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Abstract

The statistical properties of membrane protein random walks reveal information on the interactions between the proteins
and their environments. These interactions can be included in an overdamped Langevin equation framework where they
are injected in either or both the friction field and the potential field. Using a Bayesian inference scheme, both the friction
and potential fields acting on the e-toxin receptor in its lipid raft have been measured. Two types of events were used to
probe these interactions. First, active events, the removal of cholesterol and sphingolipid molecules, were used to measure
the time evolution of confining potentials and diffusion fields. Second, passive rare events, de-confinement of the receptors
from one raft and transition to an adjacent one, were used to measure hopping energies. Lipid interactions with the e-toxin
receptor are found to be an essential source of confinement. e-toxin receptor confinement is due to both the friction and
potential field induced by cholesterol and sphingolipids. Finally, the statistics of hopping energies reveal sub-structures of
potentials in the rafts, characterized by small hopping energies, and the difference of solubilization energy between the
inner and outer raft area, characterized by higher hopping energies.
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Introduction

The cell membrane is the interface where the communication

between the environment and the cytosol takes place. As such, its

structure and time-dependent organization has attracted consid-

erable investigation efforts, both theoretical and experimental, in

the form of a large variety of techniques. It is now generally

accepted that membranes of living cells harbor areas enriched in

cholesterol and sphingolipids, namely lipid rafts, where many

proteins important for signaling are concentrated [1–13]. These

rafts are known to be more densely packed than their surroundings

[14] and have been reported to be areas where the membrane

thickness is larger [1,15]. Yet, the inner organization of rafts

remains mostly unknown. Rafts have been observed as transient

entities of a few tens of nm size which can assemble to yield more

stable raft platforms in the range of several hundred

nm[4,6,10,16–19]. Several hypotheses have been forwarded to

explain how the relevant lipids and proteins are recruited in lipid

rafts. Some are based on hydrophobic mismatch between the

proteins and the surrounding lipids due to the length of the

hydrophobic area and/or the hydrophobicity level [1,13,20,21].

However, despite the enormous progress that has been accom-

plished, novel experimental data on the protein-lipid interactions is

still highly desirable.

Using single toxin tracking, we have recently provided new

evidence that pore-forming toxins, which need to oligomerize

before pore formation, exploit the lipid rafts to concentrate their

monomers by recognizing receptors localized in rafts [22]. We

have also shown that these pore-forming toxin monomers are

valuable probes for visualizing the membrane organization with

minimal modifications through the confined motion of their

receptors inside lipid rafts, in contrast to other toxins, like cholera

toxin, which induce major rearrangements [23].

The e-toxin of Clostridium perfingens (CPeT) is the most virulent

toxin of the pore-forming toxin family (lethality of 100 ng/kg in

mice) and causes fatal enterotoxemia in livestock [24,25]. It is

secreted by the bacterium in the gut of infected animals in an

inactive prototoxin form. A C-terminal and an N-terminal peptide

are then cleaved to yield the activated form which is capable of

oligomerizing and forming pores in membranes of specific target

cells leading to ion leakage and cell death. Structural data have

shown that it consists of a receptor binding domain, a domain

responsible for oligomerization, rendered accessible after cleavage

of the C- and N-terminal peptides, and a domain containing a

two-stranded sheet that is thought to be inserted in the membrane

to form a b-barrel together with the insertion sheets of six other

monomers [26]. Its mechanism of action is the following:

recognition of a specific receptor and subsequent oligomerization

followed by insertion of a b -barrel forming a pore in the

membrane. The CPeT is known to target a 36-kD protein receptor
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in Madin-Darby canine kidney (MDCK) cells [27], possibly the

hepatitis A virus cellular receptor 1 [28].

We have shown that the toxin receptor in MDCK cells is

recruited to confinement domains prior to toxin binding, at 37uC,

the confinement domain area ranges from 0.01 to 0.8 mm2, the

diffusivity (averaged over the diffusivity field in each domain and

over all the confinement domains) in the domains is 0.13 mm2 s21,

the motion of the receptor is not purely diffusive but is also

influenced by an interaction potential that, if approximated by a

spring-like potential, is characterized by a mean spring constant of

0.40 pN.mm21(94 kBT.mm22) (averaged over all confinement

domains) and that these domains are stable over periods longer

than 10 minutes [22]. Most importantly, we have shown that

cholesterol oxidase (CHOx) and sphingomyelinase (SMase)

treatments drastically decrease the CPeT receptor confinement,

whereas the cytoskeleton does not play a direct role in the

confinement, which lead us to attribute the confinement domains

to lipid raft platforms [22].

Biomolecules evolving in complex and/or time-varying envi-

ronments reveal information on their physical interactions with

their surroundings through the statistical properties of their

random walks. Biomolecule motion is often modeled through the

unique angle of a pure diffusion process reducing all interactions to

a spatially and/or temporally varying friction field. Yet, interac-

tions such as electrostatic interactions, hydrophobic interactions,

local binding or specific interactions between biomolecules such as

scaffolding biomolecules cannot be fully included in a pure

diffusion process or only if the interactions are weak [29]. Indeed,

we here demonstrate that the interactions between the biomole-

cules with the various membrane constituents can be separated

into two distinct components: a friction field and an interaction

field.

We have demonstrated that Bayesian inference analysis can be

used to extract without contact both diffusion and force fields

acting on membrane proteins by simply recording the membrane

protein trajectories [30,31]. Confined trajectories are particularly

interesting, as the biomolecules explore the same membrane area

inside the confinement domain and hence accumulate information

on the local physical interactions. However, adaptation of the

inference scheme to two further biological processes is necessary to

deepen the understanding of the interaction between the receptor

and its environment. The first one is linked to slow time-dependent

processes. A temporal inference scheme, with strong conditions on

its use, has been designed to fill that gap. The second one is linked

to local motion transitions where parts of space are under-

sampled. We designed an adapted inference scheme to deal with

these almost empty spaces.

The purpose of the present work is to combine passive single-

molecule motion observations and active cell membrane modifi-

cations with new developments of the inference scheme to quantify

protein-lipid interactions in raft confinement domains. We employ

our new inference approaches to study the e-toxin receptor

dynamics inside lipid rafts. We modify the lipid content of the

confinement domain and use a temporally resolved version of the

inference to study the evolution of the diffusion and potential fields

inside the rafts. Cholesterol and sphingomyelin are shown to play

an essential and distinct role in the confinement of the e-toxin

receptor by simultaneously diminishing its average diffusivity and

by increasing its confinement. Moreover, we estimate the free

energy change of the protein-raft complex due to the removal of

cholesterol and sphingomyelin. We furthermore exploit passive

events such as hopping, i.e. transition from one confinement area

to another, to measure the energy needed to overcome the

potential barrier between two nearby rafts. We interpret the

hopping energy as the solubilization energy difference of the

membrane protein between the inner raft and outer raft phase.

Results

Bayesian method to extract complex and time-evolving
potential structures

Our analysis scheme is based on Bayesian inference performed

on individual biomolecule trajectories. We have already shown

that Bayesian inference could be used to extract diffusivities and

forces from confined trajectories [30,31]. In these cases, confined

trajectories were recorded; diffusivities and forces could be inferred

because the proteins kept on moving in the same area allowing

efficient information gathering. Here, information is defined as the

Fisher Information [32], which is a way (not the only one) to

quantify the amount of information that the trajectory carries

about the unknown parameters (diffusivity and force fields) upon

which the probability of the trajectory depends.

Here, information about the diffusivities and potential fields has

to be extracted from trajectories that exhibit inhomogeneous

distribution of information due to unvisited or undersampled

portions of space of various sizes. These spaces appear, in hopping

events, in the area between the rafts and, in the temporal evolution

of the confinement, in various parts of the confinement domain

during the partial de-confinement. The motion of membrane

proteins depends on a variety of factors, including (but not limited

to) local electrostatic interactions, local variation of the membrane

viscosity or change of lipid content, molecular crowding,

dimensionality of accessible space and intermittent specific and

unspecific binding to partners. These factors generate a hetero-

geneous environment whose modeling depends on the character-

istic space, time and energetic scales. Here, the temporal scale is

on the order of 10 ms, the space scale is on the order of 10 nm and

the energetic scale ranges from 0 to 10 kBT. At these scales spatial

variations of diffusivities can be detected and also, very impor-

tantly, the energetic interactions have still sufficient effect to

influence the motion of the proteins. Hence, the biomolecule

motion can be modeled by overdamped Langevin dynamics:

dr

dt
~{

+Vt rð Þ
ct rð Þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt rð Þ

p
j tð Þ ð1Þ

With ct(r) the friction field, Dt(r) the diffusivity field, Vt(r) the

potential field, and j(t) the zero-average Gaussian noise, where the

index t stands for possible time dependency. The fluctuation–

dissipation theorem gives: Dt(r) = kBT/ct(r). Note that more

complex motion where viscoelasticity is important can be modeled

using memory kernels leading to non-Markovian dynamics. In all

cases dealt with here, the Langevin equation is a good

approximation of the biomolecule motion. This equation is

associated to the Fokker-Planck equation:

LP r,tDr0,t0ð Þ
Lt

~+:
+Vt rð ÞP r,tDr0,t0ð Þ

ct rð Þ

� �
zDt rð Þ+P r,tDr0,t0ð Þ

� �
ð2Þ

for the two-point conditional transition probability P(r,t|r0,t0) for

going from the space-time point (r0,t0) to (r,t0). In both equation

(1) and (2), we assumed that the possible temporal variations of

both Dt(r) and Vt(r) are slow compared to the dynamics of motion.

We show in the following that this assumption is indeed valid.

The area covered by the trajectory is divided into a regular grid

of n by n subdomains, in which the gradient of the potential is

assumed to be constant. The size of the subdomains is chosen to be
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equal to two times the average displacement of the protein

between frames, to ensure that the motion between frames takes

place either inside the same subdomain or produces a move into a

neighboring subdomain. The irregular distribution of information,

due to the irregular repartition of points, prevents an efficient

direct estimation of the forces in the subdomains (the approach we

used previously [30]) and imposes the direct inference of the

potential [31]. This potential is projected on a function basis and

the optimization is performed on the coefficients of the develop-

ment. Thus, in 2D, the potential readsV2D
t x,yð Þ~P

lzmƒC

at,k x{xt,cð Þl y{yt,cð Þm with k = (l+m)(l+m+1)/2+l, (xt,c,yt,c)

the coordinates of the center of mass of the trajectory, and C the

order of the polynomial. Polynomial development is not the

unique way to develop the potential; here it is sufficient to lead to

an efficient inference. Yet, it can be shown that Laguerre

polynomials give good results for biomolecule escaping from a

confined area and then experiencing free motion. The diffusivity

can vary in each subdomain (i,j). Solving Eqn. (2) in subdomain

(i,j), with the assumption that +Vtð Þ is constant leads to

P rmz1jrm; Dtm

� �
~

exp { rmz1{rm{Dt, i,jð Þ +Vtð Þ i,jð ÞDtm=kBT
	 
2

=4 Dt, i,jð Þz
s2

Dtm

	 

Dtm

� �

4p Dt, i,jð Þz
s2

Dtm

	 

Dtm

ð3Þ

with P(rm+1|rm,Dtm) the probability of going from rm to rm+1 during

Dtm, (=Vt)(i,j) the gradient of the potential in (i,j), Dt,(i,j) the

diffusivity in (i,j) and s the positioning noise, approximated to be

the standard deviation of a Gaussian probability of presence of the

protein around the detected point. Experimental trajectories

contain both static and dynamic positioning noise. Static noise

stems from the combine effects of the signal-to-noise ratio in the

image and the performance of the emission spot-fitting scheme.

Dynamic noise stems from the non-zero acquisition time of the

camera that leads to a position averaging effect. Both these effects

can be included in a global positioning noise modeled by a

Gaussian.

The Bayesian inference features two steps: the derivation of the

posterior probability of the parameters P(T|U), i.e. the probability

that the diffusion and the potential fields have specific values given

the observation of the trajectory T, and the sampling of this

posteriori. Bayes rule states:

P U DTð Þ~ P T DUð ÞP0 Uð Þ
P Tð Þ ð4Þ

where P(T|U) is the likelihood of the model, i.e. the probability of

recording a trajectory T when the parameters U take on a specific

value, P0(U) the prior probability of the parameters, i.e. the

probability that the parameters U take on a specific value before

the experiments is done, which is constant here because there is no

prior information on the parameters and P(T) = #P(T|U)P0(U)dU

the evidence of the model, i.e. the total probability of the trajectory

in the specific model used to perform the inference. As there is no

comparison between different models here, P(T) is taken to be

constant. The posterior distribution of the parameters reads:

P at,kf g
k~0::C

2z3C
2

, Dt, i,jð Þ
� �

i,jð Þ~1::n
jT

� �
~

P
i,jð Þ~1::n

P at,kf g
k~0::C

2z3C
2

,Dt, i,jð Þ

� �

~ P
i,jð Þ~1::n

P
m:rm[S i,jð Þ

exp { rmz1{rm{Dt, i,jð Þ +Vtð Þ i,jð ÞDtm=kBT
	 
2

=4 Dt, i,jð Þz
s2

Dtm

	 

Dtm

� �

4p Dt, i,jð Þz
s2

Dtm

	 

Dtm

ð5Þ

Where (=Vt)(i,j) is the gradient of the potential in Si,j (the

subdomain(i,j)), Dtm the time variation between subsequent

trajectory points rm and rm+1 and where the index m indicates

the times where the protein is inside the subdomain Si,j. In order to

build this posterior distribution, we used the fact that each

subdomain Si,j is independent from the other ones, hence the

global posteriori is the product of the local posterior distribution

inside each subdomain (first equal sign in Eqn (5)). Furthermore,

the motion being Markovian inside each subdomain Si,j, the local

posterior distribution is the product of the probability of going

from one point in the subdomain to another one (second equal

sign in Eqn. (5)). Finally, the second step of the inference (the

sampling) consisted in using the Maximum A Posteriori (MAP)

estimator [31], i.e. the point in parameter space maximizing the

global posterior distribution, to extract the diffusivity and potential

fields in the rafts. In the numerical implementation of the

inference, the positions are expressed in mm, the diffusivity in

mm2?s21, and the potential in kBT. Further explanation on the

choice of the estimator is given in Document S1 (Section C2, Fig

S7).

Temporal variations of diffusivity and potential fields
In various biological systems the diffusion, force and potential

fields can vary with time. Equation 1 cannot, in all cases, be

associated to the Fokker-Planck equation (Eqn. 2) because fast

temporal variations of the diffusion or the potential would drive

the Langevin equation out of equilibrium, and the scheme would

no longer apply. Furthermore, even if the previous association

were possible, it is not necessarily sufficient to allow the inference,

for example an insufficient sampling of space by the trajectory

would prevent efficient mapping of the diffusivity and potential

fields. Three time scales can be associated to the motion and the

inference:

N tm = L2/D the characteristic time of the confined motion, i.e.

the typical time required to move a significant distance inside

the confinement area. Here, L is the typical size of the

confining domain and D the average diffusivity in the domain.

A typical order of magnitude in our case is tm<1 s.

N tinf = t,{,Ni,j.$Ñ} the characteristic time needed to have

an average number of points inside each mesh square superior

to Ñ, the number of points required to obtain meaningful

inferred values. In the previous applications of the inference

[22,31], Ñ$15 lead to efficient estimation of the parameters.

N tV,D the characteristic time of the potential and diffusion field

variations, i.e. the time needed for a significant local (in space)

variation of the one of the two fields.

Interaction Landscapes in Lipid Rafts
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A necessary condition for the use of the inference is

tV,Dwtinfwtm ð6Þ

which means that the time window on which the inference is

performed is large compared to the time it takes the protein to

move from one side of the confinement domain to the other and

that during that time the values of the diffusion and potential field

have not changed significantly. To ensure that the fluctuation-

dissipation relation remained true inside this time window, the

duration of the window was chosen to ensure that its doubling

would not lead to relative changes of more than 20% of the

inferred values. Experimentally, the variation of the diffusivity and

potential fields were sufficiently slow so that the classical Fokker-

Planck association could be performed. The inference was applied

on a sliding temporal window of duration tinf = 40 s with a shift of

5 s between each measure. The sliding window duration lead to a

Ni,j varying from 15 to 100 with variations during the evolution of

the inference and variations between rafts. Depending on the cells,

some slow drifts have been observed. This was corrected by sliding

a temporal window of duration tinf after subtracting the drift

motion from the average position of the biomolecules. Note that

the correction of the drift can also be achieved inside the inference

scheme by adding a drift velocity in the inference model that can

be inferred and removed from the trajectory.

We used e-toxins of the bacterium Clostridium perfringens, labeled

with rare-earth doped, non-blinking 30–50 nm Y0.6Eu0.4VO4

nanoparticles [33,34,35]. The e-toxins bind to specific receptors in

MDCK cells [28]. The nanoparticle emission thus allows tracking

the e-toxin receptors with a wide-field microscopy setup [22].

CHOx and SMase are commonly used to oxidize cholesterol to

cholestenone and transform sphingomyelin to ceramide, respec-

tively, thereby destabilizing lipid rafts [1,36,37,38]. To understand

the interactions between the e-toxin receptor and the surrounding

lipids, we studied the temporal evolution of the diffusion and

potential fields in the confining raft domain with the addition of

CHOx or SMase by single-molecule tracking of the same receptor

during incubation over several minutes (Fig. 1, Document S1 D2,

Fig S19, for harmonic bias correction). In both experiments, the

average diffusivity rises with incubation time. There are strong

fluctuations during this rise (Fig. S1, S2). The average diffusivity

changes from Di = 0.06360.01 mm2?s21 (NCHOx = 27) to

De = 0.1860.02 mm2?s21 (NCHOx = 27) after adding CHOx and

from Di = 0.06660.006 mm2?s21 (NSMase = 40) to

De = 0.2760.02 mm2?s21 (NSMase = 40) after adding SMase.

To verify that the changes in diffusivity are indeed due to the

destabilization of the lipid raft environment and not to a secondary

effect on the whole cell membrane, we performed control

experiments on the transferrin receptor which is a well-known

non-raft protein [39]. We labeled transferrin molecules with

Y0.6Eu0.4VO4 nanoparticles, incubated them with MDCK cells

and, after binding of the labeled transferrin molecules to their

receptor, recorded transferrin receptor trajectories before and after

addition of CHOx. The receptors show hop diffusion [39] with a

mean diffusivity of 0.1560.02 (N = 26) mm2/s before and

0.1260.02 (N = 16) mm2/s after incubation with CHOx. We

furthermore applied a Kolmogorov-Smirnov test that showed that

there is no significant difference between the two diffusivity

distributions.

The potential also strongly changes during the incubation time

with the enzymes (Video S1, S2, S3 and Fig. S1). Both CHOx and

SMase lead to a decrease in receptor confinement. If the potentials

are approximated by harmonic ones, as in Ref. [22], the average

spring constant after adding CHOx changes from

ki = 237644 kBT?mm22(NCHOx = 27) to ke = 35.467.7 kBT?mm22

(NCHOx = 27) and, after adding SMase, from ki = 2066

90 kBT?mm22 (NSMase = 40) to ke = 10.564.1 kBT?mm22

(NSMase = 40). The simultaneous evolution of the average diffusion

and confining potential after the addition of CHOx and SMase is

shown in Figs. 1A and 1B, respectively. In both cases, the

biomolecule evolves in the diffusivity-spring constant (k-D) plane

starting in the high k-low D region and finishing in the low k-high

D region. All evolutions follow a similar behavior with strong

variations. This demonstrates that cholesterol and sphingomyelin

contribute to both the friction and the interaction field in which

the receptor evolves.

If we assume that the potential values inferred before and long

after (so that the potential no longer varies with time) the CHOx

or SMase treatment are close to statistical equilibrium, we can

evaluate the free energy difference of the receptor-lipid system

(Materials and methods). We find DFcho = 21.960.2 kBT

(NCoase = 27) and DFsphi = 22.460.14 kBT (NSMase = 40) after

CHOx and SMase addition, respectively. However, a quantitative

comparison is not easy for several reasons: i) we have measured the

total amount of cholesterol left after its oxidation to cholestenone

and hydrogen peroxide, and the total amount of sphingomyelin

left after breaking it down into phosphocholine and ceramide

(Document S1) not the amount left in membrane rafts. ii) These

reactions that are facilitated by CHOx and SMase are not just

responsible for the removal of cholesterol and sphingomyelin, but

additionally contribute to raft destabilization via the production of

cholestenone and ceramide, respectively [40,41].

Hopping energies extracted from experimental
trajectories

The definition of the hopping energy is not without ambiguities

and may vary depending on the biological system. Here, we define

the hopping energy between two confinement areas as the

difference between the maximum value of the potential energy

along a line linking the two minima of potentials in the two wells

and the global minimum value of the potential within the two wells

(Document S1, section B, Fig S3, S4, S5, S6). Note that,

depending on the geometry of the trajectories, simple numerical

schemes have to be designed to search for the minima of the

potentials in the different wells. In the case of hopping between a

unique well and free motion, the hopping energy is defined as

follows: for 1D trajectories, it is the highest energy difference

between the limits of the confining domain and the minimal

potential energy in the well. For 2D trajectories, we define the

hopping energy as the difference between the average value of the

potential at the limits of the confining domain and the minimal

value of the potential energy in the well.

The scheme performance was evaluated on numerical trajec-

tories matching both experimental conditions and relevant

conditions for other biological systems (Document S1, section C,

Fig S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18). We

used a fourth-order polynomial potential (up to sixth order for

large-distance hopping) both for the simulated trajectories and for

the inference, which is sufficient to describe a potential with two

minima. Simulations were used to quantify the behavior of the

inference, i.e. the convergence, the bias and the error on the

estimated parameters and to directly assess the error in the

determination of the experimental hopping energy. The Fisher

information [32,42] is not accessible due to the vast parameter

space. Hence, the error on the estimated parameters can only be

accessed by simulations matching experimental conditions.

For different values of the hopping energies, for 1D and 2D

trajectories, we generated a large number of numerical trajectories

Interaction Landscapes in Lipid Rafts
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and then plotted the statistics (probability density function, Pdf) of

the hopping energies extracted with our inference scheme

(Fig. 2A,B). The inference scheme is able to catch the hopping

energy between two confining wells in both 1D and 2D, it is

unbiased and the width of the distributions has low values for small

and average hopping energies. Interestingly, even if the hopping

region is under-visited by the biomolecule, there is enough

information in the two confining areas to catch the hopping energy

(Document S1, section C.5, Fig S11, S12). Inferences performed

on simulated trajectories of escaping biomolecules from a unique

well exhibit a more complex behavior (Fig. 2 C, D). As the

hopping energy increases, the inference becomes biased for 1D

trajectories. For 2D trajectories, a bias appears for low hopping

energies. Yet for both cases, the effect is deterministic and can be

analytically compensated.

The length of the trajectories and the positioning noise are two

important parameters acting on the scheme efficiency. Examples

of the evolution of the inference performance with these two

parameters are shown in Fig. 3. The inference results remain

unbiased even for relatively short trajectories, however the width

of the distribution increases. The minimum number of points

required to obtain a good inference depends on the hopping

energy and on the diffusivity field values. Interestingly, the

inference is able to determine the hopping energy even with high

positioning noise (Fig. 3B). This offers the possibility of greatly

shortening acquisition time to study fast dynamics and local low

energy hopping.

In Figs. 4A–B, we show the trajectory points of a receptor

undergoing hopping. The e-toxin receptor goes from a confining

area of approximate diameter 200 nm to another of approximate

diameter 400 nm (Figs. 4A–B). Note that the dissociation constant

of the e-toxin from its receptor is very low Kd = koff/

kon = 3.861.9 nM [43]. In fact, we never observe dissociation

and departure of a labeled toxin after binding to its receptor. This

is true even for experiments performed under application of an

external force except for rare occasions under high force values of

about 4.0 pN [44]. It is therefore extremely unlikely that the

jumping events we observe are due to toxin dissociation and

subsequent binding to an adjacent receptor rather than receptor

hopping from one raft domain to an adjacent one, especially

considering that, in the large majority of cases, we observe

multiple back and forth hopping events (see Figs. 4A, S20, S21,

S22).

As in every hopping event, the hopping area is under-visited

compared to the confining area. The inferred diffusivity and

potential field are displayed in Fig. 4 A and B, respectively. The

potential field exhibits a double-well structure, with two well-

defined minima and a local maximum area separating the two

wells. Interestingly, there is a detectable rise of diffusivity in the

area between the two confining wells. Note that the only previous

observations of hopping events concern jumping over cytoskeleton

barriers [45]. The hopping events between rafts are rare but

reproducible events. We recorded over 600 trajectories corre-

sponding to a full recording time of over 20,000 s leading to an

effective approximate ratio of 5% of analyzable trajectories

showing hopping. The average duration of the analyzed trajec-

tories was 24006225 frames corresponding to 123612 s with an

average static positioning noise of 30 nm, hence well in the zone

where the inference is very efficient and approximately unbiased.

For the inference, we took s= 30 nm and verified that using

s= 45 nm induces a change in the inferred values of less than

20%.

The distribution of the hopping energies extracted from

experimental hopping trajectories (Document S1, section D.3,

Fig S20, S21, S22) is shown in Fig. 4C. The experimental results

show two kinds of hopping events: (i) multiple receptor hops from

one potential well to the adjacent one related to a low average

hopping energy ,DEh. = 0.5460.05 kBT (N = 18). These events

seem to be related to multiple structures within the lipid raft. (ii)

One or few hopping events shifting the trajectory from one

potential well to another one (Fig. 4A–B and Fig S20, S21). In this

case, the average hopping energy is higher,

,DEh. = 2.6460.25 kBT (N = 15). These hopping events can

be associated to the receptor jumping from one raft to another.

Discussion

The novelty of our approach lies in the simplified model of the

interactions between membrane proteins and their environments.

In this model, the e-toxin receptor motion in its raft environment is

that of a random walker in a field of friction ct(r), leading to a

diffusion field D(r), and submitted to an interaction field V(r)

which includes the local electrostatic interactions, hydrophobic

interactions, possible lipid-protein specific or non-specific interac-

tions, local tension and curvature effects. The overdamped

Langevin equation can model this biomolecule motion and the

associated inference scheme yields a quantitative measure of the

interactions between the biomolecule and its environment. Thus,

the inference scheme extracts and differentiates the two contribu-

tions, D(r) and V(r).

Figure 1. Evolution of the average diffusivity and spring constant of the receptor with the addition of cholesterol oxidase and
sphingomyelinase. In (A) the evolution with cholesterol oxidase and in (B) the evolution with sphingomyelinase. The evolutions are plotted in the
spring constant versus diffusivity plane. The plot is shown in log-log scale for display purposes. Each experimental evolution is associated to a specific
color. The black arrow indicates the temporal evolution for all experiments.
doi:10.1371/journal.pone.0053073.g001
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The temporal inference scheme highlights the combined effect

of lipid modifications on both the diffusion and potential fields.

Adding CHOx or SMase leads to a simultaneous change of the

diffusion and the potential. The broad distribution of the receptor

confinement domain sizes and the large variations of potentials

and diffusion fields after incubation with CHOx or SMase prevent

from fully exploiting the temporal evolutions of these quantities.

On subsets of data, however, we observed larger variations of

diffusivities in the center of the rafts than at the borders and a

higher harmonicity of the potential, after the addition of SMase,

whereas the addition of CHOx leads to a spatially more

homogenous evolution. This suggests a non-homogeneous distri-

bution of the different kinds of lipids inside the raft as hypothesized

in Ref. [22]. However, additional experimental data are needed to

investigate this aspect of lipid organization.

We have shown in our previous work with latrunculin B and

nocodazole control experiments that actin filaments and micro-

tubules do not play a role in the confinement [22]. The structure

and evolution of the inferred potentials further confirms the

absence of cytoskeleton involvement. Indeed, we expect confine-

ment due to the cytoskeleton to manifest itself in a fast rise of the

potential values near the edge of the confinement areas, which is

not what we observe. The e-toxin receptor confinement is thus

mostly due to the composition and spatial organization of the

lipids surrounding the protein inside the raft structure. We

observed no events of receptors leaving the raft-phase into the

non-raft phase. Hopping behavior thus seems possible only if

another raft with similar lipid organization is present in the

neighborhood. Therefore, the rarity of hopping events can be

explained by the fact that most of the time there is no adjacent raft

to jump to.

Figure 4C shows two types of hopping events corresponding to

different magnitudes of the hopping energy and to different

associated geometric characteristics (Document S1, section D.3).

Large hopping energy values are relevant to evaluate the energy

difference between the center of the raft and its outer parts. In this

case, the hopping energy can be interpreted as

DEh~ECP{EOP ð7Þ

with ECP (CP: Center Potential) and EOP (OP: Outer Potential) the

interaction energy between the protein and the lipid organization

at the center and border of the potential well, respectively. This

hopping energy can thus be interpreted as the solubilization

energy difference (not the free energy) of the protein between the

lipid organization at the center and the border of the confining

well.

Interestingly, the hopping energies are not very high

(,DEh. = 2.6460.96 kBT) hence reinforcing the idea that similar

lipid contents must be present near the main confining well to

lower the energy sufficiently to allow a hopping event. This is

confirmed by the fact that, in trajectories remaining confined in

the same raft, the receptor often moves in regions where the

interaction energy rises above 6 kBT. This leads us to think that

Figure 2. Evolution of the MAP Statistics with the hopping energy. The vertical line is the input value used in the trajectory generation; the
corresponding statistics share the same color. 2000-point trajectories; acquisition time: 25 ms. A) 1D trajectories, hopping between 2 wells separated
by 400 nm with 0.025 mm2?s21 diffusivity. B) 2D trajectories, hopping between 2 wells separated by 300 nm with 0.025 mm2?s21 diffusivity and
harmonic lateral confinement with spring constant 200 kBT?mm22. C) 1D trajectories, hopping between a unique harmonic well and free motion.
Confinement radius: 100 nm; diffusivity: 0.035 mm2?s21. D) 2D trajectories, hopping between a unique harmonic well and free motion with a
confinement radius of 100 nm; diffusivity: 0.025 mm2?s21.
doi:10.1371/journal.pone.0053073.g002
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the solubilization energy difference between the raft and the non-

raft phase must be at least 6 kBT. This value is compatible with a

report indicating that approximately 10 kBT are required to insert

a membrane protein into a 5-nm thick lipid membrane [46].

Indeed, we expect that the energy required to insert a protein

inside the membrane should be higher than that required to

displace it from the raft to the non-raft phase.

Small hopping energies reveal sub-structures in the raft. They

are usually found in larger rafts than for the case of confined

motion without hopping. Large raft structures are believed to be

generated by coalescence of multiple small rafts and by

reorganizing the lipid structure within the newly formed raft [1].

The double-well structures we observe may thus reflect the

coalescence of two rafts. We also observed intermediate potential

structures with a highly asymmetric main potential well but

without a second minimum (Document S1, section D.3.d, Fig S23)

that seem to confirm the existence of merging behavior. These

data were not included in the hopping energy measurements.

Finally, we propose possible extensions of the scheme and

further experiments to investigate the raft structure. A non-

homogenous lipid distribution inside the rafts may be detected

from the inferred diffusion field of the protein using an appropriate

mesh definition and a Bayesian criterion to decide what is the most

probable organization. Experimentally, tracking of individually

tagged lipids should improve our understanding of the lipid

organization in the raft. Furthermore, long-term recording (up to

1 hour) of protein trajectories appears necessary to quantify the

evolution of diffusion and potential fields as the raft structure

evolves. Local unspecific tagging of the cell membrane would be

useful to measure the motion of the membrane and compensate

for it.

Materials and Methods

Coupling of toxins to nanoparticles
We coupled APTES-coated Y0.6Eu0.4VO4 nanoparticles to e-

prototoxins (CPepT), the non-cleaved precursors of CPeT, or to

CPeT, via the amine-reactive cross-linker (bissulfosuccinimidyl)

suberate (BS3, Pierce Protein Research), as reported in Ref. [22].

The advantage of the CPepT is that it couples to the same

receptor as CPeT, but cannot form oligomers. The NP-protein

coupling ratio can be adjusted by varying the ratio of the toxin

concentration to the nanoparticle concentration. A BCA test used

to determine the amount of toxin after the coupling process,

showed a toxin:nanoparticle coupling ratio of 3:1. Nanoparticles

without toxins do not bind to the cells and are rinsed away. Given

the size of the NPs and the presence on non-functional toxins after

conjugation [22], it is improbable that more than one functional

toxin is present on the same area of the NP surface allowing

simultaneous binding to more than one receptor. We therefore

estimate that the fraction of NPs bound to more than one receptor

is negligible.

To label transferrin receptors, we first prepared streptavidin-

coated nanoparticles, as described above, using APTES-coated

Y0.6Eu0.4VO4 nanoparticles and the cross-linker BS3. A BCA test

determined a streptavidin:NP coupling ratio of 11:1. We then

incubated a 400 mL NP-streptavidin solution with a concentration

of 0.1 mM in vanadate ions with 100 mL of a 1 mg/mL

transferrin-biotin (Invitrogen) solution at 37uC for 30 minutes to

obtain transferrin labeled with Y0.6Eu0.4VO4 nanoparticles.

Single Molecule Tracking
The experimental conditions were the same as in Ref. [22].

Tracking experiments were performed with a wide-field inverted

microscope (Zeiss Axiovert 100) equipped with a 636, NA = 1.4

oil immersion objective and a EM-CCD (Roper Scientific

QuantEM:512SC). NPs were excited with an Ar+-ion laser using

the 465.8 nm line. Emission was collected through a 617/8M filter

(Chroma). Confluent cells on coverslips were incubated with

0.04 nM NP-labeled Clostridium perfingens e-prototoxin (CPepT) for

10 minutes at 37uC. The concentration is low to avoid oligomer-

ization and observe single NPs (,10 per cell). The sample was

then rinsed three times to remove non-bound toxins and

nanoparticles. We recorded images at a frame rate of about

20 Hz (exposure time: 50 ms; readout time: 1.3 ms) and an

excitation intensity of 0.25 kW/cm2 at 37uC. The toxin receptor

position in each frame was determined from a Gaussian fit to the

diffraction pattern of the nanoparticles with a home-made Matlab

V8.2 (Mathworks, Natrick MA) algorithm.

The average duration of the e-toxin receptor trajectories is

43006740 frames corresponding to 221638 s for the cholesterol

oxidase experiments and 95006850 frames corresponding to

487644 s for the sphingomyelinase experiments. The average

duration of the hopping experiments is 24006225 frames

corresponding to 123612 s. The mean total photon number per

nanoparticle label in each frame is 70 photons, the average signal-

to-noise ratio is equal to 10, and the average static positioning

Figure 3. Evolution of the MAP statistics with trajectory length
and positioning noise. In (A) the evolution with length in (B) the
evolution with noise. Input hopping energy: 3 kBT (shown by the thick
vertical black line); distance between the two wells: 200 nm; diffusivity:
0.025 mm2?s21; acquisition time: 25 ms. A) Trajectory points: 500 (black),
1000 (red), 5000 (green), 10000 (blue), 50000 (cyan). B) The apparent
diffusion coefficient due to positioning noise Dnoise =s2/Dt, with s the
standard deviation of the positioning noise, takes on different values
with respect to the diffusion coefficient D: a= Dnoise/D with a= 1.4%
(black), a= 5.8% (red), a= 16% (green), a= 64% (blue), a= 144% (cyan).
2000-point trajectories.
doi:10.1371/journal.pone.0053073.g003
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noise is 30 nm corresponding to an apparent diffusivity due to

noise of Dnoise = 0.018 mm2?s21. A discussion on the determination

of the static positioning noise can be found in the supporting

material of Ref. [22].

We demonstrated in Ref. [22] that binding of the nanoparticle-

labeled e-prototoxins on MDCK cells is specific. We here verified

that binding of the nanoparticle-labeled transferrin is also specific:

We imaged 25 different cell areas that showed binding of 60

transferrin-NP conjugates versus binding of only 8 streptavidin-NP

conjugates without transferrin in the same conditions.

Cell Culture
Madin-Darby canine kidney (MDCK) cells were cultured in

(DMEM, 10% fetal calf serum (FCS), 1% penicillin-streptomycin)

culture medium (CM) at 37uC. For tracking experiments, cells

were trypsinated two days before and transferred onto acid-bath

treated glass microscope coverslips and grown until confluent. The

medium was replaced by an observation medium (OM)

(HBSS+10 mM HEPES buffer, 1% FCS) just before the tracking

experiment, which lasted less than 1 h. Pharmacological treatment

of the cells were performed in a minimal medium (MM)

(HBSS+10 mM HEPES buffer).

Pharmacological Treatments of the Cell
Where mentioned, we incubated cells with either 20 U/mL

cholesterol oxidase (Calbiochem) or 10 U/mL sphingomyelinase

(Calbiochem) in HBSS+10 mM HEPES for 30 minutes. A

cholesterol quantification kit (Invitrogen) was used to determine

successful cholesterol digestion on lyzed cells before and after

incubation.

To determine the amount of sphingomyelin broken down by

sphingomyelinase, a sphingomyelinase quantification assay kit

(AmplexH Red, Invitrogen) was used. We found 30% less

cholesterol and 45% less sphingomyelin in the cell lysates that

had been incubated with cholesterol oxidase and sphingomyelin-

ase, respectively. Note that all experiments with cholesterol

oxidase and sphingomyelinase incubation were performed on the

same day on cells grown in the very same conditions, so that the

initial receptor motion characteristics (diffusivity, spring constant

and domain area) would be as close as possible for the two types of

experiment.

Free Energy measure
Assuming that the inferred values of the potential can

approximate the statistical equilibrium states before and long

after the addition of CHOx or SMase, we can evaluate the free

energy of the receptor-lipid raft complex. We approximate the

probability of finding the biomolecule at position r by:

Peq rð Þ~ e{bVMAP rð Þ

ZMAP

where ZMAP the canonical partition function

ZMAP~

ð
dre{bVMAP rð Þ and b= 1/kBT. The free energy can be

evaluated directly: F = 21/blog(ZMAP).

Supporting Information

Video S1 Evolution of the confining potential acting on 4

receptors of the e-toxin after the addition of 20 U/ml of

cholesterol oxidase. The video starts after the addition of

cholesterol oxidase. The video displays 5 images per second.

The temporal inference window is 40 seconds and the window is

shifted by 5 seconds between each frame. The potential is plotted

on the points visited by the receptor.

(MP4)

Video S2 Evolution of the confining potential acting on 4

receptors of the e-toxin after the addition of 10 U/ml of

Figure 4. Hopping events with trajectory points as black dots. The duration of the trajectory is 1321 frames, i. e. 67.8 s. A) Diffusivity map of
the membrane area where the receptor moves. The diffusivity field was generated by a bi-harmonic interpolation of the inferred diffusivity values on
the mesh. B) Interaction energy map acting on the receptor. C) Statistics of hopping energy. Black points are experimental results and the green line
is a smoothing spline intended as visual aid.
doi:10.1371/journal.pone.0053073.g004
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sphingomyelinase. The video starts after the addition of sphingo-

myelinase. The video displays 5 images per second. The temporal

inference window is 40 seconds and the window is shifted by

5 seconds between each frame. The potential is plotted on the

points visited by the receptor.

(MP4)

Video S3 Videoof the confined motion of a receptor, during

which a hopping event takes place. A Pixel is 254 nm. The

hopping event happens at 55 s.

(MP4)

Figure S1 Temporal evolution of the average diffusion in the

raft (A) and spring constant (B) after the addition of cholesterol

oxidase (in Black) and of sphingomyelinase (in Red).

(TIFF)

Figure S2 Temporal evolution of standard deviation of the

diffusivity map after adding cholesterol oxidase (black) and after

adding sphingomyelinase (red). Thin lines are individual experi-

ments and thick lines are the average values of all individual

experiments.

(TIFF)

Figure S3 Hopping in 1D between two wells. Eh is the hopping

energy.

(TIFF)

Figure S4 Hopping in 1D between a confining well and free

motion. Eh is the hopping energy.

(TIFF)

Figure S5 Hopping energy in 2D between two confining wells.

The straight red line joins the two confining wells’ minima (here

chosen to lie along the x-axis). The hopping energy is defined as

the energy difference between the maximum potential value along

this line and the lowest potential minimum of the two wells (in this

case, the minimum of the well on the right). The curved line shows

another possible way to go from one well to the other.

(TIFF)

Figure S6 Hopping between a confining well and free motion.

The hopping energy is defined as the energy difference between

the average value of the potential on the green circle and the

minimal value of the potential in the well. Here, the domain is

circular.

(TIFF)

Figure S7 Pdf of the inferred hopping energy for the MAP

estimator (Black) and for the average value of the posteriori

probability distribution estimator (AVE, Red) for hopping between

two confining wells in 2D. 2000 point trajectories, 3 kBT

theoretical hopping energy (shown by the thick vertical black

line), 200 nm between the two wells, 0.025 mm2?s21 diffusivity and

25 ms acquisition time.

(TIFF)

Figure S8 Pdf of the MAP for the hopping energy between two

confining wells in 2D in log scale. The red curve is the asymptotic

Gaussian decay. 2000 points trajectories, 3 kBT theoretical

hopping energy (shown by the thick vertical black line), 400 nm

between the two wells, 0.025 mm2?s21 diffusivity and 25 ms

acquisition time.

(TIFF)

Figure S9 Evolution of the inferred diffusion coefficient

(normalized to the no-noise limit) with the standard deviation of

the potential noise for 1D double-well trajectories. The black dots

are the average values of the MAP statistics and the red line is the

Zwanzig model [5] that models the effect of potential noise on the

diffusivity. 2000-point trajectories, 3 kBT theoretical hopping

energy, 400 nm between the two wells, 0.025 mm2?s21 diffusivity

and 25 ms acquisition time.

(TIFF)

Figure S10 Evolution of the inferred diffusion coefficient

(normalized to the no-noise limit) with the standard deviation of

the potential noise for 2D double-well trajectories. The black dots

are the average values of the MAP statistics and the red line is the

1D Zwanzig model [5]. 2000-point trajectories, 3 kBT theoretical

hopping energy, harmonic confinement along the y-axis with

spring constant 200 kBT?mm22, 300 nm between the two wells,

0.035 mm2?s21 diffusivity and 25 ms acquisition time.

(TIFF)

Figure S11 Evolution of the MAP Pdf with hopping energy for

trajectories with a unique hopping event. 3 kBT hopping energy in

black, 5 kBT hopping energy in red and 7.5 kBT hopping energy

in green. 2000-point trajectories, 300 nm between the two wells,

0.025 mm2?s21 diffusivity and 25 ms acquisition time.

(TIFF)

Figure S12 Evolution of the MAP Pdf with lateral confinement

spring constant for k = 50 kBT?mm22 (black), k = 100 kBT?mm22

(red), k = 200 kBT?mm22 (green), k = 250 kBT?mm22 (blue). 2000-

point trajectories, 3 kBT theoretical hopping energy (shown by the

thick vertical black line), 0.035 mm2?s21 diffusivity, 400 nm

between the two wells, and 25 ms acquisition time.

(TIFF)

Figure S13 Evolution of the MAP Pdf of the hopping energy

with the diffusivity for a 1D double-well potential.

D = 0.01 mm2?s21 in black, D = 0.02 mm2?s21 in red,

D = 0.04 mm2?s21 in green, D = 0.075 mm2?s21 in blue,

D = 0.1 mm2?s21 in cyan. 2000-point trajectories, 3 kBT theoret-

ical hopping energy (vertical black line), 400 nm between the two

wells, and 25 ms acquisition time.

(TIFF)

Figure S14 Evolution of the average MAP values with

diffusivity. The black dots are the results of the inferences and

the red line is a parabolic fit.

(TIFF)

Figure S15 Evolution of the MAP Pdf with varying central

diffusivity for a 1D double-well potential. D = 0.00625 mm2?s21 in

black, D = 0.0125 mm2?s21 in red, D = 0.05 mm2?s21 in green,

D = 0.075 mm2?s21 in blue, D = 0.125 mm2?s21 in cyan. 2000-

point trajectories, 3 kBT theoretical hopping energy (shown by the

thick vertical black line), diffusivities in the wells

D = 0.025 mm2?s21, 400 nm between the two wells, and 25 ms

acquisition time.

(TIFF)

Figure S16 Evolution of the MAP Pdf with varying central

diffusivity for a 2D double-well potential. D = 0.00625 mm2?s21 in

black, D = 0.0125 mm2?s21 in red, D = 0.05 mm2?s21 in green,

D = 0.075 mm2?s21 in blue, D = 0.125 mm2?s21 in cyan. 2000-

point trajectories, 3 kBT theoretical hopping energy (shown by the

thick vertical black line), diffusivities in the wells

D = 0.035 mm2?s21, 400 nm between the two wells, and 25 ms

acquisition time.

(TIFF)

Figure S17 Evolution of the MAP Pdf with the external

diffusivity. D = 0.0088 mm2?s21 in black, D = 0.0175 mm2. ?s21

in red, D = 0.07 mm2?s21 in green, D = 0.105 mm2?s21 in blue,

D = 0.175 mm2?s21 in cyan and D = 0.35 mm2?s21 in yellow. 2000-
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point trajectories with at least 1000 points inside the well, 3 kBT

theoretical hopping energy (shown by the thick vertical black line),

diffusivity inside the well D = 0.035 mm2?s21, 100 nm radius of the

well, and 25 ms acquisition time.

(TIFF)

Figure S18 Evolution of the MAP Pdf with external diffusivity.

D = 0.0125 mm2?s21 in black, D = 0.05 mm2?s21 in red,

D = 0.125 mm2?s21 in green, and D = 0.25 mm2?s21 in blue.

1000-point trajectories with at least 500 points in the well,

5 kBT theoretical hopping energy (shown by the thick vertical

black line), diffusivity inside the well D = 0.025 mm2?s21, 100 nm

radius of the well, and 25 ms acquisition time.

(TIFF)

Figure S19 Evolution of the inferred value of the diffusivity (A)

and spring constant (B) with the input diffusivity and spring

constant used in the numerical simulations of the trajectories.

(TIFF)

Figure S20 Three examples of two-well potentials with low

hopping energy between the two wells. On the left, only the

trajectory points are superimposed on the image; on the right, the

trajectory points are linked to materialize the trajectory. The

inferred hopping energies are from top to bottom: 0.47, 0.26, and

0.43 kBT.

(TIFF)

Figure S21 Three examples of two-well potentials with high

hopping energy between the two wells. On the left, only the

trajectory points are superimposed on the image; on the right, the

trajectory points are linked to materialize the trajectory. The

inferred hopping energies are from top to bottom: 1.7, 1.2, and

2.3 kBT.

(TIFF)

Figure S22 Diffusivity and Potential Map with the full visible

trajectory of the receptor corresponding to Figure 4 A) Diffusivity

map of the membrane area where the receptor moves. The

diffusivity field was generated by a bi-harmonic interpolation of

the inferred diffusivity field on the mesh. B) Inferred interaction

energy map felt by the receptor. Black lines connect the successive

positions of the biomolecule.

(TIFF)

Figure S23 Interaction potential acting on the e-toxin receptor

inferred from a 4262-point trajectory. On the left, only the

trajectory points are superimposed on the image; on the right, the

trajectory points are linked to materialize the trajectory.

(TIFF)

Document S1 We expose various experimental results, discuss

the definition of hopping events and quantify the efficiency of the

inference.

(PDF)
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