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Abstract: In this study, we established an explainable and personalized risk prediction model for
in-hospital mortality after continuous renal replacement therapy (CRRT) initiation. This retrospective
cohort study was conducted at Changhua Christian Hospital (CCH). A total of 2932 consecutive
intensive care unit patients receiving CRRT between 1 January 2010, and 30 April 2021, were identified
from the CCH Clinical Research Database and were included in this study. The recursive feature
elimination method with 10-fold cross-validation was used and repeated five times to select the
optimal subset of features for the development of machine learning (ML) models to predict in-hospital
mortality after CRRT initiation. An explainable approach based on ML and the SHapley Additive
exPlanation (SHAP) and a local explanation method were used to evaluate the risk of in-hospital
mortality and help clinicians understand the results of ML models. The extreme gradient boosting
and gradient boosting machine models exhibited a higher discrimination ability (area under curve
[AUC] = 0.806, 95% CI = 0.770–0.843 and AUC = 0.823, 95% CI = 0.788–0.858, respectively). The
SHAP model revealed that the Acute Physiology and Chronic Health Evaluation II score, albumin
level, and the timing of CRRT initiation were the most crucial features, followed by age, potassium
and creatinine levels, SPO2, mean arterial pressure, international normalized ratio, and vasopressor
support use. ML models combined with SHAP and local interpretation can provide the visual
interpretation of individual risk predictions, which can help clinicians understand the effect of critical
features and make informed decisions for preventing in-hospital deaths.

Keywords: continuous renal replacement therapy; in-hospital mortality; explainable machine
learning; SHapley Additive exPlanations (SHAP); local explanation

1. Introduction

Acute kidney injury (AKI) is common in critically ill patients in the intensive care unit
(ICU). Multinational cross-sectional studies have reported that more than 50% of patients
in the ICU have AKI regardless of the severity of AKI [1], and these patients are more
likely to have higher mortality and long-term adverse outcomes, including cardiovascular
complications, chronic kidney disease, and end-stage renal disease [2]. Continuous renal
replacement therapy (CRRT) is the predominant form of renal replacement therapy (RRT),
especially for patients with unstable hemodynamic status [3]. CRRT is a blood purification
technology that removes excess water and toxins from blood to ensure fluid balance
and electrolyte regulation required for organ support [4,5]. Despite advances in CRRT, the
prognosis of patients receiving CRRT remains poor, with a mortality rate of 30% to 70% [6,7].
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Furthermore, 25% of survivors receiving CRRT require dialysis upon hospital discharge [8].
Therefore, a tool for accurate risk prediction should be developed to determine the outcome
of CRRT because a prediction tool provides valuable information that can help physicians
make more effective clinical judgments and formulate appropriate treatment strategies as
well as help family members make medical decisions.

The outcomes of CRRT depend on various clinical conditions, including patients’
underlying diseases, the severity and duration of renal impairment, renal function at
baseline, and the presence of oliguria at the beginning of RRT [3,8–10]. Disease severity
scores are commonly calculated using various tools, such as the Sequential Organ Failure
Assessment (SOFA), Acute Physiology and Chronic Health Evaluation (APACHE) II, and
Simplified Acute Physiology Score (SAPS), and are used to predict mortality in critically
ill patients; however, these scores have limitations in patients with CRRT [11,12]. With
advances in computational capacity in recent years, machine learning (ML) with the
modeling of complex mathematical functions for many clinical variables has been used for
accurate disease diagnosis and prognosis prediction. Two studies have used ML combined
with electronic medical records (EMRs) to predict the mortality and RRT-free survival of
critically ill patients receiving CRRT [7,13]. These models exhibited a higher prediction
ability than did conventional disease severity scores. However, prediction accuracy of
approximately 70% is not sufficient for clinical implementation, and interpretable risk
prediction models are not yet available. Although an ML algorithm can indicate the
probability of the prognosis of a disease, the algorithm cannot help physicians explain
the logic of the decision to family members. Black-box artificial intelligence solutions in
medicine without transparency and interpretability are still barriers [14]. To the best of our
knowledge, no study has developed and examined an ML-based risk prediction model
for CRRT.

Family members are concerned about whether the impaired renal function of patients
with AKI admitted to the ICU can be restored or whether other adverse outcomes would
occur after CRRT initiation. Even if patients are not optimistic, making the decision to
discontinue CRRT is considerably challenging for patients and family members. Family
members and physicians aim to provide the best possible care to prolong patients’ survival.
When life-sustaining therapies cannot meet treatment goals, many clinical decisions, in-
cluding those related to palliative care, should be discussed by physicians, patients, and
families. The development of personalized and interpretable prediction models is crucial
for identifying clinically relevant information hidden in large amounts of data and for creat-
ing a notification system that supports the work of physicians. In this study, we established
an explainable and personalized risk prediction model for in-hospital mortality after CRRT
initiation. This is the first study to use an ML algorithm combined with SHapley Additive
Explanations (SHAP) and a local explanation method to provide clinical information to
help physicians make better clinical judgments and customize treatment strategies.

2. Materials and Methods
2.1. Study Participants

This retrospective cohort study was conducted at Changhua Christian Hospital (CCH)
in central Taiwan, which is a tertiary medical center with 130 ICU beds in five wards. We
identified 3303 consecutive ICU patients who received CRRT between 1 January 2010,
and 30 April 2021, from the CCH Clinical Research Database (CCHRD), which contains
all electronic medical records including daily CRRT records; data on inpatient care, pre-
scriptions, and clinical visits; laboratory results; and death records. AKI was diagnosed
on the basis of Kidney Disease Improving Global Outcomes (KDIGO) criteria for serum
creatinine elevation, which was determined by comparing baseline serum creatinine levels
at admission with those before CRRT.

We excluded patients with preexisting end-stage renal disease receiving CRRT (n = 283),
those aged <20 years (n = 15), and those with missing laboratory data (n = 73). Finally,
2932 eligible patients were included in this analysis (Figure 1). The data of the patients
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were randomly divided into the training set (80%, n = 2345) for developing ML models and
the test set (20%, n = 587) for examining the performance of each model. The Institutional
Review Board of CCH waived the requirement of informed consent and approved the study
(IRB No: 210509). The CCHRD contains deidentified data. The researchers of this paper
followed the Computer-Processed Personal Data Protection Law and privacy regulations
in Taiwan.
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Figure 1. Flow chart of study patients.

2.2. Outcomes

The primary endpoint was in-hospital mortality after CRRT initiation that was de-
termined by reviewing death records. The secondary endpoint was mortality at 28 and
90 days after CRRT initiation. Mortality risk was determined in the patients receiving
CRRT, and the data of the patients were censored at the end of the respective follow-up
periods (at discharge or at 28 and 90 days of follow-up) or at the last date for which data
were available.

2.3. Feature Engineering

In our study, all features were performed according to the diagnostic criteria for AKI
and risk factors associated with ICU mortality [6,7,13,15]. Data were selected based on the
data available in our clinical research database, electronic medical records, and our areas of
expertise. We collected information on 113 clinical features before CRRT initiation from
the CCHRD, including demographics (age, sex, and body mass index [BMI]), APACHE II
scores at admission to the ICU, diagnostic criteria of AKI, the timing of CRRT initiation,
major diagnostic categories (MDCs), vital signs within 24 h after CRRT initiation, fluid
balance, medication use, multiple organ support, serum biochemical data before CRRT,
and comorbidities. Laboratory data were used as features for predicting CRRT mortality in
the data mining phase, including complete blood count, blood gas analysis, white blood
cell (WBC) and differential counts, and all biochemical data such as renal function, lipid
profile, nutrition-related tests, etc. We excluded 24 features with a prevalence of <5% from
the analysis to ensure variability and improve prediction precision [16]. To select the most
favorable subset of features for predicting hospital mortality, we used the recursive feature
elimination method with 10-fold cross-validation, repeated it five times, and finally selected
29 features. Table 1 presents the statistical descriptions of the selected features between the
training and test sets.
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Table 1. Patients’ features in overall cohort and split datasets.

Features No in-Hospital Death In-Hospital Death p-Value Train Dataset Test Dataset p-Value

Sample size 908 2024 2345 587

Characteristics

Age, yr 66 (55–76) 72 (60–81) <0.001 70 (59–80) 70 (57–81) 0.768

BMI 25.6 (22.5–29) 24 (21.1–27.3) <0.001 24.5 (21.4–27.9) 24.7
(21.5–28.1) 0.303

MDC 5 (4–8) 5 (4–7) 0.979 5 (4–7) 5 (4–8) 0.198

APACHE II at admission 26 (20–32) 30 (24–37) <0.001 29 (22–35) 29 (22–35) 0.571

Timing of initiated CRRT
Early-strategy group § 518 (57%) 962 (47.5%) <0.001 1200 (51.2%) 280 (47.7%) 0.132
Delayed Strategy 390 (43%) 1062 (52.5%) 1145 (48.8%) 307 (52.3%)

Vital Sign at CRRT—no. (%)

Systolic BP (mmHg) 115.7
(105.4–130.3)

108.2
(98.2–119.7) <0.001 110.6

(100.3–122.8)
109.6

(100.8–123) 0.738

Diastolic BP (mmHg) 60.5 (53.5–70) 57.7 (50.3–65.5) <0.001 58.6 (51.4–66.8) 58.1
(50.7–66.4) 0.480

Respiratory rate (/min) 18.8 (16.3–21.4) 20 (17–23.3) <0.001 19.7 (16.7–22.7) 19.7
(16.8–22.8) 0.884

SPO2 97.8 (96–99.1) 96.6 (93.5–98.6) <0.001 97.1 (94.4–98.8) 96.9
(94.4–98.7) 0.302

Fluid balance before CRRT—ml/24 hr 1663 (500–2992) 2221 (1000–3750) <0.001 2000 (817–3550) 2000
(835–3429) 0.942

Coexisting conditions—no. (%)
Diabetes mellitus 368 (40.5%) 642 (31.7%) <0.001 812 (34.6%) 198 (33.7%) 0.683

Multiple organ support before CRRT—no. (%)

Invasive mechanical ventilation 719 (79.2%) 1832 (90.5%) <0.001 2043 (87.1%) 508 (86.5%) 0.709

Vasopressors support with
norepinephrine or epinephrine 632 (69.6%) 1792 (88.5%) <0.001 1931 (82.3%) 493 (84%) 0.348

Vasopressin 178 (19.6%) 843 (41.7%) <0.001 801 (34.2%) 220 (37.5%) 0.131

Medication use before CRRT—no. (%)

Corticosteroids 429 (47.2%) 1247 (61.6%) <0.001 1347 (57.4%) 329 (56%) 0.542

Parenteral Nutrition 678 (74.7%) 1769 (87.4%) <0.001 1959 (83.5%) 488 (83.1%) 0.813

Antibiotics 828 (91.2%) 1948 (96.2%) <0.001 2219 (94.6%) 557 (94.9%) 0.800

Furosemide 438 (48.2%) 1104 (54.5%) 0.002 1218 (51.9%) 324 (55.2%) 0.158

Laboratory data before CRRT

Serum creatinine (mg/dL) 2.6 (1.4–5.2) 2 (1.2–3.6) <0.001 2.1 (1.3–4) 2.2 (1.3–4.2) 0.640

Serum potassium (mmol/L) 3.9 (3.4–4.4) 4 (3.4–4.8) <0.001 3.9 (3.4–4.6) 4 (3.4–4.7) 0.699

Serum albumin (g/dL) 2.6 (2.1–3.1) 2.2 (1.7–2.7) <0.001 2.3 (1.8–2.8) 2.3 (1.8–2.8) 0.448

Lactate, mmol/L 2.9 (1.4–6.6) 4.8 (2.2–10) <0.001 4.1 (1.9–8.9) 4 (1.9–9.5) 0.906

Platelet count 126 (75–199) 96 (53–165) <0.001 106 (59–175) 105 (56–177) 0.930

pH 7.4 (7.3–7.4) 7.3 (7.2–7.4) <0.001 7.3 (7.2–7.4) 7.3 (7.2–7.4) 0.931

Serum sodium (mmol/L) 138 (134–141) 139 (134–144) <0.001 138 (134–143) 138 (134–143) 0.269

RDW 15.4 (14.3–17) 16.1 (14.8–18.3) <0.001 15.8 (14.6–17.8) 16.1
(14.6–18.6) 0.039

Mg 2 (1.8–2.3) 2.1 (1.8–2.4) <0.001 2.1 (1.8–2.4) 2.1 (1.8–2.5) 0.090

INR 1.2 (1.1–1.4) 1.3 (1.1–1.7) <0.001 1.3 (1.1–1.6) 1.3 (1.1–1.7) 0.785

APTT 36.5 (30.5–54.1) 41 (32.8–69.6) <0.001 39.2 (31.8–61.5) 40.8
(32.4–69.7) 0.027

O2 Saturation 98.8 (96.6–99.8) 98 (95.1–99.5) <0.001 98.3 (95.6–99.7) 98.3
(95.7–99.6) 0.955
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Table 1. Cont.

Features No in-Hospital Death In-Hospital Death p-Value Train Dataset Test Dataset p-Value

Outcome

In-hospital mortality 0 (0%) 2024 (100%) – 1625 (69.0%) 399 (67.0%) 0.535

28 days mortality 2 (0.2%) 1733 (85.6%) <0.001 1385 (59.1%) 350 (59.6%) 0.804

90 days mortality 20 (2.2%) 1984 (98%) <0.001 1607 (68.5%) 397 (67.6%) 0.676

Abbreviations: BMI, body mass index; MDC, major diagnostic category; APACHE, Acute Physiology and
Chronic Health Evaluation; CRRT, continuous renal replacement therapy; BP, blood pressure; RDW, red blood cell
distribution width; INR, international normalized ratio; APTT, activated partial thromboplastin time. § Early-
strategy group was defined by the renal-replacement therapy was initiated within 24 h of documenting failure-
stage acute kidney injury.

2.4. Statistical Analysis and ML Algorithm

Categorical and continuous variables are expressed as numbers (proportions) and me-
dians and interquartile ranges, respectively. The chi-square test was used to compare cate-
gorical variables, and the Mann–Whitney U test was used to compare continuous variables.

Figure 2 presents the study framework used for developing the prediction model
for in-hospital mortality after CRRT initiation, which included data preprocessing, fea-
ture engineering, ML models, and models in global and local interpretation. Four ML
algorithms, namely support vector machine (SVM), random forest (RF), gradient boost-
ing machine (GBM), and extreme gradient boosting (XGB) [17], were used to develop
a model for predicting in-hospital mortality after CRRT. To select the most satisfactory
combination of model hyperparameters, the exhaustive grid search algorithm was used as
a hyperparameter tuning tool, and a 5-fold cross-validation procedure was used for the
training set. The most favorable hyperparameter for each ML model was determined on
the basis of the highest area under the receiver operating characteristic curve (AUROC). ML
models were developed using the one-hot encoding of categories and the normalization
of continuous features. The Youden index was used to determine the optimal threshold
to classify in-hospital deaths that occurred after CRRT initiation. Six evaluation metrics,
namely sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), F1 score, and accuracy of the test set, were used to compare the prediction ability of
each model. Because the study aim was predicting the occurrence of in-hospital mortality
after CRRT initiation, we mainly focused on achieving a higher prediction accuracy and
F1 score.

A raincloud plot including individual data points (horizontally jittered), density
distributions, and statistical inferences of box plots with medians and interquartile ranges
was created; this approach enabled the visualization of the distribution of in-hospital
mortality after CRRT initiation and predicted scores obtained using ML models. We
evaluated the agreement between the predicted probability and observed in-hospital
mortality after CRRT initiation by using calibration belts. Kaplan–Meier curves were used
to predict the survival rate at 28 days and 90 days.

SHAP is an explainable artificial intelligence technique that helps clinicians understand
the results of ML models. Two advantages of SHAP increases the transparency of the
model in providing global and local interpretability. Global interpretability lists the most
important features in descending order, with the top-ranked features contributing more
to the predictive model and having high predictive power. The SHAP value plot can
further show the positive and negative relationship between the feature and the outcome
variable. Local interpretability provides feature contributions to the model prediction
output for an individual patient, which reveal the impact of input features on individual
predictions. For clinical practice applications, local interpretability enables physicians
to understand key features that affect a patient’s condition and accordingly implement
treatment strategies to save the lives of patients receiving CRRT. In this study, all statistical
analyses were performed using SPSS, and the ML model was established using R software
(version 3.6.2; The Comprehensive R Archive Network: http://cran.r-project.org, accessed
on 12 December 2019). All two-sided p values of <.05 indicated statistical significance.

http://cran.r-project.org
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3. Results
3.1. Study Population Characteristics

This study included a total of 2932 patients receiving CRRT, of whom 2024 (60.03%)
died in the hospital. The patients who died in the hospital were older and had lower
BMI, higher APACHE-II scores, a higher frequency of receiving CRRT > 24 h after AKI,
more unstable vital signs (lower blood pressure and SPO2 and higher respiratory rate),
and more fluid imbalance before CRRT initiation. Moreover, the patients who died in
the hospital were more likely to require multiple organ support before CRRT initiation
(including invasive mechanical ventilation, vasopressor support, and vasopressin) and
medications (corticosteroids, parenteral nutrition, antibiotics, and furosemide). Moreover,
these patients had higher serum potassium, lactate, sodium, and magnesium levels; red
blood cell distribution width (RDW); international normalized ratio (INR); and activated
partial thromboplastin time (APTT). However, these patients had lower serum creatinine
and albumin levels, platelet counts, pH values, and O2 saturation. The prevalence of
in-hospital death and the distributions of the features were similar between the training
and test sets, except for RDW and APTT. Table 1 lists the features used to develop the
ML model.
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3.2. Model Prediction of In-Hospital Death after CRRT Initiation

As presented in Table 2, the SVM model exhibited a moderate discrimination ability
(AUC = 0.750, 95% CI = 0.708–0.792 for the radial kernel; AUC = 0.756, 95% CI = 0.745–0.821
for the sigmoid kernel; and AUC = 0.784, 95% CI = 0.745–0.822 for the polynomial kernel).
The RF, XGB, and GBM models exhibited a higher discrimination ability (AUC = 0.816, 95%
CI = 0.781–0.851; AUC = 0.806, 95% CI = 0.770–0.843; and AUC = 0.823, 95% CI = 0.788–0.858,
respectively). Among the 3 ML models, the RF model exhibited the highest sensitivity
(74.69%); however, its specificity and PPV for predicting in-hospital death (75% and 86.38%,
respectively), F1 score (80.11%), and accuracy (74.79%) were lower than those of the GBM
and XGB models. By contrast, the XGB and GBM models more accurately predicted in-
hospital death, with sensitivity of 73.43% and 74.19%, specificity of 80.32% and 78.72%, and
PPV of 88.79% and 88.10%, respectively; their F1 scores (80.38% and 80.55%, respectively)
and prediction accuracy were the highest (75.64% for both, respectively). Figure 3 presents
the discrimination performance of each of the six ML models, as represented by the receiver
operating characteristic curve.

Table 2. Comparison of various models’ performance for predicting in-hospital mortality using test data.

Model AUC Threshold Sensitivity Specificity PPV NPV F1 Score Accuracy

Support Vector Machine (SVM) with radial kernel 0.7500 0.6749 62.66% 78.72% 86.21% 49.83% 72.57% 67.80%

Support Vector Machine (SVM) with polynomial kernel 0.7836 0.6588 67.67% 77.13% 86.26% 52.92% 75.84% 73.59%

Support Vector Machine (SVM) with Sigmoid kernel 0.7563 0.6897 71.43% 75.53% 86.10% 55.47% 78.08% 72.74%

Random Forest (RF) 0.8161 0.6587 74.69% 75.00% 86.38% 58.26% 80.11% 74.79%

Extreme Gradient Boosting (XGBoost) 0.8064 0.7234 73.43% 80.32% 88.79% 58.75% 80.38% 75.64%

Gradient boosted machines (GBMs) 0.8227 0.7216 74.19% 78.72% 88.10% 58.96% 80.55% 75.64%

Abbreviations: PPV, positive predictive value; NPV, negative predictive value. The sensitivity, specificity, PPV,
and NPV were calculated using Youden’s index.
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The raincloud plot depicted in Figure 4 summarizes the distribution of the predicted
scores for the in-hospital death and non–in-hospital death groups. Significant differences
were noted in the predicted scores between the groups in the six ML models (all p < 0.001,
Kolmogorov–Smirnov test), and the median score of in-hospital death was higher than
that of non-hospital death (all p < 0.001, Wilcoxon rank-sum test). Furthermore, the XGB
model overlapped on the 45◦ dotted line, indicating favorable agreement between predicted
probabilities in ML and the actual results determined using the calibration plots (p = 0.122
for the XGB model; Figure 5). The Kaplan–Meier curves showed poor survival at 28 and
90 days in the high-risk group (Figure 6).
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3.3. Model Explanations

Figure 7 presents the plot of the features vital for the XGB model in order of impor-
tance according to average absolute SHAP values, which were useful for determining the
contribution of each feature to individual predictions. The APACHE II score, albumin level,
and timing of CRRT initiation were the top three main features, with SHAP values of 0.300,
0.297, and 0.276, respectively (Figure 7a), followed by age, potassium levels, SPO2, mean
arterial pressure (MAP), INR, creatinine levels, and vasopressor use. Higher APACHE
II scores; potassium, magnesium, lactate, and sodium levels; MDC scores; RDW; APTT;
fluid balance; respiratory rate; and older age as well as lower SPO2, MAP, BMI, platelet
count, creatinine levels, and O2 saturation were positively correlated with in-hospital death
(Figure 7b). Multiple organ support use (vasopressor, vasopressin, and invasive mechani-
cal ventilation) and medication use (corticosteroids, parenteral nutrition, antibiotics, and
furosemide) were positively associated with in-hospital death. The presence of diabetes
mellitus was negatively associated with in-hospital death. A nonlinear relationship was
observed between pH and in-hospital mortality. Although the distribution of SHAP val-
ues was highly dispersed, the correlation of the features with in-hospital death was still
consistent with the domain knowledge of most of the features.
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Figure 8 depicts four local explanation graphs of randomly chosen patients. Our
proposed model correctly predicted the risk of in-hospital death for patients A and B but
incorrectly predicted the risk for patients C and D.
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Figure 8. Local explanation plots for individuals with various in-hospital mortality statuses and XGB
model predictions. (a) In-hospital death and AI predicted in-hospital death; (b) non-in-hospital death
and AI predicted non-in-hospital death; (c) in-hospital death but AI predicted non-in-hospital death;
(d) non-in-hospital death but AI predicted in-hospital death. Green and red bars correspond to the
contribution of the features to the prediction. Green represents a negative value, which decreases
the predicted value; red represents a positive value, which increases the predicted value. X-axis
represents model prediction value; y-axis lists the features and their observed values.
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Patient A died in the hospital, and the probability of in-hospital death predicted by
the ML model for patient A was 91%. Patient A had lower SPO2 (88.93), higher pH (7.21),
CRRT initiated >24 h after AKI, a higher sodium level (158), lower O2 saturation (85.3), a
lower creatinine level (0.83), and a higher MDC score (24); these factors were significantly
positively associated with in-hospital death (Figure 8a). Patient B did not die in the hospital,
and the probability of in-hospital death predicted by the ML model for patient B was
36.54%. Patient B was aged 63 years; did not require parenteral nutrition; and had a higher
albumin level (3.8), higher MAP (124.36), CRRT initiated within 24 h after AKI, higher
BMI (25.14), higher SPO2 (95.64), and normal laboratory values (RDW; APTT; INR; platelet
count; pH; and sodium, magnesium, and potassium levels); these factors were associated
with a lower risk of in-hospital death (Figure 8b).

The probabilities of in-hospital death predicted using the ML model for patients C
and D were inaccurate. Local explanations are presented in Figure 8c,d. The probabilities
of in-hospital death for patients C and D were 48.2% and 74.4%, respectively. Despite
inaccurate predictions, local interpretations can help clinicians effectively understand
patients’ conditions and address key clinical features early on to modify treatment strategies
and save lives. Similar results were obtained for the GBM and RF model (presented in
Figures A1–A4), indicating that both the global and local interpretations of the ML model
can help in making personalized care recommendations to prevent in-hospital death.

4. Discussion

In this study, we developed and validated an interpretable ML-based model to predict
the in-hospital death of ICU patients receiving CRRT. Our findings revealed that the
XGB, GBM, and RF models exhibited higher discrimination performance with an AUC
of 0.80. The result indicated that ML can improve the prediction of in-hospital mortality
in ICU patients receiving CRRT. Among the 3 ML models, the XGB model exhibited
the most favorable performance and calibration; therefore, we used the XGB model to
develop the interpretable ML-based in-hospital death risk prediction model. The XGB
algorithm that combines SHAP and the local interpretation framework provides a visual
feature importance score that can help physicians intuitively understand the key features of
patients’ condition and accordingly modify treatment strategies and explain the condition
to the patients’ families.

CRRT is a primary life-support technique used to maintain hemodynamic stability
and aid in renal recovery in ICU patients [18]. However, higher mortality rates, ranging
from 40% to 70%, have been reported in patients receiving CRRT [6,7]. Therefore, the main
objective of CRRT is to prevent mortality and adverse outcomes. APACHE and SOFA
scores, which are calculated using clinical and laboratory parameters, are widely used to
estimate the risk of mortality in ICU patients [19,20]. However, the efficacy of these scores
has not been adequately evaluated in patients receiving CRRT [21]. The accuracy of the
newly developed mortality scoring system for AKI with CRRT in predicting mortality in
patients receiving CRRT was only evaluated in a small study [12]. A large comprehensive
medical database study from Taiwan validated these scoring systems in ICU patients
receiving CRRT. The results indicated that the prediction performance of these scoring
systems based on scores on days 1 and 3 of CRRT in terms of AUC ranged from 0.55 to 0.67.
The average AUC of the discrimination ability was 0.74 on day 7 after CRRT initiation [21].

The use of ML models for data analysis has recently become popular due to a large
amount of data in electronic hospital records. Furthermore, ML models can accurately
predict mortality in ICU patients receiving CRRT. For example, Kang and colleagues
developed an ML-based model to predict mortality in patients receiving CRRT [7]. They
reported that the RF model was the most favorable prediction model with an AUROC of
0.782 and observed that the accuracy of an ML-based model in predicting mortality was
higher than that of other scoring models. The same research team used an ML algorithm
to predict hypotension after CRRT initiation and reported satisfactory performance of the
XGB model, with an AUROC of 0.828 [22]. Pattharanitima et al. used ML and deep learning
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to build a model for predicting renal replacement therapy-free survival and demonstrated
that the long short-term memory model with multilayer perceptron architecture exhibited
high discrimination performance with an AUC of 0.70 [13]. Studies have investigated
the accuracy of other ML-based mortality prediction models in intensive care settings,
including in patients with lactic acidosis [23], mechanically ventilated patients [24], and
those with COVID-19 and AKI [25]. These findings emphasize the importance of ML in
predicting outcomes in critical care settings, especially for patients receiving CRRT.

In this study, we combined ML-based models with electronic medical record data
to retrieve information on various clinical characteristics that affect in-hospital mortality,
and we determined that the RF, XGB, and GBM models exhibited the most favorable
discriminative ability with AUROCs of 0.816, 0.806, and 0.823, respectively. The accuracy
of the ML models used in this study in predicting in-hospital mortality in the patients
receiving CRRT is comparable to that reported in previous studies [7,10,22–25]. In particular,
our model exhibited higher discriminative power than did the prediction model developed
by Kang et al. [7]. In our study, the AUC of the XGB model was not higher than that of the
GBM model; however, the PPV, F1 score and accuracy of the XGB model were comparable
to those of the GBM model. Moreover, the XGB model was more well-calibrated than
the GBM model. Thus, the GBM and XGB models may be suitable to predict in-hospital
mortality in patients receiving CRRT.

Currently, ML models used to predict mortality in patients receiving CRRT still employ
the black box methodology, which involves determining the relationship between given
data (inputs) and outcomes (outputs) instead of creating rules based on knowledge. This
study provides new insights into the stumbling block of black-box logic and an explainable
approach to artificial intelligence. SHAP reported by Lundberg and Lee (2016) explains
how different features affect the results of ML models [26]. SHAP is based on the theoretical
optimal Shapley value of a game, a widely used concept in cooperative game theory. The
feature values of data instances act as players in the coalition, and Shapley values are the av-
erage marginal contributions of features across all possible coalitions. Artificial intelligence
should be applied in clinical practice to help clinicians understand the rationale of the pre-
dictions of ML models. In addition, providing detailed information can enable doctors to
gain better insights and make informed decisions regarding preventing in-hospital deaths
instead of blindly trusting or not trusting predictions. Moreover, this information can help
physicians explain patients’ condition to the family to ensure transparent decision-making.

We used SHAP values and local interpretation to achieve the best prediction perfor-
mance and interpretability. SHAP technology has been applied to many clinical problems,
including acute exacerbations of chronic obstructive pulmonary disease, venous thrombosis
of osteoarthritis, and coronary artery calcification [27–29]. Recent studies have applied
explainable machine learning to predict hospital mortality in publicly available databases,
such as the eICU and MIMIC-III databases [30,31]. To our knowledge, this is the first study
to use SHAP in EMRs data to predict in-hospital mortality in ICU patients receiving CRRT.
We graphically demonstrated the interpretability of the complicated XBG and GBM models
by plotting individual risk prediction.

In our study, the model revealed that the APACHE II score, albumin level, and the
timing of CRRT initiation are the three most crucial global features with the highest SHAP
values, followed by age, potassium and creatinine levels, SPO2, MAP, INR, and vasopressor
support use. Furthermore, the results revealed that a higher APACHE II score, potassium
levels, lactate levels, sodium levels, and respiratory rate; multiple organ support use and
medication use; and older age as well as lower SPO2, MAP, platelet count, BMI, and O2
saturation were positively correlated with in-hospital death. The findings regarding the
importance of variables are consistent with those of a previous study [7,11,12,32–34]. In
this study, an inverse relationship was noted between diabetes mellitus and in-hospital
mortality. A lower creatinine level was associated with in-hospital mortality, whereas a
nonlinear relationship was noted between pH and in-hospital mortality. These findings
are in line with those of previous studies. The reason for lower mortality in patients with
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preexisting DM remains unclear. Patients with diabetes might have improved tolerance
to acute hyperglycemic episodes during critical illness [35]. Although an elevated serum
creatinine level indicates the severity of AKI, a meta-analysis suggested that patients
with a lower serum creatinine level at the beginning of CRRT may have an increased risk
of in-hospital death [18]. In surgical ICU, mortality was observed to have a U-shaped
relationship with pH, with acidemia and alkalemia being independently associated with
high mortality [36]. A U-shaped association of pH was observed in patients with CRRT.
Future studies should investigate the effect of biochemical laboratory data, including
creatinine and pH levels, on in-hospital mortality in patients receiving CRRT.

This study has some limitations. First, the use of data from a single-center electronic
database may limit the generalizability of our model, and our findings cannot be applied
directly to other medical institutions. Second, we used retrospective data for model con-
struction and validation in this study; thus, some potential risks were not considered.
Additional prospective experiments should be performed to validate the prediction model.
Third, all models included static features, including demographics, medication use, and
multiorgan support use, obtained from the time of admission to the start of CRRT. Time-
series data, such as laboratory values, vital signs, and urine output, from ICU admission to
CRRT initiation were included in the model as mean values. Future studies should use deep
learning including various time-series data for predicting in-hospital mortality. Fourth, the
sample size of this study population is moderate; however, the sample size of previous
studies on related topics using machine learning to analyze CRRT data is approximately
684 to 2349 [7,13,22], which is smaller than our sample size.

In this study, the XGB and GBM models were used to accurately evaluate the risk
of in-hospital mortality in ICU patients receiving CRRT. The model involving the use of
SHAP and local interpretation provided visually interpretable individual risk predictions,
which may help clinicians understand the effect of key features and make informed de-
cisions regarding preventing in-hospital deaths. In addition, explaining the reasons for
the treatment decision to the patient’s family can increase transparency. In conclusion, our
model provides objective and interpretable predictions that can help clinicians implement
appropriate treatment for patients receiving CRRT based on their specific prognosis.
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Diversion on x-axis represents effect on model output, with colors used to represent low (yellow) to
high (purple) value of predictors.



Diagnostics 2022, 12, 1496 17 of 22

Appendix B

Diagnostics 2022, 12, x FOR PEER REVIEW 18 of 23 
 

 

Appendix B 

 
(a) 

 
(b) 

 
(c) 

Figure A2. Cont.



Diagnostics 2022, 12, 1496 18 of 22Diagnostics 2022, 12, x FOR PEER REVIEW 19 of 23 
 

 

 
(d) 

Figure A2. Local explanation plots for individuals with various in-hospital mortality statuses and 
GBM model predictions. (a) In-hospital death and AI predicted in-hospital death; (b) non-in-hospi-
tal death and AI predicted non-in-hospital death; (c) in-hospital death but AI predicted non-in-hos-
pital death; (d) non-in-hospital death but AI predicted in-hospital death. 

Appendix C 

 
(a) 

Figure A2. Local explanation plots for individuals with various in-hospital mortality statuses and
GBM model predictions. (a) In-hospital death and AI predicted in-hospital death; (b) non-in-hospital
death and AI predicted non-in-hospital death; (c) in-hospital death but AI predicted non-in-hospital
death; (d) non-in-hospital death but AI predicted in-hospital death.

Appendix C

Diagnostics 2022, 12, x FOR PEER REVIEW 19 of 23 
 

 

 
(d) 

Figure A2. Local explanation plots for individuals with various in-hospital mortality statuses and 
GBM model predictions. (a) In-hospital death and AI predicted in-hospital death; (b) non-in-hospi-
tal death and AI predicted non-in-hospital death; (c) in-hospital death but AI predicted non-in-hos-
pital death; (d) non-in-hospital death but AI predicted in-hospital death. 

Appendix C 

 
(a) 

Figure A3. Cont.



Diagnostics 2022, 12, 1496 19 of 22
Diagnostics 2022, 12, x FOR PEER REVIEW 20 of 23 
 

 

 
(b) 

Figure A3. Summary SHapley Additive exPlanations (SHAP) plot. (a) Global feature importance in 
final random forest model output. (b) Relationship between features and in-hospital mortality in 
random forest model. Diversion on x-axis represents effect on model output, with colors used to 
represent low (yellow) to high (purple) value of predictors. 

Appendix D 

 
(a) 

Figure A3. Summary SHapley Additive exPlanations (SHAP) plot. (a) Global feature importance
in final random forest model output. (b) Relationship between features and in-hospital mortality in
random forest model. Diversion on x-axis represents effect on model output, with colors used to
represent low (yellow) to high (purple) value of predictors.

Appendix D

Diagnostics 2022, 12, x FOR PEER REVIEW 20 of 23 
 

 

 
(b) 

Figure A3. Summary SHapley Additive exPlanations (SHAP) plot. (a) Global feature importance in 
final random forest model output. (b) Relationship between features and in-hospital mortality in 
random forest model. Diversion on x-axis represents effect on model output, with colors used to 
represent low (yellow) to high (purple) value of predictors. 

Appendix D 

 
(a) 

Figure A4. Cont.



Diagnostics 2022, 12, 1496 20 of 22Diagnostics 2022, 12, x FOR PEER REVIEW 21 of 23 
 

 

 
(b) 

 
(c) 

 
(d) 

Figure A4. Local explanation plots for individuals with various in-hospital mortality statuses and 
random forest model predictions. (a) In-hospital death and AI predicted in-hospital death; (b) non-
in-hospital death and AI predicted non-in-hospital death; (c) in-hospital death but AI predicted non-
in-hospital death; (d) non-in-hospital death but AI predicted in-hospital death. 

  

Figure A4. Local explanation plots for individuals with various in-hospital mortality statuses
and random forest model predictions. (a) In-hospital death and AI predicted in-hospital death;
(b) non-in-hospital death and AI predicted non-in-hospital death; (c) in-hospital death but AI pre-
dicted non-in-hospital death; (d) non-in-hospital death but AI predicted in-hospital death.



Diagnostics 2022, 12, 1496 21 of 22

References
1. Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.;

Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med.
2015, 41, 1411–1423. [CrossRef] [PubMed]

2. Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerdá, J.; Chawla, L.S. Global
epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [CrossRef] [PubMed]

3. Griffin, B.R.; Liu, K.D.; Teixeira, J.P. Critical Care Nephrology: Core Curriculum 2020. Am. J. Kidney Dis. 2020, 75, 435–452.
[CrossRef] [PubMed]

4. Macedo, E.; Mehta, R.L. Continuous Dialysis Therapies: Core Curriculum 2016. Am. J. Kidney Dis. 2016, 68, 645–657. [CrossRef]
5. Karkar, A.; Ronco, C. Prescription of CRRT: A pathway to optimize therapy. Ann. Intensive Care 2020, 10, 32. [CrossRef]
6. Kee, Y.K.; Kim, D.; Kim, S.J.; Kang, D.H.; Choi, K.B.; Oh, H.J.; Ryu, D.R. Factors Associated with Early Mortality in Critically Ill

Patients Following the Initiation of Continuous Renal Replacement Therapy. J. Clin. Med. 2018, 7, 334. [CrossRef]
7. Kang, M.W.; Kim, J.; Kim, D.K.; Oh, K.H.; Joo, K.W.; Kim, Y.S.; Han, S.S. Machine learning algorithm to predict mortality in

patients undergoing continuous renal replacement therapy. Crit. Care 2020, 24, 42. [CrossRef]
8. Palevsky, P.M.; Zhang, J.H.; O’Connor, T.Z.; Chertow, G.M.; Crowley, S.T.; Choudhury, D.; Finkel, K.; Kellum, J.A.; Paganini, E.;

Schein, R.M.; et al. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 2008, 359, 7–20.
[CrossRef]

9. De Corte, W.; Dhondt, A.; Vanholder, R.; De Waele, J.; Decruyenaere, J.; Sergoyne, V.; Vanhalst, J.; Claus, S.; Hoste, E.A. Long-term
outcome in ICU patients with acute kidney injury treated with renal replacement therapy: A prospective cohort study. Crit. Care
2016, 20, 256. [CrossRef]

10. Singbartl, K.; Kellum, J.A. AKI in the ICU: Definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012, 81, 819–825.
[CrossRef]

11. da Hora Passos, R.; Ramos, J.G.; Mendonça, E.J.; Miranda, E.A.; Dutra, F.R.; Coelho, M.F.; Pedroza, A.C.; Correia, L.C.; Batista,
P.B.; Macedo, E.; et al. A clinical score to predict mortality in septic acute kidney injury patients requiring continuous renal
replacement therapy: The HELENICC score. BMC Anesthesiol. 2017, 17, 21. [CrossRef] [PubMed]

12. Kim, Y.; Park, N.; Kim, J.; Kim, D.K.; Chin, H.J.; Na, K.Y.; Joo, K.W.; Kim, Y.S.; Kim, S.; Han, S.S. Development of a new mortality
scoring system for acute kidney injury with continuous renal replacement therapy. Nephrology 2019, 24, 1233–1240. [CrossRef]
[PubMed]

13. Pattharanitima, P.; Vaid, A.; Jaladanki, S.K.; Paranjpe, I.; O’Hagan, R.; Chauhan, K.; Van Vleck, T.T.; Duffy, A.; Chaudhary, K.;
Glicksberg, B.S.; et al. Comparison of Approaches for Prediction of Renal Replacement Therapy-Free Survival in Patients with
Acute Kidney Injury. Blood Purif. 2021, 50, 621–627. [CrossRef] [PubMed]

14. Kundu, S. AI in medicine must be explainable. Nat. Med. 2021, 27, 1328. [CrossRef]
15. Jiang, Z.; Bo, L.; Xu, Z.; Song, Y.; Wang, J.; Wen, P.; Wan, X.; Yang, T.; Deng, X.; Bian, J. An explainable machine learning algorithm

for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission. Comput. Methods Programs Biomed. 2021,
204, 106040. [CrossRef]

16. Ogundimu, E.O.; Altman, D.G.; Collins, G.S. Adequate sample size for developing prediction models is not simply related to
events per variable. J. Clin. Epidemiol. 2016, 76, 175–182. [CrossRef]

17. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

18. Lee, H.J.; Son, Y.J. Factors Associated with In-Hospital Mortality after Continuous Renal Replacement Therapy for Critically Ill
Patients: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8781. [CrossRef]

19. Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med.
1985, 13, 818–829. [CrossRef]

20. Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA
(Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on
Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [CrossRef]

21. Yen, C.L.; Fan, P.C.; Kuo, G.; Lee, C.C.; Chen, J.J.; Lee, T.H.; Tu, Y.R.; Hsu, H.H.; Tian, Y.C.; Chang, C.H. Prognostic Performance of
Existing Scoring Systems among Critically Ill Patients Requiring Continuous Renal Replacement Therapy: An Observational
Study. J. Clin. Med. 2021, 10, 4592. [CrossRef]

22. Kang, M.W.; Kim, S.; Kim, Y.C.; Kim, D.K.; Oh, K.H.; Joo, K.W.; Kim, Y.S.; Han, S.S. Machine learning model to predict hypotension
after starting continuous renal replacement therapy. Sci. Rep. 2021, 11, 17169. [CrossRef] [PubMed]

23. Pattharanitima, P.; Thongprayoon, C.; Kaewput, W.; Qureshi, F.; Qureshi, F.; Petnak, T.; Srivali, N.; Gembillo, G.; O’Corragain,
O.A.; Chesdachai, S.; et al. Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis.
J. Clin. Med. 2021, 10, 5021. [CrossRef] [PubMed]

24. Kim, J.H.; Kwon, Y.S.; Baek, M.S. Machine Learning Models to Predict 30-Day Mortality in Mechanically Ventilated Patients. J.
Clin. Med. 2021, 10, 2172. [CrossRef] [PubMed]

25. Ponce, D.; de Andrade, L.G.M.; Claure-Del Granado, R.; Ferreiro-Fuentes, A.; Lombardi, R. Development of a prediction score for
in-hospital mortality in COVID-19 patients with acute kidney injury: A machine learning approach. Sci. Rep. 2021, 11, 24439.
[CrossRef]

http://doi.org/10.1007/s00134-015-3934-7
http://www.ncbi.nlm.nih.gov/pubmed/26162677
http://doi.org/10.1038/s41581-018-0052-0
http://www.ncbi.nlm.nih.gov/pubmed/30135570
http://doi.org/10.1053/j.ajkd.2019.10.010
http://www.ncbi.nlm.nih.gov/pubmed/31982214
http://doi.org/10.1053/j.ajkd.2016.03.427
http://doi.org/10.1186/s13613-020-0648-y
http://doi.org/10.3390/jcm7100334
http://doi.org/10.1186/s13054-020-2752-7
http://doi.org/10.1056/NEJMoa0802639
http://doi.org/10.1186/s13054-016-1409-z
http://doi.org/10.1038/ki.2011.339
http://doi.org/10.1186/s12871-017-0312-8
http://www.ncbi.nlm.nih.gov/pubmed/28173756
http://doi.org/10.1111/nep.13661
http://www.ncbi.nlm.nih.gov/pubmed/31487094
http://doi.org/10.1159/000513700
http://www.ncbi.nlm.nih.gov/pubmed/33631752
http://doi.org/10.1038/s41591-021-01461-z
http://doi.org/10.1016/j.cmpb.2021.106040
http://doi.org/10.1016/j.jclinepi.2016.02.031
http://doi.org/10.3390/ijerph17238781
http://doi.org/10.1097/00003246-198510000-00009
http://doi.org/10.1007/BF01709751
http://doi.org/10.3390/jcm10194592
http://doi.org/10.1038/s41598-021-96727-4
http://www.ncbi.nlm.nih.gov/pubmed/34433892
http://doi.org/10.3390/jcm10215021
http://www.ncbi.nlm.nih.gov/pubmed/34768540
http://doi.org/10.3390/jcm10102172
http://www.ncbi.nlm.nih.gov/pubmed/34069799
http://doi.org/10.1038/s41598-021-03894-5


Diagnostics 2022, 12, 1496 22 of 22

26. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777.

27. Kor, C.T.; Li, Y.R.; Lin, P.R.; Lin, S.H.; Wang, B.Y.; Lin, C.H. Explainable Machine Learning Model for Predicting First-Time Acute
Exacerbation in Patients with Chronic Obstructive Pulmonary Disease. J. Pers. Med. 2022, 12, 228. [CrossRef]

28. Oh, T.R.; Song, S.H.; Choi, H.S.; Suh, S.H.; Kim, C.S.; Jung, J.Y.; Choi, K.H.; Oh, K.H.; Ma, S.K.; Bae, E.H.; et al. Predictive Model
for High Coronary Artery Calcium Score in Young Patients with Non-Dialysis Chronic Kidney Disease. J. Pers. Med. 2021,
11, 1372. [CrossRef]

29. Lu, C.; Song, J.; Li, H.; Yu, W.; Hao, Y.; Xu, K.; Xu, P. Predicting Venous Thrombosis in Osteoarthritis Using a Machine Learning
Algorithm: A Population-Based Cohort Study. J. Pers. Med. 2022, 12, 114. [CrossRef]

30. Viton, F.; Elbattah, M.; Guérin, J.L.; Dequen, G. Heatmaps for Visual Explainability of CNN-Based Predictions for Multivariate
Time Series with Application to Healthcare. In Proceedings of the 2020 IEEE International Conference on Healthcare Informatics
(ICHI), Oldenburg, Germany, 30 November–3 December 2020; pp. 1–8.

31. Stenwig, E.; Salvi, G.; Rossi, P.S.; Skjærvold, N.K. Comparative analysis of explainable machine learning prediction models for
hospital mortality. BMC Med. Res. Methodol. 2022, 22, 53. [CrossRef]

32. Mao, I.-C.; Lin, P.-R.; Wu, S.-H.; Hsu, H.-H.; Hung, P.-S.; Kor, C.-T. First 24-Hour Potassium Concentration and Variability
and Association with Mortality in Patients Requiring Continuous Renal Replacement Therapy in Intensive Care Units: A
Hospital-Based Retrospective Cohort Study. J. Clin. Med. 2022, 11, 3383. [CrossRef]

33. Sheng, S.; Zhang, Y.H.; Ma, H.K.; Huang, Y. Albumin levels predict mortality in sepsis patients with acute kidney injury
undergoing continuous renal replacement therapy: A secondary analysis based on a retrospective cohort study. BMC Nephrol.
2022, 23, 52. [CrossRef]

34. Schork, A.; Moll, K.; Haap, M.; Riessen, R.; Wagner, R. Course of lactate, pH and base excess for prediction of mortality in medical
intensive care patients. PLoS ONE 2021, 16, e0261564. [CrossRef] [PubMed]

35. Hu, C.; Hu, B.; Wang, J.; Peng, Z.; Kashani, K.B.; Li, J. Diabetes mellitus is associated with lower mortality in intensive care unit:
A multicenter historical cohort study. Res. Sq. 2020. [CrossRef]

36. Rajawat, M.S.; Rathore, S.; Choudhary, M. pH disorders and mortality in surgical intensive care unit patients. Int. Surg. J. 2016,
3, 905–907. [CrossRef]

http://doi.org/10.3390/jpm12020228
http://doi.org/10.3390/jpm11121372
http://doi.org/10.3390/jpm12010114
http://doi.org/10.1186/s12874-022-01540-w
http://doi.org/10.3390/jcm11123383
http://doi.org/10.1186/s12882-021-02629-y
http://doi.org/10.1371/journal.pone.0261564
http://www.ncbi.nlm.nih.gov/pubmed/34929006
http://doi.org/10.21203/rs.3.rs-108275/v1
http://doi.org/10.18203/2349-2902.isj20161165

	Introduction 
	Materials and Methods 
	Study Participants 
	Outcomes 
	Feature Engineering 
	Statistical Analysis and ML Algorithm 

	Results 
	Study Population Characteristics 
	Model Prediction of In-Hospital Death after CRRT Initiation 
	Model Explanations 

	Discussion 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

