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Abstract: Convolutional neural networks (CNNs) have received increased attention in endoscopic
images due to their outstanding advantages. Clinically, some gastric polyps are related to gastric
cancer, and accurate identification and timely removal are critical. CNN-based semantic segmentation
can delineate each polyp region precisely, which is beneficial to endoscopists in the diagnosis and
treatment of gastric polyps. At present, just a few studies have used CNN to automatically diagnose
gastric polyps, and studies on their semantic segmentation are lacking. Therefore, we contribute
pioneering research on gastric polyp segmentation in endoscopic images based on CNN. Seven classi-
cal semantic segmentation models, including U-Net, UNet++, DeepLabv3, DeepLabv3+, Pyramid
Attention Network (PAN), LinkNet, and Muti-scale Attention Net (MA-Net), with the encoders of
ResNet50, MobineNetV2, or EfficientNet-B1, are constructed and compared based on the collected
dataset. The integrated evaluation approach to ascertaining the optimal CNN model combining
both subjective considerations and objective information is proposed since the selection from several
CNN models is difficult in a complex problem with conflicting multiple criteria. UNet++ with the
MobineNet v2 encoder obtains the best scores in the proposed integrated evaluation method and is
selected to build the automated polyp-segmentation system. This study discovered that the semantic
segmentation model has a high clinical value in the diagnosis of gastric polyps, and the integrated
evaluation approach can provide an impartial and objective tool for the selection of numerous models.
Our study can further advance the development of endoscopic gastrointestinal disease identification
techniques, and the proposed evaluation technique has implications for mathematical model-based
selection methods for clinical technologies.

Keywords: gastric polyps; semantic segmentation; convolutional neural networks; integrated evaluation
approach

1. Introduction

Gastric cancer is the fifth most common cancer globally and the third most prominent
cause of cancer-related mortality, with more than 782,000 deaths annually [1]. The 5-year

Bioengineering 2023, 10, 806. https:/ /doi.org/10.3390/bioengineering10070806

https://www.mdpi.com/journal /bioengineering


https://doi.org/10.3390/bioengineering10070806
https://doi.org/10.3390/bioengineering10070806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-7623-6904
https://doi.org/10.3390/bioengineering10070806
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10070806?type=check_update&version=1

Bioengineering 2023, 10, 806

20f19

survival rate for gastric cancer exceeds 90% if diagnosed at an early stage, but it will
decrease to 10-20% if diagnosed at later stages [2]. Gastric polyps show a wide variety
of malignant potential and are harbingers of gastric adenocarcinoma. The appearance
of gastric polyps may potentially signify a higher risk of intestinal or extra-intestinal
malignancy. Depending on histological type, the majority of gastric polyps are categorized
as fundic gland, hyperplastic, or adenomatous polyps [3]. In a large pathology study in the
United States, the percentage of patients diagnosed with gastric polyps among patients
who underwent Esophagogastroduodenoscopy (EGD) and gastric biopsies was 6.35%; 77%
were fundic gland polyps, 17% were hyperplastic polyps, and 0.69% were adenomas [4].
Among them, adenomatous polyps have been considered true neoplasms, with malignant
transformation occurring in 6% to 47% of cases [5]. Therefore, timely diagnosis, biopsy,
and removal of gastric polyps are necessary, which help eliminate the hidden dangers of
adenoma early and lower the risk of gastric cancer [6].

Gastric polyps are protuberant lesions originating from the epithelium or submucosa
that project into the lumen. Since most gastric polyps are asymptomatic, it is challenging
to discover them before a physical examination. EGD has been an effective and direct
way to diagnose polyps and perform polypectomy in clinical practice [7]. Endoscopists
can examine the situation of the gastric epithelium and treat the polyps through EGD.
Nevertheless, the diagnostic accuracy of gastric polyps depends highly on endoscopists
and environmental factors. On the one hand, endoscopic characteristics, pathogenesis,
histopathological prediction, and management of polyps rely on endoscopists’ experi-
ence [7]. Even if experienced endoscopists are involved, operation level and diagnostic
rate will be influenced by high workload and fatigue [8]. On the other hand, due to the
stomach’s complicated structure and inconsistency in image quality, diagnosis outcomes
show large variations in terms of inter- and intra-observer agreement [9].

Computer-aided diagnosis (CAD) systems have been adopted recently to overcome
the above challenges [10]. In recent years, CNN-based CAD systems have shown great
potential for assisting in the diagnosis of endoscopic polyps [11]. CNN is composed of
hierarchical processing, including convolution layers, pooling layers, fully connected layers,
et cetera, and can learn the most representation of data with multiple abstractions [12].
Compared with traditional machine learning techniques, CNN can automatically capture
spatial and temporal dependencies in images without manual intervention [13]. Image
classification, object detection, and semantic segmentation are the essential tasks of using
CNN. Differing from image classification and object detection, semantic segmentation can
assign each pixel a predefined category label and segment each object region precisely
from its background region. Additionally, semantic segmentation can split input images
into mutually exclusive subsets and delineate their boundaries accurately, each of which
corresponds to a meaningful section of the original image [14]. However, the bounding
boxes in object detection are unable to portray the boundaries of polyps precisely. On the
contrary, semantic segmentation can accurately delineate the boundaries of polyps and
elicit information about their morphology. It is beneficial to clinical diagnosis and treatment
because endoscopists must consider polyp topography, size, and endoscopic appearance to
decide whether and how to perform polypectomy or whether to enroll in an endoscopic
surveillance program when operating EGD [15]. Therefore, an automated CNN-based
polyp-segmentation system is developed in this study.

Many semantic segmentation models have been proposed and extensively applied [14].
The selection of the best models for the automated polyp-segmentation system is a complex
problem that mainly refers to the performance of the models concerning multiple criteria.
Most existing research focuses on improving single-criteria performance without consid-
ering integral performance or realistic application. To evaluate the models holistically
and select the models with higher performance for the automated polyp-segmentation
system appropriately, decision makers (i.e., clinical endoscopists and artificial intelligence
researchers) could utilize methodological tools combined with quantitative and qualitative
analyses to evaluate the performance of the models. The selection is regarded as a Multiple
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Criteria Decision Making (MCDM) problem, often arranged as a decision matrix in which
alternatives are evaluated with corresponding criteria [16]. After computation, the weights
of alternatives that represent the importance of each criterion to each other are obtained and
used to calculate the overall weighted score for selection. The subjective method, derived
from the decision maker’s judgment, and the objective method, derived by quantifying
the intrinsic information of each metric to help eliminate bias and improve objectivity, are
the two main MCDM methods [17]. In the selection of clinical assistant techniques, they
both are of great importance and should be comprehensively considered to determine the
weights and overall score. MCDM methods are capable of dealing with complex situations
considering multiple criteria, particularly conflicting criteria, and can facilitate the merger
of quantitative and qualitative analyses in a scientific way.

In this study, the diagnosis of gastric polyps is the goal, semantic segmentation is
the assisted technology, and MCDM is the evaluation approach, all combining to build an
automated polyp-segmentation system to assist endoscopists in the diagnosis of gastric
polyps. The main contributions of this study are described as follows:

(1) A high-quality gastric polyp dataset for training, validation, and testing of the semantic
segmentation models is built, and the dataset will be publicly available for further research.

(2) This is pioneering research on gastric polyp segmentation. Additionally, seven seman-
tic segmentation models, including U-Net, UNet++, DeepLabv3, DeepLabv3+, PAN,
LinkNet, and MA-Net, with the encoders of ResNet50, MobineNetV?2, or EfficientNet-
B1, are constructed and compared.

(3) The objective and subjective evaluation methods are combined to propose a novel
integrated evaluation approach to evaluate the experimental results, aiming at the
determination of the best CNN model for the automated polyp-segmentation system.

The remaining sections are organized as follows: Section 2 reviews several existing
studies about CNN-based gastric polyp diagnosis and some MCDM methods. Section 3
introduces the collected gastric polyp dataset, the semantic segmentation models used
in this paper, and the novel integrated evaluation approach. Section 4 introduces the
implementation details and test results of segmentation models with different encoders.
An in-depth discussion of the result is also presented. Section 5 concludes and provides
our future research plan.

2. Related Work
2.1. CNN-Based Gastric Polyp Diagnosis

In this section, a brief review of CNN-based gastric polyp diagnosis is summarized.
Zhang et al. [18] developed a CNN for gastric polyp detection based on the Sigle Shot
MultiBox Detector (SSD). It can achieve real-time detection speed with 50 frames per
second (FPS), and the mean average precision (mAP) is increased by 90.4%. Not only did
they pioneer research on gastric polyp detection, but they also published their dataset
of 404 endoscopic images with gastric images. Laddha et al. [19] applied YOLOv3 and
YOLOvV3-tiny for gastric polyp detection. They obtained a mAP of 0.91 and a mAP of
0.82. Wang et al. [20] used an improved Faster R-CNN network to detect gastric polyps
and obtained a precision of 78.96%, a recall rate of 76.07%, and an F1-score of 77.49%.
Cao et al. [21] developed the YOLOvV3 network, which combined a feature extraction
module and a self-developed fusion module, to help with small gastric polyp detection.
The improved network obtained a decent performance with an F1 score of 88.8%. Durak
et al. [22] collected 2195 endoscopic images consisting of 3031 polyp labels retrospectively
and implemented them on YOLOv4, CenterNet, EfficientNet, and the other five existing
models. The YOLOv4 model showed the best performance, with a mAP of 87.95%.

As summarized in Table 1, up to now, the existing papers on the diagnosis of gastric
polyps are all based on CNN, but only object detection is performed; the function of
semantic segmentation has not been available yet. Moreover, the evaluation metrics are
solitary without adequate consideration of clinical requirements. In addition to accuracy,
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metrics of other aspects (e.g., speed and number of model parameters) should also be
considered to evaluate the performance of the model.

Table 1. Constraints of the extant literature on gastric polyp segmentation employing CNN.

Reference Dataset Objective Baseline Constraint
Zhang et al. [18] 404 images Real-time detection SSD
of gastric polyps
: Detection of gastric YOLOv3 and
Laddha et al. [19] 654 images polyps YOLOv3-tiny 1. Most of the
b - . - research focused on

Wang et al. [20] 1941 images etectlorll of gastric Faster R-CNN object detection,

polyps which is unable to

Stomach b gorFray Ehe |
. classification and oundaries ot polyps
Cao et al. [21] 2270 images detection of gastric YOLOv3 precisely.
polyps 2. The evaluation
metrics are solitary
YOLOV4, CenterNet, without adequate
EfficientNet, Cross consideration of

. . Stage ResNext50-SPP,  clinical requirements.
Durak et al. [22] 2195 image Detectl(z)rll ofsgastrlc YOLOV3,

POyP YOLOV3-SPP, Single

Shot Detection, and
Faster Regional CNN

Likewise, Zhang et al. [23] introduce a lightweight transformer detection head and
a plain FPN into the original YOLOX, which obtain a precision of 62% for erosion and a
precision of 77% for ulcers in their own dataset that contains 2074 images. But their model
obtains a precision of 99.72% in colon polyp detection in the public dataset. YOLOX is
robust in multiple-object-tracking tasks and has a very competitive inference speed. YOLOX
is a new generation of high performance and speed in the field of object detection, which
shows great potential in gastric polyp detection and other lesion detection in endoscopy:.

2.2. MCDM Methods

Numerous MDCM methods have been proposed in the literature and widely applied
in different fields since 1970 [24]. MCDM methods are usually designed for specific
cases and have their pros and cons. Some typical MCDM methods are reviewed for
deeper comprehension. The Analytic Hierarchy Process (AHP) is well-known and widely
used [25]. It is a structured technique for organizing and analyzing complex decisions
based on mathematics and psychology. Another technique called the analytic network
process method is available. This method is generalized from AHP and allows modeling
the interaction and dependencies between criteria [26]. In [27], a decision-making trial
and evaluation laboratory approach was discussed, which analyzes the interdependent
relationships among factors in a complex system and ranks them for long-term strategic
decisions made by considering experts’ judgments. In addition, a method called Technique
for Order Preference by Similarity (TOPSIS) is also available [28]. TOPSIS uses the Euclidean
distance to determine the relative proximity of an alternative to the optimal solution. An
alternative priority order can be determined by comparing relative proximity. In the above
MDCM methods, every method shows a unique specialty and different advantages. This
article utilizes one of them to evaluate the CNN models.

3. Materials and Methods
3.1. Dataset

Public datasets for gastric polyps are lacking. The sole public dataset offered by Zhang
et al. [18] only contains 354 gastric polyp images. The number is insufficient, so we create our
gastric polyp dataset to train and test the semantic segmentation models. This single-center
research was approved by the ethics committees of the Xiangyang Center Hospital (XCH) and
followed the Declaration of Helsinki [29]. As a retrospective study, written informed consent
was waived. The patient’s information (e.g., name, I.D. number, etc.) was removed from
the original EGD images to maintain confidentiality. The endoscopists searched the cases
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containing the diagnosis of gastric polyps in the medical record database of the endoscopy
center from January 2017 to January 2021. From 1428 patients, 10,596 endoscopic images
were initially collected and screened by a junior endoscopist. The original images underwent
further screening to obtain high-quality images. The exclusion criteria are as follows:

(1) Images that used endoscopic optics other than standard white-light endoscopy:.

(2) The anatomical position of the image is not in the stomach (like the esophagus).

(3) Images that contain no polyps.

(4) Images that are damaged and low-quality due to halation, mucous, blurring, lack of
focus, low insufflation of air, et cetera.

After two rounds of selection and rechecking, 487 images from 148 patients were
acquired. Their sizes vary from 1296 x 1084 pixels to 356 x 302 pixels since they were taken
on different devices. To ensure the labels of polyps were correct, annotation was performed
by two endoscopists using Lebelme software. Endoscopists outline the edges of the gastric
polyps in the endoscopic images. After processing, the corresponding ground-truth masks
are generated, which are the visual representation of manual segmentation. In the masks,
all pixels are classified into two categories. As shown in Figure 1, the labels of all pixels in
the red part of the masks are the gastric polyps, and the labels of the pixels in the remaining
part are the background. The dataset is divided into three sections with a ratio of 8:1:1,
which are used for training, validation, and testing.

Figure 1. Original images of gastric polyps (i.e., (a-h)) and corresponding ground-truth masks (i.e.,
(A-H)) in the dataset.

It is noteworthy that the endoscopic images in the dataset all contain polyps. Normal
stomach endoscopic frames are the main part of most live endoscopic videos, which
are excluded, leading to a sharp plummet in the number of images in the dataset. The
reason why normal stomach endoscopic images are excluded is due to the performance
of the semantic segmentation models and clinical consideration. For model performance,
worse generalization will occur if the training images contain normal stomach endoscopic
images [30]. For clinical considerations, a higher false positive (FP) rate is more desirable
than a high false negative (FN) rate since the system’s sensitivity to polyps can help the
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endoscopists focus more on the suspicious lesions. In terms of the CAD system, the benefit
of a misdiagnosis outweighs the benefit of a missed diagnosis [30].

3.2. Existing Semantic Segmentation Methods

Various semantic segmentation algorithms have proven excellent results using CNN in
natural images [14]. Generally, CNN can be trained to learn a mapping from original images
to ground-truth masks through successive operations, such as convolution, pooling, and
upsampling. In this paper, some classical semantic segmentation models, including U-Net,
UNet++, DeepLabv3, DeepLabv3+, PAN, LinkNet, and MA-Net, are applied with different
encoders to accomplish end-to-end semantic segmentation of gastric polyps [31-37]. To
avoid a dull description, a general U-Net is utilized to explain the idea of most semantic
segmentation models, and its architecture is shown in Figure 2. The encoder will usually
decrease the spatial resolution and extract the image features, in which convolution and
max-pooling are essential to achieve feature extraction, while the symmetric decoder will
upsample to the original input resolution and result in low-dimension predictions. In
the symmetric decoder, the feature maps are concatenated from the upsampling and the
skip connection. The skip connections in U-Net are valid and innovative, increasing and
compensating for the semantic information from upsampling.

Input Encoder Decoder

Original images
Skip connection
- g [m————————_ il D
LL] .

Ground truth mask
(label)

= CovtRelU

e e el

Duplicated feature maps Max pool

I Up-conv
= Convixl

I Feature maps

Figure 2. Architecture of U-Net.

In other models, the essence of U-Net remains, but with varying constructions, con-
volution operations, upsampling methods, or combinations with others, such as deep
supervision and attention mechanisms. Among the various models adopted in this study,
as summarized in Table 2, each has its own strengths and weaknesses. U-Net takes a simple
structure and consumes a small amount of training data, but an unchanged structure
makes it difficult to find the optimal structure. UNet++ takes advantage of redesigned skip
pathways and deep supervision, which improve the segmentation quality of varying-size
objects, but it is time-consuming and easily prone to error. Both Deeplabv3 and Deeplabv3+
suffer from the gridding effect problem, though Deeplabv3+ can capture smaller objects
and has a more defined boundary. PAN is light and has a low computational cost, but it is
difficult to locate small objects precisely. LinkNet is real-time-oriented but requires a large
amount of training data and produces inaccurate results. Although MA-Net can obtain
good performance in many cases, it is too complex and time-consuming [31-37]. Given the
different strengths and weaknesses of each model, extensive experiments are necessarily
required to select the optimal model.
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Table 2. Strengths and weaknesses of each model.

Model Strength Weakness
1. Unknown depth of optimal
. architecture.
U-Net 1 Simple structure 2. Unnecessarily restrictive fusion
2. Less training data needed scheme at the same-scale
feature maps.
1. A highly flexible feature fusion
UNet++ scheme 1. Long time-consuming
2. Enhancement of segmentation 2. Easily prone to errors
quality of varying-size objects
1. A more general framework 1. Gridding Effect Problem
DeepLabv3 2. It can segment objects effectively at 2. Long-ranged information might be
muti-scale. not relevant.
DeepLabv3+ 1. Multiple effective field-of-view ; girlliig;r;%Eifait Il’éoct;l;zrrlr(\)t restore
2. Results of shaper object boundary ’ 1 psamp .
ost semantic information
1. It exploits global contextual 1. It needs numerous training data
PAN information well 2. Difficult in locating small
2. Light and small computation objects precisely.
) 1. Real-time oriented 1 It need trainine dat
LinkNet 2. Simple structure and small 5 L nieeds numerous training data
. . ack of accuracy
computation
1. It can capture rich contextual 1. Heavy and expensive in
MA-Net dependencies. computational resources
2. Good performance 2. Time-consuming

3.3. Integrated Evaluation Approach

Each model has its own potential and drawbacks. It is arduous to select the most
optimal model for application in the context of multiple criteria, especially when some
are mutually exclusive. Thus, it is necessary to propose a specific evaluation approach to
evaluate the performance of semantic segmentation comprehensively.

Complex systematic metrics based on the MCDM method are newly proposed.
Figure 3 shows the dendrogram of systematic metrics. The dimensions of first-level metrics
are segmentation accuracy and computational efficiency. For segmentation accuracy, In-
tersection over Union (IoU), accuracy, recall (i.e., sensitivity), precision, and F1-score were
utilized as the specific metrics following the recommendation from [38]. The thresholds are
all set to 0.5. The experiments belong to pixel-binary classification tasks. According to the
realistic category and prediction results, pixel results are divided into true positive (ITP), FP,
true negative (TN), and FN. IoU calculates the degree of similarity between the predicted
masks and the ground-truth masks. IoU varies from 0 to 1 (0-100%), with 0 or 0% indicating
no overlap (i.e., the worst) and 1 or 100% indicating perfect segmentation. Accuracy is the
percentage of pixels categorized correctly in the endoscopic image. Recall measures the
proportion of the pixels labeled as polyps correctly recognized. Precision measures the
proportion of the pixels correctly labeled as polyps. The Fl-score is the harmonic mean of
accuracy and recall. Table 3 shows the calculation equations for the above metrics.

IoU Accuracy Recall
Segmentation
T Accuracy | | ] CRITIC Score —
Precision F1-Score
Evaluation Model
Metrics | | Parameters — Fmal Score
Model ]
Complexity
MACs
| | Computational Subjective
Efficiency s [
Detection Speed || FPS

Figure 3. Systematic design of evaluation metrics.
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Table 3. Equations for metrics of segmentation accuracy.

Metrics Equations
IoU IoU = Iigg} = \A\+‘\I]§?—B||AmB\ = TPFIPTIN
ACC TN PPN
RE e
PR e
F R

Remark: ACC stands for accuracy, RE for recall, PR for precision, and F1 stands for F1-score.

Computational efficiency is a property of an algorithm that refers to the number of
computational resources and running time used by the algorithm, divided into the third-
level metrics of model complexity and detection speed [39]. To measure the complexity of
a model, the number of model parameters and multiply—accumulate operations (MACs)
are used. The model parameters in Figure 3 are the sum of the numbers of weights and
biases on CNN, which stands for the number of parameters that will be learned during
forward inference and backward learning. MACs compute the product of two numbers
and add that product to an accumulator physically [40]. A MAC is one multiplication and
one addition, which can each be a floating point operation (FLOP), i.e., 1 MAC counts
as roughly 2 FLOPs. Most modern hardware architectures use the fused multiply—add
instruction for operations with tensors, and MACs follow the instruction directly [40]. As a
result, MACs are preferred over FLOPs in this paper. To evaluate detection speed, frames
per second (FPS) are calculated by using the mean inference time per image in the test
dataset [41].

In MCDM, the rank is determined by the overall weighted score, which will help deter-
mine the most optimal model. Hence, an integrated evaluation approach is presented that
takes the quantitative and qualitative analyses in the context of MCDM into account. The
integrated evaluation approach combines an objective method with a subjective method.
Diakoulaki et al. [42] proposed the method entitled Criteria Importance Through Intercrite-
ria Correlation (CRITIC) for the verification of objective weights of comparative importance
in financial analysis. In comparison to other objective methods, the CRITIC method, by
incorporating both contrast and intensity conflict, provides perception into the quiddity of
the quandary generated in the structure of the MCDM problem. It gives the ideal values
of cost and benefit criteria concurrently to normalize the decision matrix, but the other
methods handle them individually. Moreover, it is the first method that calculates the
similarity of the criteria with the correlation coefficient among the criteria. After applying
the CRITIC method to the metrics, the objective weights and corresponding objective scores
of the models are obtained. The CRITIC method consists of the following steps:

There are n models to be evaluated and p metrics to form the original index matrix:

X711 .- xlp
X=|: M

Xnl -0 Xnp

where x;; means the value of the jth metric of the ith model. Dimensionless processing should
be used for all metrics to reduce the influence of different dimensions on evaluation outcomes.

Xmax — Xmin
Xmax 7x]' (2)

. c oo X Xmin
{benefztmetrzc R T

costmetric : x|, ==

] Xmax —Xmin
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The contrast intensity of the corresponding criterion can be expressed as standard
deviation ¢;. Conflict between factors can be expressed as a correlation coefficient, which is
calculated using Equation (3).

P
R; = ;(1 = 13j) 3)

where r;; is the Spearman rank correlation coefficient. The amount of information C; emitted
by the jth metric can be determined by composing the measures that quantify the two
notions using Equation (4).

-

Ci=0;),(1-ry) =R, @)

=1

Objective weight is calculated by normalizing these values to unity using Equation (5).

= e ©)
21:1 G

So, the CRITIC score is obtained using Equation (6).

wj

Si=) wixj; (6)

The objective method is not totally perfect because the expert’s experience always plays
a crucial role in clinical treatment. Experienced experts tend to be instinctive in problem-
solving and more efficient at dealing with complex emergencies, and patients intend to
trust experienced experts more as a result. The subjective weighting of experts should
be used in the selection of models. The weights of the subject method are derived from
experienced endoscopists from XCH and some medical doctors in Mainland China and
Macau, as shown in Table 4. The coefficient of each metric means the relative importance
of all metrics, which depends mostly on clinical needs. IoU and FPS occupy the largest
proportion because making a clinical diagnosis accurately and quickly is a fundamental
requirement for endoscopists, as is the automated polyp-segmentation system.

Table 4. Weights of metrics.

First-Level Metrics Second-Level Metrics Weights

IoU 0.3
Accuracy 0.05
Segmentation accuracy Recall 0.05
Precision 0.05

F1-Score 0.05

Number of parameters 0.1

Computational efficiency Number of MACs 0.1
FPS 0.3

Sum of weight 1

Therfore, the scores of the subjective method are calculated as follows:

Sisub = Xj oy X 0.3+ X} 4o X 0.05 +x] pp X 0.05 + x] pp % 0.05 4 x] ¢y x 0.05

! / /
+xirpmms x 0.1+ Xi MaC X 0.1+ X pps X 0.3

@)

where S;,;, denotes the subjective score of the models. X}, ./, X} sccr Xi gRpXi pro X p1s
f ! , ) , , , ,PR” i,

X; params’ Xi MAC and xi’PPSdenotes normalized results of IoU, accuracy, recall, precision,

F1-score, number of parameters, number of MACs, and FPS, respectively.
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The final quantitative score is obtained by combining the subjective and objective
evaluation methods. It is calculated as follows:

Sfinal =04S; + Vsi,sub;5 +u=1 (8)

where S; stands for the CRITIC score. Sy;,,denotes the final score. The coefficients J and p
are used to determine how much importance should be assigned to objective and subjective
methods. 6 = p = 0.5 is employed in our research for comprehensive consideration.
Therefore, the best semantic segmentation model can be settled by rank, and the “best
score” model is finally selected as the core algorithm of the proposed automated polyp-
segmentation system.

4. Experiments and Results
4.1. Experimental Configuration

Transfer learning is flexible and robust; a pre-trained model can be extracted as the
weights for a model on a new task. All semantic segmentation models were pre-trained
on ImageNet to improve their prior knowledge [43]. The hyperparameters were defined
empirically. The Adam optimization algorithm was employed for the optimization of
the network with a learning rate of 0.0008 and a batch of 4 images with 80 epochs [44].
Random rotation, random horizontal flipping, and random vertical flipping were utilized
for data augmentation, while the input resolution was resized to 256 x 256 using the
bicubic interpolation method [45]. The loss function is of paramount importance because
it triggers the backward learning process in model training. Some loss functions are
designed to alleviate the problem of data imbalance, of which the Dice loss function is a
typical one. Dice loss is a kind of region-based loss, which means that the loss value and
gradient of a pixel are not only related to the label and predicted value of this pixel but
also related to the labels and predicted values of other pixels. As the Dice loss function
tends to dig for polyp areas, it is selected as the loss function in the training process [46].
ResNet50, MobileNetV2, and Efficient-B1 were used as the encoders due to their powerful
feature extraction ability and inference speed [47-49]. Table 5 lists the specifications of the
workstation and environmental configurations. To ensure fair-minded experiments, all of
the models were trained on the same workstation with the same hyperparameters.

Table 5. Workstation hardware and environmental configurations.

Configuration Version
CPU 11th Gen Intel(R) Core (TM) i9-11900 @ 2.50 GHz
GPU NVIDIA GeForce RTX 3080
RAM 64.0 GB
Operating System Windows 10
Programing Language Python 3.9

Frame Pytorch-1.10.0

CUDA 11.4.1

cuDNN 114

4.2. Results

Feature extraction networks are decisive for pixel classification in semantic segmen-
tation [50]. Therefore, three different advanced CNNs (i.e., ResNet50, MobileNetV2, and
EfficieNet-B1) were used as the encoders. Among the ResNet series algorithms, ResNet50 is
a fast and accurate approach that is frequently employed as the backbone of deep neural net-
works. Compared with the deeper networks (e.g., ResNet101 and ResNet152), ResNet50 has
a speed advantage. Compared with the shallower networks (e.g., ResNet18 and ResNet34),
which consume less storage and computational power, ResNet50 can achieve better training
results due to its better feature extraction ability. Therefore, the ResNet50 algorithm was
chosen as the encoder based on the requirements of the polyp segmentation task, taking
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into account both speed and precision [51]. Table 6 shows the quantitative results and
evaluation scores for the test dataset in the experiments.

Table 6. Test results based on the test dataset.

No. of o .

IoU ACC RE PR F1 CRITIC Subjective Final

Model Encoder (%) %) (%) (%) (%) Para(ll\'r/lsters GMACs FPS Score Score Score
ResNet50 94.96 97.29 97.31 97.27 97.29 32.52 10.7 24 0.59 0.63 0.61
U-Net MobileNet v2 95.56 97.56 97.57 97.55 97.56 6.63 3.39 26 0.75 0.81 0.78
EfficientNet-B1 96.53 98.14 98.16 98.12 98.14 8.76 2.53 22 0.77 0.74 0.75
ResNet50 96.57 98.18 98.20 98.16 98.18 48.99 57.54 20 0.53 0.53 0.53
UNet++ MobileNet v2 96.27 98.00 98.03 97.98 98.00 6.82 45 26 0.84 0.88 0.86
EfficientNet-B1 96.79 98.11 98.14 98.09 98.11 9.08 5.1 21 0.73 0.70 0.72

ResNet50 96.23 97.95 97.98 97.93 97.96 39.63 40.99 24 0.65 0.70 0.67
DeepLabv3 MobileNet v2 95.79 97.69 97.73 97.66 97.69 12.65 12.74 26 0.75 0.81 0.78
EfficientNet-B1 95.46 97.37 97.40 97.34 97.37 9.81 3.37 23 0.63 0.65 0.64
ResNet50 96.25 97.97 98.02 97.93 97.97 26.68 9.2 26 0.81 0.86 0.83
DeepLabv3+  MobileNet v2 95.22 97.36 97.42 97.32 97.37 4.38 1.52 27 0.75 0.82 0.78
EfficientNet-B1 95.93 97.75 97.83 97.70 97.76 741 0.56 23 0.72 0.72 0.72
ResNet50 96.06 97.87 98.00 97.78 97.89 8.71 24.26 26 0.77 0.82 0.80
PAN MobileNet v2 95.17 97.27 97.50 97.14 97.31 242 0.79 26 0.72 0.77 0.75
EfficientNet-B1 91.83 95.09 98.86 92.71 95.52 6.6 0.09 22 0.52 0.33 0.43
ResNet50 96.31 98.03 98.03 98.03 98.03 31.18 10.77 26 0.81 0.86 0.83
LinkNet MobileNet v2 95.11 97.32 97.33 97.32 97.32 4.32 0.94 26 0.71 0.77 0.74
EfficientNet-B1 96.32 98.04 98.08 98.00 98.04 3.67 0.19 22 0.76 0.72 0.74
ResNet50 96.34 98.03 98.06 98.01 98.03 147 .44 18.64 21 0.54 0.55 0.55
MA-Net MobileNet v2 96.23 97.98 98.00 97.96 97.98 48.89 527 24 0.74 0.76 0.75
EfficientNet-B1 96.57 98.15 98.16 98.14 98.15 11.6 2.41 21 0.74 0.70 0.72

Remark: Boldface number means the best for each metric or score. ACC indicates accuracy, RE indicates recall, PR indicates
precision, F1 indicates F1-score; Params indicates the number of model parametersin M. (1 M =1 x 10%); GMACs indicates
1 x 10° MACs; Subjective score indicates that the score is calculated by the subjective evaluation method.

In the class of U-Net in Table 6, the U-Net with the encoder of EfficientNet-B1 obtains
the best performance in segmentation accuracy, with an IoU of 96.53%, an accuracy of
98.14%, a recall of 98.16%, a precision of 98.12%, and an F1-score of 98.14%, respectively.
However, its detection speed is 22 FPS, which is the slowest in the U-Net experiment.
When using ResNet50 as the encoder, the number of model parameters and the number
of MACs of U-Net are several times that of the others, which requires more storage and
computational power. Moreover, its segmentation accuracy is the worst in this class.
The number of model parameters in UNet++ is greater than that of U-Net, but UNet++
models can almost improve segmentation accuracy as compared with U-Net. In the class
of UNet++, UNet++ with the encoder of EfficientNet-B1 obtains the best segmentation
accuracy, but its detection speed is 21 FPS, which is the slowest. Although UNet++ with
the encoder of MobileNetV2 achieves unremarkable performance, it creates a trade-off
between segmentation accuracy and computational efficiency. It obtains the highest score
in both the CRITIC method and the subjective method. Moreover, its final score not only
far outperforms other U-Net++ models but also achieves the best score of all semantic
segmentation models in the overall experiment.

DeepLabv3 encoded with ResNet50 obtains the best performance in segmentation
accuracy in the class of DeepLabv3. The IoU, accuracy, recall, precision, and F1-score are
96.23%, 97.95%, 97.98%, 97.93%, and 97.96%, respectively. However, it has a large model
complexity. DeepLabv3 with the encoder of MobileNetV2 obtains the highest final score
of all DeepLabv3 models, which implies that the overall performance is more satisfactory.
DeepLabv3+ with the encoder of MobileNetV2 obtains an outstanding result in terms of
detection speed, with 27 FPS. However, the IoU, accuracy, recall, precision, and F1-score are
95.22%, 97.36%, 97.42%, 97.32%, and 97.37%, respectively. DeepLabv3+ with the encoder
of ResNet50 obtains a competitive score in both the CRITIC method and the subjective
method, but its model complexity is a big concern.

In the overall result of Table 6, PAN obtains the best performance in model complexity
when using Mobilenet-v2 as the encoder. However, it obtains poor results in segmentation
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accuracy, with an IoU of 91.83%, an accuracy of 95.09%, a recall of 98.86%, a precision
of 92.71%, and an Fl-score of 95.52%, respectively. PAN with the encoder of ResNet50
has obvious advantages in segmentation accuracy and detection speed as compared with
the other two semantic segmentation models in this class. Although it has a large model
complexity, the final score is still the highest out of the three models.

When using EfficientNet-B1 as the encoder, LinkNet obtains the best performance in
segmentation accuracy, with an IoU of 96.32%, an accuracy of 98.04%, a recall of 98.08%, a
precision of 98.00%, and an F1-score of 98.04%. Although it has a small model complexity,
its detection speed is slower than the other two models in this class. LinkNet with the
encoder of ResNet50 obtains the highest final score in this class because of its outstanding
segmentation accuracy and detection speed.

In the class of MA-Net in Table 6, MA-Net obtains the best performance in segmentation
accuracy and model complexity when using EfficineNet-b1 as the encoder. Specifically, the
IoU, accuracy, recall, precision, F1-score, number of model parameters, and GMACs are
96.57%, 98.15%, 98.16%, 98.14%, 98.15%, 11.6 M, and 2.41, respectively. However, its detection
speed is too slow, resulting in an unremarkable final score for the model. MA-Net with the
encoder of ResNet50 and MA-Net with the encoder of EfficineNet-b1 obtain outstanding
results in segmentation accuracy, but they show obvious flaws in detection speed.

The semantic segmentation models show their own pros and cons from a qualitative
perspective when compared with each other. Due to the simplicity of U-Net’s topology,
its GMACSs are small but nevertheless produce a decent result in segmentation accuracy.
UNet++ strikes a balance between segmentation accuracy and computation efficiency and
obtains excellent results in both metrics. DeepLabv3 and DeepLabv3+ yield results that are
nearly identical, although DeepLabv3+ has a slightly faster detection speed. Although PAN
and LinNet are both lightweight and necessitate fewer computational resources, it seems
difficult to locate the polyps precisely, yielding subpar segmentation accuracy. MA-Net is
very heavy and expensive in computational resources, although it obtains the best result in
segmentation accuracy.

Each model has its own characteristics based on its quantitative metrics. In general,
models with high segmentation accuracy are usually complicated to achieve high compu-
tational efficiency. Correspondingly, models with high computational efficiency usually
tend to have low segmentation accuracy. Model comparison is extremely challenging when
there are conflicts between the metrics. The proposed integrated evaluation approach
provides a measurable score for comparison. Table 6 shows that UNet++ with the encoder
of MobineNet v2 obtains the highest points in the CRITIC score, subjective score, and final
score. It means that no matter the aspect of quality, quantity, or a combination of both, the
comprehensive performance of the model is the best. In other words, a trade-off between
segmentation accuracy and computational efficiency has been achieved. Moreover, the
detection speed of 26 FPS shows that the goal of real-time segmentation has been achieved.
Figure 4 shows that the Dice loss curve converges quickly and smoothly, which implies
that the training process can converge to the global minima with no sign of overfitting or
underfitting. The complexity of this model is appropriate for the dataset and is neither
overly complex nor overly simplistic. After all considerations, UNet++ with the encoder of
MobineNet v2 is chosen as the final model for the automated poly-segmentation system.
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Figure 4. Dice loss curve of U-Net++ with different encoders. (a) Dice loss curve of U-Net++ with the
encoder of ResNet50; (b) Dice loss curve of U-Net++ with the encoder of MobineNet v2; (c) Dice loss
curve of U-Net++ with the encoder of EfficientNet-B1.

Figure 5 shows some segmentation results from the “best score” model. The predicted
masks have excellent locations and a fine-grained, well-segmented boundary regardless of
small polyps, multiple polyps, or polyps in a dim background. It means that the pixels labeled
as gastric polyps can be correctly classified. However, some pixels are misclassified. Figure 6
shows polyps are misclassified (i.e., the red area framed by the yellow box). As previously
mentioned, the FP rate increases when the training data sets all contain gastric polyps. The
reflective spots and gastric mucosal folds in the endoscopic images can easily be misdiagnosed
as gastric polyps. Due to lighting or angles, these regions can indeed be easily misdiagnosed,
even with the naked eye. Figure 7 shows that some polyps are missed by the system (i.e.,
the red area framed by the green box). These missed polyps are small polyps located at the
edges of the images. Owing to hardware limitations, all endoscopic images are resized to
256 x 256, which affects the segmentation accuracy of small polyps. Even though there is
room for improvement, the accuracy of the selected model is still very satisfactory.
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Input Images Ground truth masks Predicted masks

Figure 5. Sample results of the proposed automated poly-segmentation system.
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Figure 6. FP examples of the proposed automated poly-segmentation system.
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Input Images Ground truth masks Predicted masks

Figure 7. FN examples of the proposed automated poly-segmentation system.

Allin all, the automated polyp-segmentation system may be beneficial clinically in
three aspects, given its overall excellent performance. The system can play the role of a
second observer by segmenting the detected polyps in real time on the monitor adjacent to
the main monitor. It could be a useful tool for reducing skill differences among endoscopists
and enhancing the quality of routine EGD. However, the final decision still relies on the
endoscopist. Nevertheless, it can prompt the endoscopists for further processing, reducing
the possibility of missing some polyps with the naked eye. For patients, the proposed
system can improve the efficiency of physical examinations and shorten the time required
for waiting and examination. Moreover, it can provide expert-level diagnosis, improving
patients’ trust, cooperation, and satisfaction. Soon, this system will be open-source and
free as compared to commercial software, making it very friendly for medical trainees and
junior doctors to train and improve their clinical skills.

However, this system has a variety of limitations. First, it is only capable of segmenting
gastric polyps and is not able to identify other gastric diseases simultaneously under EGD.
Second, lesions are categorized as benign or malignant most of the time, which is difficult
to distinguish under conventional white-light imaging endoscopy, and histopathological
prognosis after identification can be more clinically valuable when combined with other
advanced endoscopes. Thirdly, this system has not been subjected to multicenter clinical
trials with large data sets, and it is still dubious whether it is robust enough to handle a
large range of clinical uses.

5. Conclusions

Given the clinical impact of an increased gastric polyp detection rate on the incidence
of gastric cancer, an automated polyp-segmentation system based on CNN is developed in
this study to assist endoscopists in the diagnosis of gastric polyps, and a novel integrated
evaluation approach is also proposed to select a CNN model with the best overall perfor-
mance. In addition, some state-of-the-art semantic segmentation models are applied and
compared, including U-Net, UNet++, DeepLabv3, DeepLabv3+, PAN, LinkNet, and MA-Net.
Additionally, several advanced deep network architectures (i.e., ResNet50, MobileNetV2, and
EfficientNet-B1) are used as encoders in these models. To evaluate the overall performance of
semantic segmentation models, an integrated evaluation approach that combines the objective
and subjective methods of MCDM is proposed. Eight metrics (i.e., IoU, accuracy, recall,
precision, F1-score, model parameters, MACs, and FPS) are expanded from two dimensions
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(i.e., segmentation accuracy and computational efficiency). The metrics are condensed into
the final scores to rank the candidate models by the CRITIC method and experts” weight. The
evaluation results show that UNet++ with the encoder of MobineNet v2 achieves the best
scores in both subjective and objective as well as integrated evaluation approaches, although it
is not the best on some single metrics. The proposed system achieves excellent performance in
both segmentation accuracy and computational efficiency, contributing to the diagnosis and
identification of gastric polyps. The automated polyp-segmentation system and the integrated
evaluation approach are enlightening and show great potential in clinical applications. The
originality of this study is summarized as follows:

(1) This study is pioneering research on gastric polyp segmentation. A high-quality gastric
polyp dataset is generated. Seven semantic segmentation models are constructed and
evaluated to determine the core model for the automated polyp-segmentation system.

(2) Tocomprehensively evaluate the results, the integrated evaluation approach combined
with the CRITIC method and experts” weight are combined to rank the candidate
models, which is the first attempt at a polyp-segmentation task.

Although the above research results are remarkable, prospective research possibilities
and potential enhancements are still needed to have better accuracy and efficiency in
the detection of gastric lesions, which are listed as follows: (1) Clinically, the patient’s
lesions are often more complex than a single lesion, such as chronic atrophic gastritis with
intestinal metaplasia. For EGD, it will be more practical for the CAD systems to detect
multiple lesions simultaneously. (2) Not only white-light imaging endoscopy but other
more advanced endoscopes, such as narrow-band imaging and chromoendoscopy, should
also be considered for the pathological prediction of gastric polyps. Histopathological
prediction of small polypoid lesions based on identification allows the endoscopists to
decide on a treatment plan once and for all to avoid progressive enlargement of polypoid
lesions [52]. (3) Although the complex models show better performance in many cases, the
high consumption of memory space and computational resources is an important reason
that makes it difficult to implement them on various hardware platforms effectively. Thus,
model compression and acceleration are the research directions for the deployment of
the system; (4) The proposed integrated evaluation approach should be applied to more
semantic segmentation tasks to evaluate its effectiveness, but not only for a one-time-used
tool; and (5) The system should then be integrated into endoscopy equipment and used
in clinical practice as the next step. The performance of the proposed system should be
examined using multi-center and large-scale clinical data.
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