPC1 contributes to

hypoxia-induced EMT by regulating EGFR phosphorylation, Akt

activation, and the expression of HIF-1ɑ, Snai1 and Twist1

(Azimi et al., 2017). Consequently, TRPC1 overexpression is

associated with more aggressive breast cancer subtypes and

poorer patient outcomes (Azimi et al., 2017).

TRPC1 overexpression is also correlated with colorectal cancer

progression and poor prognosis (Sun et al., 2021).

TRPC1 increases store-operated Ca2+ entry in several human

colon carcinoma cells through Orai1 and STIM1, leading to

enhanced cell proliferation and invasion (Sobradillo et al., 2014).

TRPC1 also increases: 1) PI3K/Akt signaling through direct

interaction with calmodulin, 2) the expression of

CyclinB1 and CDK1 which promote cell-cycle progression

through G2, and 3) the expression of mesenchymal markers,
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such as N-cadherin, Snai1 and Slug (Sun et al., 2021). As a result,

colorectal cancer cells expressing TRPC1 proliferate, migrate,

invade and metastasize significantly more than cells with

TRPC1 knockdown (Sun et al., 2021). Lastly, TRPC1 is

overexpressed in human pancreatic cancer cells, where it

mediates TGFβ-induced cell migration by increasing

intracellular Ca2+ release from the endoplasmic reticulum

(Dong et al., 2010), and NSCLC cells, where it contributes to

disease progression by upregulating HIF-1ɑ through store-

operated Ca2+ entry (Jiang et al., 2013; Wang et al., 2018a).

TRPC5
TRPC5 is another TRP family member that enhances cancer

progression (Table 2). Previous studies demonstrate that

TRPC5 channels respond to hypoosmotic stimulation and

pressure-induced membrane stretch (Table 3), and this

mechanosensitivity depends on actin filaments (Gomis et al.,

2008; Shen et al., 2015). TRPC5 promotes the initiation,

progression and metastasis of colon cancer by inducing EMT

via HIF1ɑ and Twist1 (Chen et al., 2017a). Colon cancer cells

with TRPC5 overexpression exhibit increased intracellular Ca2+,

which promotes increased migration, invasion and proliferation

(Chen et al., 2017a). TRPC5 also regulates the chemoresistance of

colon cancer cells by enhancing Wnt/β-catenin signaling, which

increases the expression of P-glycoprotein (Wang et al., 2015), an

ABC drug efflux transporter, and glucose transporter 1 (GLUT1)

(Wang et al., 2017). Patients with poorly differentiated tumors

possess CTCs with high levels of TRPC5 expression (Cai et al.,

2021). Consequently, TRPC5 overexpression is associated with

poorer patient outcomes (Chen et al., 2017a; Cai et al., 2021).

TRPC5 also plays an important role in breast cancer

chemoresistance. Breast cancer cells resistant to doxorubicin

express high levels of TRPC5, which enhances the expression

of P-glycoprotein via the Ca2+-dependent transcription factor

NFATc3 (Ma et al., 2012). Interestingly, breast cancer patients

contain circulating exosomes with TRPC5 in their peripheral

blood (Ma et al., 2014). Ca2+ influx via TRPC5 enhances the

release of these exosomes, which can enter other breast cancer

cells and confer resistance (Ma et al., 2014). Additionally,

TRPC5 enhances chemoresistance by increasing autophagy via

calmodulin-dependent protein kinase kinase β (CAMKKβ),
AMP-activated kinase ɑ (AMPKɑ) and mTOR (Zhang et al.,

2017). Accordingly, breast cancer patients exhibit markedly

increased levels of TRPC5 and the autophagy marker

LC3 after chemotherapy (Zhang et al., 2017). Remarkably,

lentiviral injection of an shRNA against TRPC5 at tumor sites

reverses chemoresistance to doxorubicin and paclitaxel resulting

in tumor regression (Ma et al., 2012). Thus, TRPC5 may be an

important clinical target for the treatment of breast cancer.

Epidermal growth factor signaling via PI3K, Rac1 and

phosphatidylinositol 4-phosphase 5-kinase (PIP(5)Kɑ)

enhances TRPC5 trafficking to the plasma membrane in

human embryonic kidney (HEK-293) cells (Bezzerides et al.,

2004). This pathway may participate in the translocation and

release of TRPC5 exosomes in breast cancer, however further

investigation is required.

TRPM2
TRPM2 also enhances cancer cell migration and metastasis

(Table 2). TRPM2 can be activated by temperature (Tan and

McNaughton, 2016), oxidative stress (Perraud et al., 2005), and

other stimuli that increase NAD+-related metabolites (Table 3)

(Huang et al., 2018). H2O2-mediated activation of TRPM2 in

cervical cancer (HeLa) and prostate cancer (PC-3) cells induces

actin cytoskeleton remodeling, focal adhesion disassembly, and

enhanced cell migration (Li et al., 2016). Interestingly, this

phenotype is mediated by intracellular release of Zn2+ rather

than Ca2+ (Li et al., 2016). Overexpression of TRPM2 is also

associated with poor outcomes in pancreatic cancer patients due

to PKC/MEK pathway activation, which results in increased cell

proliferation, migration and invasion (Lin et al., 2021).

Furthermore, TRPM2 enhances the migration, invasion and

tumorigenesis of gastric cancer cells by decreasing PTEN

activity and increasing Akt signaling (Almasi et al., 2019).

These changes downregulate E-cadherin expression and

upregulate EMT-related genes Twist and Zeb1 (Almasi et al.,

2019). Additionally, TRPM2 reduces apoptosis and enhances

mitochondrial metabolism, which increases cell proliferation,

autophagy and mitophagy through a c-Jun N-terminal kinase

(JNK)-dependent signaling pathway (Almasi et al., 2018). Due to

its effects on autophagy, TRPM2 downregulation sensitizes

gastric cancer cells to paclitaxel and doxorubicin treatment

(Almasi et al., 2018).

TRPM4
TRPM4 is another TRPM channel subfamily member

associated with cell migration and cancer metastasis. Although

TRPM4 itself is not a stretch-activated Ca2+ channel (Table 2), it

may work in tandem with other MICs to facilitate

mechanosensing (Table 3). For example, TRPM4 acts together

with Piezo1 to sense pressure overload in left ventricular

hypertrophy (Yu et al., 2022). In mouse embryonic fibroblasts,

TRPM4 localizes to adhesions and regulates cell spreading,

migration and invasion by altering focal adhesion and actin

cytoskeleton dynamics (Cáceres et al., 2015). Interestingly,

TRPM4 mediates FAK and Rac GTPase activation following

serum-induced increases in intracellular Ca2+ (Cáceres et al.,

2015). One possible explanation is that TRPM4 facilitates

localized Na+ influx, which causes membrane depolarization

and leads to the activation of voltage-dependent Ca2+ channels

(Cáceres et al., 2015). TRPM4 also regulates the migration and

invasion of prostate cancer (PC-3) cells by altering the expression

of genes involved in EMT, including the repression of E-cadherin

and upregulation of Snai1, MMP-9, N-cadherin and vimentin

(Sagredo et al., 2019). Accordingly, TRPM4 overexpression is

correlated with higher grade prostate cancer (Sagredo et al.,
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2019). Similarly, knockout of TRPM4, which is overexpressed in

human colorectal tumors and correlates with late-stage

metastatic cancer, hinders cell migration, invasion,

proliferation and viability (Kappel et al., 2019). In contrast,

increased expression of TRPM4 in endometrial carcinoma

cells is associated with a more favorable prognosis (Li et al.,

2020b). TRPM4 downregulation due to estrogen decreases

p53 levels, promotes PI3K/Akt/mTOR pathway activation, and

increases EMT progression (Li et al., 2020b). Consequently,

TRPM4 knockdown increases the migratory ability of

endometrial carcinoma (AN3 CA) cells.

TRPM7
TRPM7 is a divalent cation channel with inherent serine/

threonine kinase activity (Table 2) that is ubiquitously expressed

in the human body and involved in many (patho) physiological

processes. Previous studies indicate that TRPM7 is activated by

hydraulic pressure (Zhao et al., 2019; Zhao et al., 2021), shear

stress (Yankaskas et al., 2021) and cell swelling (Numata et al.,

2007) (Table 3). TRPM7 can mediate breast cancer cell migration

and invasion through Src and MAPK signaling pathways,

without the involvement of Akt (Meng et al., 2013). In

addition, TRPM7 regulates cell-cell adhesions, cell-matrix

adhesions and cell migration speeds by regulating myosin II-

based contractility (Middelbeek et al., 2012). For these reasons,

TRPM7 expression is functionally required to formmetastases in

mouse xenograft models and predicts poor outcome in breast

cancer patients (Middelbeek et al., 2012). In ovarian cancer,

TRPM7 promotes the phosphorylation of Akt, Src and p38

(Wang et al., 2014) and induces EMT via Twist1 expression

(Liu et al., 2019b). Conversely, TRPM7 depletion inhibits cell

proliferation, colony formation, migration, invasion and

metastasis (Wang et al., 2014; Liu et al., 2019b). As a result,

TRPM7 overexpression is associated with poor prognosis in

ovarian cancer patients as well (Wang et al., 2014). In

prostate cancer, cholesterol stimulates Ca2+ influx through

TRPM7, which enhances cell proliferation and migration via

ERK and Akt phosphorylation, reduces E-cadherin expression,

and increases calpain activity (Sun et al., 2014a). Accordingly,

TRPM7 knockdown reverses EMT, leading to the

downregulation of MMPs and upregulation of E-cadherin

(Chen et al., 2017b). Androgen-independent prostate cancer

cells also undergo EMT in response to hypoxia via a TRPM7/

HIF-1ɑ/Annexin A1 signaling pathway (Yang et al., 2020a). In

contrast, TRPM7 knockdown suppresses cell migration, invasion

and EMT by enhancing RACK1-mediated degradation of HIF-

1α (Yang et al., 2020a). Consequently, TRPM7 overexpression is

associated with poor survival in prostate cancer patients (Yang

et al., 2020a). TRPM7 expression is also associated with advanced

colorectal cancer due to EMT (Su et al., 2019).

TRPM7 downregulation reverses EMT, which promotes

apoptosis and reduces cell proliferation, migration, and

invasion (Su et al., 2019). On the other hand,

TRPM7 enhances the invasion of pancreatic adenocarcinoma

cells through an HSP90ɑ/uPA/MMP-2 proteolytic axis

(Rybarczyk et al., 2017). This axis may enhance cell migration

in response to elastin-derived peptides that are released following

ECM degradation (Lefebvre et al., 2020). As a result, TRPM7 is

inversely correlated with the survival of pancreatic cancer

patients (Rybarczyk et al., 2017). TRPM7 is also overexpressed

in bladder cancer and promotes cell migration, invasion and

proliferation which results in poor patient outcomes (Gao et al.,

2017). Finally, sustained Ca2+ influx through TRPM7 enhances

the migratory ability of human nasopharyngeal carcinoma cells

by stimulating ryanodine receptors to release additional Ca2+

from intracellular stores (Chen et al., 2010).

TRPV2
TRPV2 was initially characterized as a heat-gated ion

channel (Caterina et al., 1999; Liu and Qin, 2016); however, it

can also respond to membrane stretch in neurons (Table 2)

(Mihara et al., 2010; Shibasaki et al., 2010). In addition,

TRPV2 function and expression are linked to cell migration

and cancer metastasis (Table 3). TRPV2 enhances the migration,

invasion proliferation and survival of esophageal squamous cell

carcinoma cells (Kudou et al., 2019). Accordingly,

TRPV2 expression is associated with poor patient prognosis

(Kudou et al., 2019). In addition, TRPV2 increases gastric

cancer cell migration and invasion through the TGFβ
signaling pathway (Kato et al., 2022). In contrast,

TRPV2 knockdown reduces the expression of MMP-2, MMP-

9 and integrin alpha V (Kato et al., 2022). As a result,

TRPV2 expression is associated with lymphatic invasion,

venous invasion and poor prognosis in gastric cancer patients

(Kato et al., 2022). Interestingly, several studies indicate that

TRPV2 facilitates the uptake of chemotherapy drugs. Moreover,

cannabidiol can be used to trigger TRPV2 to enhance the uptake

of chemotherapy drugs via increased Ca2+ influx. In particular,

cannabidiol has been shown to sensitize breast cancer (Elbaz

et al., 2018), endometrial cancer (Marinelli et al., 2020) and

glioblastoma (Nabissi et al., 2013) cells to chemotherapeutic

agents.

TRPV4
TRPV4 is another TRPV channel subfamily member with

well-characterized roles in cell migration and cancer metastasis.

Like many other TRP channels, TRPV4 is a polymodal protein

(Table 2) that can be activated by cell swelling, shear stress,

moderate temperatures (~27°C), hypoosmotic conditions and

chemical agonists (Clapham, 2003; Liedtke et al., 2003; Mendoza

et al., 2010) (Table 3). TRPV4 regulates the migration of several

cell types by modulating focal adhesion dynamics (Mrkonjić

et al., 2015). Ca2+ influx through TRPV4 at focal adhesion sites

activates calpain, which promotes focal adhesion disassembly

and efficient retraction of the trailing edge (Mrkonjić et al., 2015).

In contrast, overexpressing TRPV4 mutants that lack the
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phosphoinositide-binding site (121AAWAA) or a functional pore

(TRPV4-M680D) reduces calpain activity, increases focal

adhesion size, and promotes the formation of a tail, which

anchors the cell to the substrate (Mrkonjić et al., 2015).

TRPV4 overexpression is correlated with significantly poorer

overall survival and disease-free survival in breast cancer patients

(Lee et al., 2017a). Ca2+ influx through TRPV4 enhances Akt and

FAK phosphorylation, reduces E-cadherin and β-catenin

expression, and alters the expression of many other proteins

involved cytoskeleton and ECM remodeling (Lee et al., 2017a).

Indeed, TRPV4 overexpression promotes actin reorganization,

cell blebbing and cell softness (Lee et al., 2016). These changes

increase transendothelial migration and lung metastasis of breast

cancer cells (Lee et al., 2016; Lee et al., 2017a). TRPV4 also

accelerates glioma cell migration and invasion through Akt

phosphorylation and Rac1 activation (Ou-Yang et al., 2018).

Moreover, TRPV4 can promote the formation of filopodia

through Cdc42 and N-wasp (Yang et al., 2020b).

TRPV4 inhibition reduces tumor growth, decreases invasion

into the surrounding brain tissue, and significantly prolongs

the survival time of mice (Yang et al., 2020b). Accordingly,

TRPV4 overexpression is associated with poor prognosis in

glioma patients (Ou-Yang et al., 2018; Yang et al., 2020b). In

line with these studies, TRPV4 overexpression increases the

migration and invasion of colon cancer cells by activating Akt

(Zhang et al., 2021). Silencing or inhibiting TRPV4 suppresses

invasiveness by abrogating ZEB1-mediated EMT (Zhang et al.,

2021). Finally, TRPV4-mediated Ca2+ influx in endometrial

cancer cells enhances cell migration via a RhoA/ROCK1/

LIMK/cofilin pathway that remodels the actin cytoskeleton

and reinforces focal adhesions (Li et al., 2020c).

Concluding remarks and future
outlook

In the last two decades, physical cues have been identified as

crucial regulators of cancer progression (Wirtz et al., 2011; Nia

et al., 2020). More recently, the role of extracellular fluids in

regulating cell behavior has also emerged (Follain et al., 2020).

Cells encounter both solid and fluid interfaces in vivo (Figure 1)

and thus it is crucial to understand how cells interpret physical

cues to better control metastatic spread. MICs play an important

role in sensing and transducing physical stimuli, such as

compression, membrane tension, heat, pressure, hydraulic

resistance, shear stress, substrate stiffness and viscoelasticity

(Table 1), which allows cells to adapt to the local

microenvironment. While the role of MICs in normal cells is

well known (Ranade et al., 2015), their expression and function in

cancer cells has recently received attention (Adapala et al., 2016;

Dombroski et al., 2021; Karki and Tojkander, 2021; Yankaskas

et al., 2021). Of particular interest is how MICs allow cancer cells

to sense, integrate and interpret physical cues encountered

during metastasis. Here, we described physical cues

encountered at the primary tumor site followed by those

encountered during invasion and inside the vasculature. We

provided an overview of Piezo1/2, TRPC1, TRPC5, TRPM2,

TRPM4, TRPM7, TRPV2 and TRPV4 (Table 2) and showed

that these channels participate in numerous biochemical

pathways that enhance metastatic phenotypes, such as cell

migration, invasion and metastasis (Table 3).

The classical view of mechanosensing implicates focal

adhesions (Box 1) as the primary sensors involved in

perceiving and transmitting physical cues from the substrate

to the cellular cytoskeleton (Albiges-Rizo et al., 2009; Geiger

et al., 2009; Plotnikov et al., 2012; Horton et al., 2016; Stutchbury

et al., 2017). However, accumulating evidence demonstrates that

the dynamics of these critical structures are strongly influenced

by the activity of MICs. For example, Piezo1 can localize to focal

adhesions and regulate their assembly via FAK (Chen et al.,

2018). Piezo1 can also activate Rho GTPase family members,

alter the expression of integrin subunits, and induce EMT (Zhang

et al., 2018;Wang et al., 2021). Similarly, Piezo2 can regulate focal

adhesion dynamics via Fyn kinase and calpain activity and

promote stress fiber assembly through RhoA/mDia (Pardo-

Pastor et al., 2018). TRP channels have also been shown to

regulate focal adhesion dynamics by activating calpain, FAK and

PI3K/Akt signaling (Sun et al., 2014a; Wang et al., 2014; Cáceres

et al., 2015; Mrkonjić et al., 2015; Lee et al., 2017a; Azimi et al.,

2017; Ou-Yang et al., 2018; Almasi et al., 2019; Li et al., 2020b;

Sun et al., 2021; Zhang et al., 2021). For instance,

TRPV4 knockdown reduces calpain activity, which prevents

focal adhesion disassembly and leads to the formation of large

adhesions that anchor the cell (Mrkonjić et al., 2015). Moreover,

TRP channels can regulate actin dynamics and stimulate cellular

contractility by activating Rac, RhoA/myosin-II, RhoA/ROCK1/

LIMK/cofilin or calmodulin/IQGAP/Cdc42 (Adapala et al., 2016;

Li et al., 2020c; Yankaskas et al., 2021). Additionally, TRPC1,

TRPC5, TRPM2, TRPM4, TRPM7, TRPV2 and TRPV4 can

independently induce EMT in cancer cells (Chen et al., 2017a;

Azimi et al., 2017; Chen et al., 2017b; Almasi et al., 2019; Liu et al.,

2019b; Kudou et al., 2019; Sagredo et al., 2019; Su et al., 2019;

Yang et al., 2020a; Li et al., 2020b; Zhang et al., 2021; Kato et al.,

2022).

Cells on 2D substrates can freely spread out andmigrate without

any physical perturbations to their plasma membrane. On the other

hand, cells migrating through 3D ECM frequently encounter

obstacles that deform the plasma membrane, causing local

changes in tension. Additionally, as we described in this article,

tumor cells continually experience forces arising from bodily fluids

at different locations in the metastatic cascade which cannot be

directly detected by focal adhesion complexes. Thus MICs, together

with focal adhesion components, can facilitate effective cell

migration/invasion in response to changing mechanical cues. At

the same time, traction forces generated by actomyosin contractility

may also cause local changes in membrane tension surrounding
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adhesions (Ellefsen et al., 2019). These changes may induce MIC

channel opening, which subsequently regulates adhesion strength

and actomyosin contractility. Therefore, there is likely a dynamic

crosstalk between adhesions and MICs that requires further

investigation.

MICs may also regulate the assembly of specialized invasive

structures known as invadopodia (Box 2), which contain a

perpendicular alignment of actin filaments with respect to the

underlying ECM. These structures allow cells to exert protrusive

forces on thematrix asMMPs enzymatically degrade fibers (Albiges-

Rizo et al., 2009). Focal adhesions and invadopodia share similar

scaffolding and signaling components, albeit in a different

arrangement (Revach et al., 2020). Given that Ca2+ influx

through MICs regulates focal adhesion formation, it is plausible

that MICs may regulate invadopodia formation. Indeed, Piezo1 and

Piezo2 have recently been shown to enhance invadopodia formation

in breast cancer cells (Pardo-Pastor et al., 2018; Luo et al., 2022).

Alternatively, MIC crosstalk with intracellular store-operated Ca2+

(SOC) channels may control invadopodia formation. In melanoma

cells, the SOC channel Orai1 localizes to invadopodia and

spontaneously mediates discrete Ca2+ transients (Lu et al., 2019).

Ca2+ entry throughOrai1/STIM1 initiates calmodulin binding to the

autoinhibitory domain of Pyk2, which allows Pyk2 to activate Src

(Lu et al., 2019). Overexpression of a dominant-negative

Orai1 mutant (Orai1-E106A) or STIM1 knockout largely

abolishes invadopodial Ca2+ signals (Lu et al., 2019). Store-

operated Ca2+ entry blockade also inhibits invadopodia formation

and ECM degradation (Sun et al., 2014b). Accordingly,

STIM1 knockdown significantly reduces the metastatic ability of

melanoma cells (Sun et al., 2014b). In contrast, TRPM7 knockout

fails to affect the frequency, amplitude or duration of Ca2+ signals in

invadopodia (Lu et al., 2019). By responding to substrate stiffness,

MICs, such as Piezo1/2 and TRPV4, may also regulate invadopodia

formation in response to matrix rigidity. At low matrix stiffness

(0.165 kPa), cells use membrane blebs to invade in a protease-

independent manner (Aung et al., 2014). In contrast, higher matrix

stiffness induces the formation of invadopodia to facilitate protease-

dependent invasion (Aung et al., 2014). Several studies demonstrate

that invadopodia form optimally in response to certain substrate

stiffnesses. For example, breast cancer cells form more invadopodia

as substrate stiffness increases from 1.1 to 28 kPa but exhibit less

invadopodia on 3.1 and 5.6 MPa substrates (Aung et al., 2014;

Dalaka et al., 2020). Similarly, head and neck squamous cell

carcinoma cells degrade ECM more effectively on 22.7 kPa

compared to 1.0 kPa (Jerrell and Parekh, 2014). Thus, it would

be interesting to determine whether MIC function is required for

invadopodia formation in response to these stiffnesses.

Changes in membrane tension are thought to activate MICs

and trigger Ca2+ current across the cell surface (Matthews et al.,

2006). Indeed, each of the mechanical forces described above

enhance intracellular Ca2+ levels, which stimulate intracellular

signaling pathways involved in cell migration and invasion. In

addition to direct mechanical activation, the activity of MICs

may be influenced by ion channels and transporters that affect

plasma membrane tension (Box 3). For example, breast cancer

cells can migrate through tightly confined channels by

preferentially polarizing ion transporters and water channels

in a process known as the Osmotic Engine Model (OEM)

(Stroka et al., 2014a; Stroka et al., 2014b; Li and Sun, 2018; Li

et al., 2019b). Na+/H+ exchanger isoform-1 (NHE1) and

Box 2 | Invadopodia are important structures that facilitate cancer cell invasion. Invadopodia are dynamic structures with a typical lifetime of
5–15 min on 2D substrates (Eddy et al., 2017). Current models of formation suggest that cofilin, Arp2/3, N-WASP and cortactin are involved in
precursor core initiation (Eddy et al., 2017). Tks5 and SHIP2 are subsequently recruited to stabilize the precursor core to the plasma membrane
(Eddy et al., 2017). Finally, Nck1 and Cdc42 activate the N-WASP-Arp2/3 complex to nucleate actin polymerization; Cdc42 and RhoA also
recruitmembrane tetheredmatrixmetalloproteinase (MT1-MMP) to the plasmamembrane (Eddy et al., 2017). Invadopodia allow cancer cells to
breach basement membranes, intravasate into and extravasate out of the bloodstream, and establish metastatic colonies (Leong et al., 2014;
Harney et al., 2015; Eddy et al., 2017). Accordingly, knockdown of critical invadopodia components, such as Tks5, cortactin, and LPP, reduces
cancer cell proliferation, invasion and metastasis (Blouw et al., 2015; Ngan et al., 2017).

Box 3 | Ion channels that affect membrane tension may influence MIC activation. Cells possess feedback mechanisms that actively maintain
membrane tension at a homeostatic level. In the unperturbed state, cell membrane tension arises from balancing osmotic and hydraulic
pressure differences across the cell surface (Li et al., 2020a). From the Young-Laplace relation, the hydraulic pressure difference across the cell
surface at mechanical equilibrium, ΔP, is balanced by tension in the cell surface, i.e., ΔP � T/R, where T is the cell surface tension and R is the
mean surface curvature. The tension in the cell surface, however, is a combination of membrane tension, Tm, and tension in the actomyosin
cortex, Ta: T � Tm + Ta, and Ta � σh, where h is the thickness of the cell cortex and σ is the cortical stress. Since the cortex is much thicker than
the membrane, cortical tension is much larger than membrane tension (Ta�Tm). Moreover, cortical tension can be balanced by actomyosin
contraction, and is therefore actively controlled by the cell. Thus, when membrane tension increases, Ca2+ flux through opened MICs triggers
actomyosin remodeling and an increase inmyosin activity, such that membrane tension is reduced over the time scale ofminutes (Tao and Sun,
2015). Over longer time scales, membrane tension changes will also alter cell endocytic activity and membrane trafficking from membrane
reservoirs such as the endoplasmic reticulum (Sens and Turner, 2006). Therefore, membrane tension in mammalian cells is likely actively
maintained and controlled by the actomyosin system and membrane trafficking. As such, membrane tension changes and TRP currents are
likely transient, with spikes occurring during cell mechanosensation.
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aquaporin 5 (AQP5) polarization to the leading edge of cells

facilitates water influx at the cell front, which promotes forward

movement of the leading-edge membrane (Stroka et al., 2014a).

In contrast, hypotonic shock at the cell front reverses the

direction of cell migration by forcing cells to expel water at

their “old” leading edge (Stroka et al., 2014a). Such expansion-

contraction events can accentuate or attenuate membrane

tension in migrating cells, which may trigger MIC activation

and lead to a feedback loop between volume regulatory ion

channels and MICs. TRP Ca2+ currents are also affected by

changes in the transmembrane voltage (Zheng, 2013), which

may be altered due to ion fluxes through other ion channels/

transporters. Thus, it is expected that MICs should have a broad

role in cell mechanosensation as well as sensing of cell electrical

activity.

Taken together, MICs bestow cancer cells with the capacity to

sense and respond to complex physical cues encountered during

metastasis. As tumor cells migrate through the tissue

microenvironments, they rely on mechanotransduction pathways

engaged by MICs to choose the most efficient migratory route and

adjust cellular functions accordingly. Interestingly, the expression

level ofMICsmay be stage dependent, as demonstrated by TRPM7.

On one hand, TRPM7 overexpression enhances cancer cell

migration via myosin II-based contractility (Middelbeek et al.,

2012; Meng et al., 2013), however, TRPM7 downregulation is

required during intravasation to de-sensitize cells to shear stress

(Yankaskas et al., 2021). Stage-dependent expression may allow

cancer cells to dynamically refine their mechanical properties,

which is required to successfully complete all steps of the

metastatic cascade (Gensbittel et al., 2021). Thus, a detailed

understanding and characterization of physical forces and

associated MICs will provide opportunities to improve the

treatment of metastatic cancer.
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