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Bighorn sheep gut microbiomes 
associate with genetic and spatial 
structure across a metapopulation
Claire E. Couch1,6*, Holly K. Arnold2,5,6, Rachel S. Crowhurst3, Anna E. Jolles2, 
Thomas J. Sharpton4,5, Marci F. Witczak2, Clinton W. Epps   3,7 & Brianna R. Beechler   2,7

Studies in laboratory animals demonstrate important relationships between environment, host 
traits, and microbiome composition. However, host-microbiome relationships in natural systems are 
understudied. Here, we investigate metapopulation-scale microbiome variation in a wild mammalian 
host, the desert bighorn sheep (Ovis canadensis nelsoni). We sought to identify over-represented 
microbial clades and understand how landscape variables and host traits influence microbiome 
composition across the host metapopulation. To address these questions, we performed 16S 
sequencing on fecal DNA samples from thirty-nine bighorn sheep across seven loosely connected 
populations in the Mojave Desert and assessed relationships between microbiome composition, 
environmental variation, geographic distribution, and microsatellite-derived host population structure 
and heterozygosity. We first used a phylogenetically-informed algorithm to identify bacterial clades 
conserved across the metapopulation. Members of genus Ruminococcaceae, genus Lachnospiraceae, 
and family Christensenellaceae R7 group were among the clades over-represented across the 
metapopulation, consistent with their known roles as rumen symbionts in domestic livestock. 
Additionally, compositional variation among hosts correlated with individual-level geographic and 
genetic structure, and with population-level differences in genetic heterozygosity. This study identifies 
microbiome community variation across a mammalian metapopulation, potentially associated with 
genetic and geographic population structure. Our results imply that microbiome composition may 
diverge in accordance with landscape-scale environmental and host population characteristics.

Mammals depend on microbial symbionts for extracting and synthesizing nutrients1 and training the immune 
system for pathogen defense2. Studies in humans and laboratory animals have demonstrated that the composition 
of host-associated gut microbiomes is largely determined by a complex interaction of environment, nutrition, and 
genetics3–8, suggesting that the microbiome could mediate relationships between environmental variation and 
health in natural populations. Laboratory studies are well-suited to experimental manipulation of the microbiome 
while controlling for the vast majority of genetic and environmental variation that exists in natural populations 
of mammals, often by using isogenic lines of rodents. It is often challenging, however, to apply results from lab-
oratory studies toward understanding the natural patterns of microbiome composition and structure in genet-
ically diverse host populations exposed to spatial and temporal variability. Additionally, laboratory animals do 
not generally harbor microbiomes found in their wild counterparts, making it difficult to study the ecology and 
evolution of many host-microbe relationships9. Human studies can span a somewhat wider range of genetic and 
environmental variation, but these studies are often limited in depth due to the difficulty of collecting important 
covariates from healthy individuals. In order to understand broad patterns and processes underlying variation in 
microbiome structure, we need to move beyond controlled laboratory systems and expand to studying microbi-
omes in natural mammalian populations.
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Host-associated microbiomes can be shaped by processes at a range of spatial and temporal scales, influenced 
by factors such as diet, elevation, climate, and microbial dispersal10–14. Wild populations often exhibit strong 
spatial structuring; some naturally-fragmented populations can be described as metapopulations in which pop-
ulations experience local extinction and recolonization via dispersal15,16. Understanding metapopulation-level 
microbiome variation in wild hosts has the potential to clarify the ecological and evolutionary processes driving 
microbiome variation across host scales17,18. For example, microbial taxa that are ubiquitous across a metapopula-
tion (i.e. “conserved” microbiota) may be more likely to share an ecological or evolutionary relationship with the 
host species, or could reflect microbial distribution or dispersal ability8. Additionally, metapopulation structure 
provides multiple population replicates across which to study spatial, demographic, and environmental processes 
driving microbiome variation between conspecifics19.

Environmental variation, host traits, and microbe dispersal ability have been identified as potential drivers of 
microbiome variation. Host diet is a primary environmental driver of microbiome variation in controlled labora-
tory studies13,14 and humans3, and several studies in wild mammals have also demonstrated microbiome variation 
across spatial and seasonal ranges of nutritional variation. Other environmental factors that may interact with 
diet to influence the microbiome include altitude20,21 and climate22. Host factors, such as genetic variation, have 
been shown to play a role in filtering particular microbes from the environment, thereby influencing the compo-
sition and relative abundances of resident microbial communities23,24. In addition to genetically-determined host 
factors, vertical transmission from mother to offspring could also maintain microbiome homogeneity between 
related hosts25. Microbial dispersal between hosts is also thought to drive variation in microbiome diversity and 
composition. Previous studies have linked microbiome similarity with degree of social interaction within pri-
mate populations26–28. Some microbes may be environmentally derived rather than directly transmitted between 
hosts29, and in these cases spatial variation in the pool of environmental microbes available to hosts could mediate 
microbiome stratification between geographically separate host populations. Yet, how microbiome variation and 
transmission scale across host metapopulations is unknown. Comparing microbiomes across host metapopula-
tions could reveal patterns of variation that clarify mechanisms of selection and dispersal.

Here, we examine microbiome variation across a metapopulation of wild mammals, allowing us to address 
microbiome variation at a scale previously unexplored. We used gut microbiome data from a naturally frag-
mented metapopulation of desert bighorn sheep (Ovis canadensis nelsoni) in the Mojave Desert of Southern 
California, which was composed of seven demographically independent and geographically separate populations 
linked by infrequent dispersal events. This study system enabled us to measure the effects of environmental het-
erogeneity, geographic proximity, and host genetic diversity and structure on microbiome variation at the meta-
population scale. We framed this study on five central hypotheses & predictions:

(1) A subset of microbial lineages is conserved across the metapopulation. Microbes are necessary for nutrient 
extraction in ruminants30, so we hypothesized that host selection would result in the success and ubiquity of 
certain symbiotic microbiota.

(2) Environmental differences among habitat patches alter gut microbiome composition. Previous studies demon-
strate shifts in the gut microbiome related to short-term (i.e. seasonal) environmental resource fluctuation11,31. 
We hypothesized that the relationship between microbiome communities and environmental heterogeneity 
would also manifest on a longer time scale. We compared microbiome community differences with decade-scale 
summary metrics of three patch-level environmental variables: forage production during the growing season, 
long-term rainfall levels, and elevation. Decade-scale heterogeneity in vegetation greenness has been shown to 
correlate with fecal nitrogen levels among Mojave desert bighorn sheep populations32, and has been linked to 
survival in Sierra Nevada populations. Elevation is highly correlated with temperature and forage quality in this 
desert ecosystem33,34, and previous research has suggested that elevation gradients can mediate the relationship 
between host nutrition and variation in the microbiomes of other mammalian species20.

(3) Population genetic diversity associates with gut microbiome composition. In our study system, genetic diver-
sity correlates with both elevation and connectivity34,35, so we hypothesized that populations with high genetic 
diversity would differ in terms of presence and abundance of microbial clades relative to low genetic diversity 
populations.

(4) Genetically related individuals share similar microbiomes. Genetic divergence has been previously shown 
to correlate with microbiome structure among fragmented host populations24. We predicted that closely-related 
individuals would harbor similar gut microbial communities due to host selective processes and vertical 
transmission.

(5) Geographic proximity between hosts predicts microbiome similarity. We hypothesized that spatial proximity 
of hosts would mediate exposure to similar microbial sources and allow indirect transfer of microbes between 
hosts11,12,27, resulting in microbiome convergence between spatially proximate animals.

Methods
Sample collection and DNA extraction.  Fecal samples were collected from seven bighorn sheep pop-
ulations (11–48 samples per population for host genetics, 3–8 samples per population for microbiome analysis; 
Table 1) in the southern and central Mojave Desert (Fig. 1). Samples were collected during 2012–2015 by visiting 
water sources in the summer months (May-August) when bighorn are dependent on water. Fecal samples were 
assumed to be from lambs and were therefore excluded if they were less than 5 mm in diameter. Sex bias in 
our sampling was minimal, because male and female bighorn sheep were equally dependent on water sources 
during the sampling periods. Samples ranged from one day to two weeks old, based on visual assessment of 
pellets. The extremely dry summer conditions of the Mojave Desert made pre-collection sample contamina-
tion and bacterial overgrowth unlikely. Moreover, all samples were dried and stored at room temperature until 
processing36, thus reducing the potential effects of different sample ages. DNA was extracted from samples as 
described previously37. Briefly, DNA was extracted from 30 mg of pellet scrapings using a modified version of the 
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AquaGenomic Stool and Soil protocol (Multitarget Pharmaceuticals, LLC, Colorado Springs, CO) that included 
15-minute bead-beating step for cell lysis and the addition of 12 mAU proteinase K (Qiagen Inc., Valencia, CA) to 
degrade contaminating proteins and nucleases. We added 150 microliters of AquaPrecipi solution (MultiTarget 
Pharmaceuticals) to cell lysate to remove PCR inhibitors present in fecal samples, and rehydrated DNA pellets 
overnight in 115 microliters of 1x TE buffer to increase DNA recovery37. Duplicate samples from the same indi-
vidual were excluded from downstream analysis based on genotyping results37.

Host connectivity and genetic diversity.  We used pairwise and point measures to describe connec-
tivity and genetic diversity within the bighorn sheep metapopulation in this study. Populations were defined 
as locally-distributed, demographically-independent groups of bighorn sheep separated from other groups by 
areas of unsuitable habitat, e.g. flat desert areas lacking escape terrain and suitable food33,38,39. The population 
ranges were defined by the basal contours of each occupied mountain range. Dispersal between populations is 
limited40,41, so these populations function as demographically independent units33. To evaluate pairwise genetic 
structure among individuals, we calculated individual-pairwise Rousset’s a42 estimated from 16 neutral microsat-
ellite loci, controlling for genotyping error and allelic dropout as described by Epps et al.37. Rousset’s a is based on 
a lattice model, and considers the probability of identity of a gene within an individual compared to probability 
of identity at a given genetic distance. This metric was selected because it gives accurate measures of distances 
between individuals within a population, and while at the same time clearly reflecting the strong differentiation 
between individuals in different populations. For point measures of population-level genetic diversity (Table 1), 
we calculated population-level expected heterozygosity from 13 of the 16 microsatellite markers used to calcu-
late Rousset’s a. An average of thirty individuals per population (ranging from 11–48 individuals) were used to 

Population
Clipper 
Mtns

Hackberry 
Mtns

Cady 
Mtns

Marble 
Mtns

Newberry 
Mtns

Old Dad 
Peak

South 
Soda Mtns

Abbreviation CL HA KD MA NE OD SS

Microbiome sample size 4 6 3 7 8 4 7

Average heterozygosity 0.64 0.63 0.59 0.68 0.52 0.56 0.63

Elevation (meters) 1399 1886 1401 1170 1925 1504 740

NDVI 45.9 55.2 34.2 40.0 39.7 39.9 35.6

Rainfall (millimeters) 190.5 317.5 254.0 190.5 190.5 190.5 254.0

Mean microbiome 
richness 668 274 555 246 587 555 664

Table 1.  Summary of environmental and host variables across populations of bighorn sheep in the Mojave 
Desert, California. Population abbreviations listed here are used throughout the paper. Expected heterozygosity 
across 13 microsatellite loci was used to measure genetic diversity of each population. Median values of 
integrated normalized difference vegetation index (NDVI) from a long-term vegetation study were used to 
measure differences in long-term potential for forage production in each patch. Mean microbiome richness was 
calculated for each population based on the number of unique bacterial sequences remaining in each sample 
after rarefying to account for differences in sequencing depths.

Figure 1.  Map of the focal desert bighorn sheep metapopulation in the Mojave Desert of southeastern 
California. Populations included in this study are colored white and labeled. Other populations are indicated 
with black outline and shaded backgrounds. The red lines indicate major highways that limit movement 
between populations. The inset indicates approximate location of the study area within North America.
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calculate expected heterozygosity35. Three of the 16 markers used in the Rousset’s a calculations were excluded 
from the expected heterozygosity estimation, because these markers were suspected to be linked with potentially 
adaptive alleles43–45). Although these three loci were shown to behave neutrally37,46,47 we chose to exclude these 
markers from the expected heterozygosity analysis to avoid any cryptic selective influences on heterozygosity 
metrics. Heterozygosity estimates using a similar number of microsatellite loci have been shown to correlate with 
population isolation35, elevation34, and NDVI32 in the Mojave Desert bighorn sheep metapopulation.

Environmental variables.  We used decade-scale, patch-level measures of environmental variables previ-
ously shown to correlate with bighorn sheep population persistence and diet (Table 1). Elevation is positively cor-
related with population persistence33 and genetic heterozygosity34. We interpret this correlation as resulting from 
the higher water availability and vegetation cover observed at high elevations, which in turn is linked to greater 
population persistence33, and presumably also reflects fewer population bottlenecks during times of drought34. 
Precipitation is likewise correlated with population persistence33, as forage growth in this system is strongly 
precipitation-driven. To define patch-level potential for forage production, we used normalized difference vege-
tation index data collected from 2000–2011 and integrated over the growing season32: briefly, 8-day composite, 
250-m resolution NDVI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for the 
years 2000 through 2011 (MOD09Q1, Level 3, Collection 5, tile h08v05) were obtained for all pixels with center 
points within the boundary of each patch. The median pixel NDVI value was calculated for each patch at every 
8-day time point throughout this time period, and the area under the median NDVI curve for each growing sea-
son (October 1–June 30) was calculated. This measure of growing season integrated NDVI was shown by Creech 
et al.32 to explain the majority of season-level variation in median fecal nitrogen (a proxy for nutrition) in the 
Marble Mountains and Old Dad Peak populations from within this study system. In this study, we used median 
integrated NDVI levels from across the 11-year Creech et al. study32 as a proxy for forage production potential 
within each patch. In addition to representing forage potential, these values have been demonstrated to correlate 
with genetic diversity in this system, reflecting multi-generational differences in population size and stability32. 
Geographic distances between individuals were calculated from GPS coordinates of each sample collection site. 
Elevation for each patch was defined as the highest point occurring in that range, as this indicates the potential for 
each range to trap precipitation and provide thermal refuges33,34.

PCR and sequencing.  We amplified a 450 bp region of the V3/V4 region of the bacterial 16 S gene. Extracted 
DNA was subject to a first round 16S PCR amplification using the following primers: 16S Forward Primer 
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGA CAGCCTACGGGNGGCWGCAG-3′ and 16 S Reverse 
Primer 5′-GTCTCGTGGGCTCGGA GATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′. PCR 
reactions were amplified with GoTaq Hot Start Polymerase (Promega, Madison, WI) following manufactures 
suggested use. PCR cycling conditions were as follows: an initial melt of 94 °C for 3 minutes followed by 35 cycles 
of amplification with a 94 °C for 30 seconds, 55 °C annealing step for 1 minute, and a 68 °C extension step for 
1.5 minutes. A final, 5-minute extension step was included following the last cycle. Amplicons were cleaned, 
indexed, and normalized by the Oregon State University Center for Genome Research and Biocomputing prior to 
sequencing on the Illumina Miseq v2 platform, resulting in 250 bp paired-end reads.

Sequence processing.  DADA2 (version 1.12.1) was used to identify amplicon sequence variants (ASVs), 
trim adapter sequences, and remove chimeras48. Raw sequence data were processed through the dada2 pipeline 
using the following trimming parameters: trimLeft = c(17, 21), truncLen = c(250, 250), maxN = 0, maxEE = 
2, truncQ = 2. Default parameters were used for estimating error parameters using learnErrors(), and chimeras 
were removed using removeBimeraDenova (method = “consensus”). Full-length 16S ribosomal RNA sequences 
were downloaded from the All Species Living Tree Project (SILVA)49 and aligned to ASVs obtained above using 
mothur version 1.39.3. ASVs that did not align well were discarded from further analysis. The Silva database con-
tains a set of highly curated quality rRNA sequences that were used to guide phylogenetic reconstruction of 16S 
reads. A generalized time-reversible phylogenetic model was constructed from the combined reference and ASV 
sequences using FastTree version 2.1.10. The phylogenetic tree was midpoint rooted, and reference sequences 
pruned from the tree. Prior to statistical analyses, samples were rarified to the 11971 reads per sample, deemed 
appropriate via collector’s curves (Fig. S1).

Statistical analysis.  Identification of conserved clades.  Many wildlife microbiome studies have sought to 
identify conserved microbial taxa based on prevalence or abundance thresholds, but this approach risks spuri-
ously misclassifying clades that are widespread simply due to their ancestral position in the bacterial lineage, or 
are highly derived and do not meet arbitrary prevalence or abundance cutoffs. We applied a recently-developed 
bioinformatic algorithm8 to identify clade-based taxonomic units. In brief, this algorithm identifies conserved 
monophyletic clades of taxa among groups (here, bighorn sheep populations) which displayed higher prevalence 
across the group of interest than expected by chance, based on that clade’s position in a phylogenetic tree. The 
computational procedure traverses a phylogeny assembled from 16S rRNA gene sequences generated from mul-
tiple communities. It then quantifies each clade’s prevalence across a defined subset of the communities, where 
the clade’s prevalence is based on the occurrence of the subtending lineages in the subset of communities. A per-
mutation test quantifies whether the observed prevalence of the clade is likely due to chance. The algorithm then 
assigns taxonomic labels to each node in the phylogeny by determining the most specific taxonomic assignment 
that is shared between all subtending lineages of that clade. We used this algorithm with n = 1,000 permutations 
to identify monophyletic clades of gut bacteria that were more prevalent than expected by chance within individ-
ual host populations and across all individuals in the entire metapopulation (referred to hereafter as “conserved”) 
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based on false discovery-rate adjusted p-values (FDR). Conserved microbiota within and between populations 
were visualized using ggtree version 1.12.750 and R version 3.5.0.

Alpha diversity and compositional analyses.  ASV richness (number of unique bacterial sequences) was calcu-
lated from rarefied count data. A Kruskal-Wallace test was used to compare ASV richness between populations. 
Weighted unifrac and Jaccard distances were calculated between all samples to be used for downstream multivar-
iate analyses51. The adonis function in the R vegan package (version 2.5.5) was used to conduct pairwise permuta-
tional multivariate analysis of variance (PERMANOVA) testing for significant compositional differences between 
populations, and the betadisper function was used to test differences in multivariate dispersion between popu-
lations52. Nonmetric multidimensional scaling (NMDS) of weighted unifrac distances was performed with the 
vegan function metaMDS() and used to visualize compositional differences between individuals and populations.

Geographic, genetic, & environmental distance analyses.  To assess how microbiome similarity correlated with 
geographic/genetic distances and environmental variables, we used the lmer function in the lme4 package to run 
linear mixed-effects models comparing pairwise weighted unifrac and Jaccard (presence/absence) distances with 
(1) pairwise individual-level geographic distances and Rousset’s a, and (2) pairwise differences in population-level 
traits (heterozygosity, elevation, NDVI, and rainfall) as fixed effects, and population memberships as random 
effects53. To test our hypotheses, we compared increasingly reduced versions of models 1(a), 1(b), 2(a), and 2(b) 
for both weighted unifrac and Jaccard distances using sequential chi-squared tests and confirmed our model 
selection results by comparing AIC and BIC values (See Supplementary Table S4 for model selection details).
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Results
Hypothesis 1: A subset of microbial lineages is conserved across the host metapopulation.  We 
found that 894 out of 13474 total clades (6.6%) were conserved across the host metapopulation, meaning that they 
were more frequently observed among hosts than would be expected based on their position in the bacterial phy-
logeny (FDR < 0.01). These conserved clades corresponded to 80 unique bacterial taxa (identified via alignment 
with the SILVA database). Conserved clades tended to be “nested” meaning that a conserved clade was likely to 
also have a descendant sub-clade in the phylogeny that was also conserved. We considered that this pattern of 
nested conserved clades could result from propagation of the signal of clade conservation between such directly 
related clades, which would have the effect of artificially inflating the number of apparently conserved clades. We 
corrected for this possibility by only considering the most ancestral conserved clade among a set of directly related 
clades that were consistently identified as being conserved. This correction for nestedness resulted in a conserv-
ative set of 270 clades corresponding to 67 unique taxa (Fig. 2; Supplementary Table S1). The taxa containing the 
highest number of conserved clades were Ruminococcaceae (family; 99 conserved clades), Ruminococcaceae UCG 
005 (genus; 93 conserved clades), Ruminococcaceae UCG 010 (genus, 88 conserved clades), Christensenellaceae R7 
group (genus, 76 conserved clades), and Lachnospiraceae (family, 58 conserved clades).

Although some bacterial clades were conserved across the entire metapopulation, analyzing each popula-
tion separately demonstrated that bighorn sheep populations harbor distinct conserved clades of gut microbiota. 
Permutation tests applied individually to each of the seven host populations revealed differing numbers and 
identities of conserved clades within each population (Supplementary Figs. S2 and S3), in addition to differences 
in the number of bacterial clades shared between population pairs. In total, there were 1194 unique bacterial 
clades that were conserved within one or more host populations. The number of clades conserved within each 
population varied from 81 (CL) to 499 (SS) before correction for nestedness, and 55 (MA) to 238 (SS) after 
correction for nestedness (Supplementary Fig. S2). Among unnested conserved clades, 31% were conserved in 
more than one population, suggesting that they have an important relationship with the host or are widespread 
in the environment. No clades were found to be conserved within all of the populations, but a single clade was 
conserved in 6 of the 7 populations. This clade was taxonomically labeled as family Lachnospiraceae, and con-
tained only 3 descendent ASVs. Eleven clades were conserved in five or more populations, including members of 
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family Lachnospiraceae, family Ruminococcaceae, genus Bacteroides, order Lactobacillales, and genus Coprococcus 
(Table S2).

Hypotheses 2 & 3: Host genetic heterozygosity, but not environmental variation, exhibits pos-
sible correlations with gut microbiome composition.  Analysis of microbial alpha diversity failed to 
demonstrate significant metapopulation-level structure in terms of microbial richness (Table 1, Supplementary 
Fig. S4). However, beta diversity analysis demonstrated inter-population differences in composition between 
some population pairs (Supplementary Table S3). Pairwise PERMANOVA tests comparing weighted unifrac dis-
tances revealed significant differences in microbiome ASV composition (FDR < 0.05) between five of the 21 pairs 
of populations, and this result was confirmed by visualizing inter-sample similarities in an NMDS plot (Fig. 3, 
Supplementary Table S3). Linear mixed-effects models demonstrated significant, positive relationships between 
similarity in microbiome composition and similarity in genetic heterozygosity (Table S4). Model selection for the 
weighted unifrac model (2a) resulted in a final model containing only heterozygosity as a fixed effect (Eq. 3a), and 
selection on the Jaccard model resulted in a model containing heterozygosity and NDVI (Eq. 3b). However, the 
only term that was significant at the p < 0.01 level was heterozygosity in Eq. 3(b), which demonstrated an asso-
ciation between Jaccard distance and difference in heterozygosity after controlling for NDVI (estimate = 0.013, 
p = 1.96e-06).

∼ + | + |−Weighted Unifrac Distance Heterozygosity (1 Population ) (1 Population ) (3a)ij i j i j

∼ + + | + |−Jaccard Distance Heterozygosity NDVI (1 Population ) (1 Population ) (3b)ij i j i j

Figure 2.  A subset of bacterial clades were conserved within the host metapopulation. Permutation tests were 
used to identify clades that were overrepresented within the entire metapopulation, and for each separate 
population (n permutations = 1,000). Each of the seven segments of the circle indicates one of the seven 
bighorn populations. The inner ring indicates phylum-level classification of each clade that was conserved in 
the metapopulation and/or in one or more subpopulations. Clades were excluded from the figure if they did 
not meet these criteria. A black bar in the outer ring indicates that a particular clade was conserved in that 
population, and a white bar indicates the clade was not conserved in that population. Linear models were used 
to identify clades that were potentially shared via environmental overlap or population interactions. Colored 
arced lines connecting populations indicate clades that are shared between two populations and are associated 
with geographic proximity (therefore potentially shared via environmental overlap). Colors are mapped to 
population colors in Fig. 1. Black lines indicate clades that are associated with genetic distance and therefore 
potentially shared via host-host interactions.
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Hypotheses 4 & 5: Geographic proximity and genetic connectivity associate with different metrics  
of microbiome similarity between populations.  Linear mixed-effects models showed that geographic 
proximity and genetic relatedness differed in their effects, depending which microbiome distance metric was 
used. Model selection on models 1(a) and 1(b) yielded different results based on the microbiome distance used 
(Eq. 4a,b).

+ +~ ( ) ( )Weighted Unifrac Distance Rousset’s a 1 Population 1 Population (4a)ij ij i j

+ +~ ( ) ( )Jaccard Distance Geographic Distance 1 Population 1 Population (4b)ij ij i j

Jaccard distance was significantly associated with geographic proximity (estimate = 0.0185, p = 2.69e-7) but 
not Rousset’s a, whereas weighted unifrac distance was significantly associated with Rousset’s distance (esti-
mate = 0.0196, p = 0.00316). The total proportion of bacterial clades that associated positively with geographic 
proximity was 49.2%, including nested clades (Fig. 2). Of these clades, 178 (1.3%) were significantly associated 
with geographic proximity (FDR < 0.05).

Discussion
Our findings reveal microbiome composition structure at the metapopulation scale in a natural wildlife system. 
We identified bacterial lineages conserved across a bighorn sheep metapopulation, despite differences between 
populations in terms of microbiome composition. At the population level, differences in microbiome commu-
nities correlated with genetic heterozygosity, suggesting that intrinsic host factors play a role in microbial com-
position even at a metapopulation scale. At the individual level, geographic proximity was a significant predictor 
of the presence or absence of microbial ASVs, and genetic relatedness was not significant. However, the effect of 
genetic relatedness dominated the effect of geographic proximity when using weighted unifrac distances, which 
incorporate phylogenetic relatedness and relative abundance of ASVs. These findings suggest that home range 
overlap mediates microbial exposure, whereas host genetics mediates selection of different microbial lineages. 
However, further research is needed to fully disentangle the effects of inheritance and social grouping on shaping 
the bighorn sheep microbiome.

We identified microbial clades that were overrepresented across the metapopulation, supporting the hypoth-
esis that host selection results in the success and ubiquity of certain symbiotic microbiota. The bacterial taxa 
containing the largest numbers of conserved clades belonged to family Ruminococcaceae, family Lachnospiraceae, 
and genus Christensenellaceae R7 group, all of which are members of order Clostridiales and phylum Firmicutes. 
Families Ruminococcaceae and Lachnospiraceae are dominant fecal bacterial families in domestic sheep54, and all 
three taxa are known to be important rumen symbionts that associate positively with consumption of high-forage 
diets55,56. Members of family Ruminococcaceae are known to play an important role in initiating the breakdown 
of plant fiber in the rumen. Members of Ruminococcaceae and Lachnospiraceae may be responsible for biohy-
drogenation in the rumen, converting dietary poly-unsaturated fatty acids to saturated fatty acids57. Genus 
Christensenellaceae R7 group belongs to family Christensenellaceae, a highly heritable taxon in the human gut 
microbiome that may have adaptive significance for host metabolism58. Although the rumen microbiome is struc-
turally distinct from the fecal microbiome in domestic sheep59, many of the same taxonomic groups of microbes 
are present at these two sites, and differences in feed efficiency are reflected in community changes to both the 
ruminal and fecal microbiomes. Notably, members of families Ruminococcaceae and Christensenellaceae are rela-
tively enriched in the feces of domestic lambs with high feed efficiency versus those with low feed efficiency, and 
ruminal Lachnospiraceae are negatively associated with feed efficiency. Some bacterial lineages may be conserved 

Figure 3.  Bighorn gut microbiome communities differ among populations. Nonmetric multidimensional 
scaling was applied to weighted unifrac distances between microbiome communities within each host. Points 
indicate the relative locations of individual hosts within microbiome space, colored by population.
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because they are ubiquitous in the environment or are highly adept at dispersal; however, based on their inferred 
relationship with ruminant nutrition55–57,59 and (in the case of Christensenellaceae) host heritability58, we pro-
pose that family Ruminococcaceae, family Lachnospiraceae, and genus Christensenellaceae R7 group are conserved 
across bighorn sheep populations due to an adaptive relationship with their host.

The positive association observed between geographic distance and shared presence/absence of microbial 
ASVs supports the hypothesis that that spatial proximity of hosts mediates exposure to similar microbial sources 
and allows indirect transfer of microbes between animals11,12,27. Moreover, the significant positive relationship 
between weighted unifrac distance and inter-individual genetic distance implies that genetically similar (and 
thus closely-related) individuals exert similar selective pressures on their gut microbes, resulting in similar abun-
dances of phylogenetically related microbes among closely-related hosts. Alternatively, closely-related individ-
uals may share similar microbiomes due to vertical transmission from mother to offspring, or because related 
individuals tend to associate in social groups. Although this observational study included a limited number of 
populations and cannot fully disentangle the influences of geographic and genetic distance on microbiome vari-
ation, the observed association between geographic proximity and microbiome similarity indicate that dispersal 
limitation could play an important role in microbiome divergence between populations. Studies in humans have 
demonstrated microbiome variation across large scales between geographically distinct populations60–62. Wildlife 
studies11,12,27 demonstrated spatial patterns of gut microbiome composition within wildlife populations, and our 
study suggests that this pattern holds true at the metapopulation scale. Further research is needed to fully parse 
the relative roles of genetics, vertical transmission, and spatial/social structure on microbiome assembly.

At the host population level, we found a positive, significant relationship between microbiome divergence and 
differences in population-level genetic heterozygosity, suggesting alternative patterns of microbial composition 
in populations with high versus low heterozygosity. However, we found no relationship between microbiome 
beta diversity and long-term measures of patch-scale environmental variation. This result was somewhat surpris-
ing, as a growing body of literature points to nutritional resource availability11,31,63–65 and other environmental 
conditions such as elevation20,21 as primary drivers of microbiome community structure among conspecifics. 
However, the temporal or spatial scales at which we measured environmental variation may not have been fine 
enough to detect correlations with microbiome variation, or possibly sample sizes for each population were insuf-
ficient to detect relationships between patch-level environmental variables and microbiome structure. Our study 
used decade-long, patch-scale measures of forage production and rainfall, and patch-level elevation maxima, but 
future studies should include finer-scale environmental data. The relationship we observed between microbiome 
divergence and difference in population-level genetic heterozygosity also may have been limited by a relatively 
small number of populations. Previous studies in laboratory and wildlife studies have shown microbiome dif-
ferences related to MHC genotype diversity66–68, but larger scale assessments are necessary to elucidate the role 
of neutral genetic heterozygosity as a potential driver of metapopulation-scale variation in the microbiome in 
bighorn sheep.

Our findings demonstrate that microbiome variation aligns with host genetic and spatial structure in a wild 
mammalian metapopulation. In addition to the broad implications for understanding the ecology of mammalian 
microbiomes, this is also the first study to describe the bighorn sheep gut microbiome, or to identify potential 
drivers of gut microbiome composition and diversity in this culturally iconic species. Ultimately, understanding 
the dynamics and ecology of the bighorn sheep gut microbiome could have implications for population health 
and conservation16, therefore future studies should seek to further disentangle the metapopulation-scale effects of 
environmental variation, microbial dispersal, and host selection on the microbiome, and evaluate links between 
the gut microbiome and infectious disease susceptibility. The small number of samples from some populations 
may have limited the number of conserved clades we were able to detect in this analysis, thus future studies 
that seek to define conserved microbial clades should include more samples from each population. Additionally, 
increased depth of sequencing could improve detection of low-abundance conserved clades. Broadly, our find-
ings contribute to understanding the underlying variation of host-associated microbiomes at the metapopulation 
scale, and specifically inform our understanding of gut microbiome communities of a culturally iconic herbivore 
species.
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