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A B S T R A C T

Interactions holding protein structure in cheese has been a subject of considerable investigation, with conclusions
varying among studies. We present a review on this topic, covering fresh curds, ripened cheeses, and processed
cheeses. We discuss the usual chemicals and conditions used to probe different types of interactions. Furthermore,
we did our own study with solutions of urea, SDS, EDTA, NaCl, and NaOH, at different concentrations and
combinations, for Emmental cheese. To quantify solubilized protein, we developed a modification of a
spectrometric-based method that can be conveniently employed to quantify total protein in cheese, with statis-
tically similar results to those obtained by the Kjeldahl method.

Our results point out that caseins in the Emmental cheese are held together by a set of hydrophobic in-
teractions, hydrogen bonds, and other electrostatic ones, including ionic bonds. Hydrogen bonds seem to have an
important role, comparable to hydrophobic interactions, a conclusion not commonly reported for cheese
structures.
1. Introduction

1.1. Probes for studying interactions in gel systems

Urea, sodium dodecyl sulphate (SDS), and ethylenediaminetetra-
acetic acid (EDTA) solutions are among the most commonly used protein
denaturants. Urea, which is usually used at concentrations up to 9 M,
disrupts both intra- and intermolecular hydrogen bonds and weakens
hydrophobic interactions, leading to protein denaturation and solubili-
zation (von Hagen, 2008). A few studies (Medronho and Lindman,
2014a, 2014b; Schmid et al., 2015) have also used substituted ureas, such
as thiourea, concluding that some of them could be more efficient in
breaking hydrophobic interactions. However, in the same studies, urea
was shown to be more efficient than the substituted compounds in
breaking hydrogen bonds, demonstrating that its overall solubilization
power was greater (Rabilloud, 2002).

Several studies conducted in different protein gel matrices, such as
surimi gels (Shiku et al., 2004; Zhang et al., 2018), lamb myofibrillar
protein gels (Ni et al., 2014), sardine with added proteins (egg white, soy,
casein and gluten) gels (G�omez-Guill�en et al., 1997), alkali-induced
ovalbumin gels (Zhao et al., 2016), and egg yolk gels (Yang et al.,
Vilela), amgomes@porto.ucp.pt (
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2019), stated that urea, at a concentration of 1.5 M, disrupts hydrogen
bonds; at a concentration of 8 M, urea also disrupts hydrophobic in-
teractions. For example, the study conducted with a sardine gel with
added sodium caseinate, concluded that, for those gels prepared at
50–60 �C, the solubilities in 1.5 M urea were low, suggesting a small
participation of hydrogen bonds in gel formation; but high values of
solubility were obtained in 8 M urea, taken as a measure of hydrophobic
interactions (G�omez-Guill�en et al., 1997).

It is worth mentioning that, in spite of the vast research on the sub-
ject, there are still different views about how urea acts as a protein
unfolding agent. Some authors propose that it interacts directly with
protein side chains to start the unfolding process via hydrophobic in-
teractions (direct interactions between urea and the protein) (Steinke
et al., 2017). Others propose that urea acts indirectly, by changing the
bulk water-water interactions, leading to a decrease in protein hydration,
which destabilizes the protein, causing it to unfold and expose the hy-
drophobic parts (Steinke et al., 2017). A combined mechanism between
these two theories is also proposed by some authors (Steinke et al., 2017;
Stumpe and Grubmu, 2007).

SDS is a surfactant detergent that gives a negative charge to all pro-
teins (Hamada et al., 2009), and acts as a denaturant by preventing
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interactions among hydrophobic domains, within and among proteins
(von Hagen, 2008). This surfactant molecule is supposed to interact with
both charged and nonpolar groups of the side chains of proteins
(Lefebvre-Cases et al., 1998).

Ionic bonds are traditionally disrupted by increasing the ionic
strength of the media, e.g., with addition of NaCl (G�omez-Guill�en et al.,
1997; Ni et al., 2014; Strange et al., 1994; Zhang et al., 2018). EDTA is a
chelation agent with high affinity for calcium ions. Hence, the addition of
this substance to e.g. casein containing samples, such as cheese, is ex-
pected to contribute for the destruction of the micelles by the disruption
of micellar calcium phosphate nanoclusters (Gaucheron, 2005).

The above agents are used individually or combined, in order to
evaluate their cumulative effect in, presumably, different types of
interactions.

1.2. Chemical interactions in milk gels

In cheese making, milk fat and caseins are concentrated, leading to a
complex and heterogeneous system (Gagnaire et al., 2002). Cheese can
be described as a bi-continuous gel structure consisting of a porous
protein matrix (casein) interspaced with localized domains of fat (Vogt
et al., 2015). The way this matrix is formed is a key variable, since it plays
a role in the final microstructure of cheese and, consequently, its texture,
flavour, and overall quality (Gagnaire et al., 2002; El-Bakry and Sheehan,
2014).

Emmental cheese, the one used in this work, is a Swiss-type, semi-
hard cheese. In these cheeses, the matrix acidification occurs after
pressing of the curd, i.e., when most of the whey has already been
expelled. Hence, the concentration of colloidal calcium increases
proportionally with the concentration of casein at drainage, leading to
the formation of a highly mineralized, cohesive para-κ-casein matrix,
with a calcium-casein ratio close to that of the casein micelles in milk
(Gagnaire et al., 2002). Previous studies suggest that, within the casein
micelles, several interactions take place among the individual casein
chains, such as: (1) weak hydrophobic interactions; (2) salt bridges;
and (3) calcium binding to caseins that result in the formation of
colloidal calcium phosphate (CCP) (Hinrichs and Keim, 2007; Lucey
and Horne, 2018; Stankey et al., 2011). In gel-like systems based on
casein, such as cheese, literature proposes that self-association of
casein micelles is also driven by different interactions, such as hy-
drophobic interactions and electrostatic ones (Horne, 1998). Howev-
er, as far as Emmental cheese is concerned, and to the best of our
knowledge, there are no studies on the relationship between such
possible interactions and the cheese structure.

A study that looked at different types of fermented milk structures,
determined that, for fresh rennet casein gels, specifically Gouda curd
grains and Mozzarella cheese, calcium bonds were the dominant inter-
action in stabilization of the protein structure; for ripened cheeses, such
as Camembert or Gouda, hydrogen and other electrostatic bonds were the
main interactions (Hinrichs and Keim, 2007). Another study on
rennet-induced gels concluded that hydrophobic interactions and cal-
cium bonds were the main forces acting, whereas, for acid-induced gels,
hydrophobic, hydrogen bonds, and electrostatic interactions were ho-
mogeneously distributed (Liu et al., 2014).

The studies conducted by Lefebvre-Cases et al. (1998) identified
interactions among casein gels using urea, SDS, and EDTA. It was
determined that hydrophobic interactions and calcium bonds were the
main ones in rennet milk gels; while hydrophobic, electrostatic, and
hydrogen bonds were the major ones in acid milk gels. The roles of
these interactions were reiterated in the study by Zamora et al. (2012),
where calcium and hydrogen bonds, as well as hydrophobic in-
teractions, were found to be involved in the protein matrix of drained
rennet curds.

In a study by Gagnaire et al. (2002), 2 M urea and 100mMEDTAwere
used to disrupt the molecular interactions in fresh Emmental pressed
curd. It was determined that the disruption of hydrogen bonds, and
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possibly some hydrophobic interactions, did not completely disintegrate
the paracasein matrix, being the calcium-crosslinking interactions of
utmost importance. Based on their findings, the authors hypothesized a
joint interaction of those different forces in the maintenance of the curd
matrix.

Regarding processed cheese, some authors suggest that hydrophobic
interactions play a crucial role in the protein structure (Lucey and Horne,
2018), with some studies indicating that they are the main interaction in
this type of cheese (Fu and Nakamura, 2017). However, other studies
suggest that different types of interactions must act in cooperation with
each other. Namely, hydrophobic, hydrogen bonding and other electro-
static interactions, and disulphide bonds, are all appointed as responsible
for stabilizing the protein network in processed cheese (Lucey and Horne,
2018; Marchesseau et al., 1997; Schmid et al., 2015).

Studies on whey protein gel matrices also concluded that different
chemical interactions acted together in order to provide structure. For
instance, in heat-induced gels of whey protein isolate, the hydrophobic
interactions and the intermolecular disulphide bonds were found both
responsible for the firmer gel structure with increasing protein con-
centration (Shimada and Cheftel, 1988). Disulphide bonds were also
stated to be important in the early stages of aggregation of whey
protein mixtures that formed hydrogels; yet, these hydrogels were
found to be mostly stabilized by noncovalent interactions (Mercad�e--
Prieto et al., 2018).

From the above overview, we conclude that different works point to
different interactions as the main ones in maintenance of cheese structure
(at the curds stage, cured, or processed type). Our experimental work
aimed to clarify the contribution that each type of interaction has in
ripened Emmental cheese. For that purpose, we used the dissociating
agents referred above, evaluating their ability to solubilize protein
(Shukla and Trout, 2010), under a careful experimental protocol. The
knowledge of the interactions governing cheese structure is relevant
technologically, as it can guide conditions during cheese and
cheese-containing products manufacture, in particular processed cheeses
and cheese sauces.

1.3. Protein quantification methods

Although several other methods can be used to quantify the protein
content in milk and other dairy products, the Kjeldahl method is still the
standard one. However, it is very time-consuming, expensive to run, and
has some safety issues (Liu and Pan, 2017). Furthermore, this method
cannot be used on samples containing urea (since it measures the nitro-
gen content of the sample). Colorimetric methods commonly used for
protein quantification are not as accurate, due to the various in-
terferences associated therewith, including SDS or high concentrations of
urea (Redmile-Gordon et al., 2013). Another possible option is through
UV absorbance, which is a direct method using a simple calibration curve
(Olson and Markwell, 2007; Zheng et al., 2017). However, it can be
applied only in quite pure protein solutions.

The alkalinisation of milk systems, e.g. by the addition of NaOH, re-
sults in changes in the physical properties of the casein micelles, namely
destabilization and ultimately their disruption (Lam et al., 2018; Liu and
Guo, 2008). Studies show that NaOH can disrupt various chemical bonds
in milk systems, including disulphide bonds (Florence, 1980; Reichardt
and Eckert, 1991). This leads to protein solubilization: Post et al. (2012)
showed that micellar casein, sodium caseinate, or calcium caseinate so-
lutions at pH 10–11 leads to complete solubilization of both αs-casein and
β–casein. Sinaga et al. (2017), and the previous works therein referred,
demonstrate that milk turbidity disappears at pH above 8.5, due to casein
micelles dissociation. Here, in order to quantify the protein in cheese, a
modification of the method reported by Reichardt and Eckert (1991) was
used. Cheese samples were dispersed in 0.1 M NaOH, which leads to
protein solubilization, and, afterwards, the soluble protein was evaluated
by UV absorbance. The protein present in the different dissociatingmedia
was quantified also by the same method.
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2. Materials and methods

2.1. Materials

The dissociating agents used were urea (molecular biology grade,
Sigma-Aldrich, USA), SDS (ultrapure, ITW, USA), EDTA (Fluka, USA),
NaOH (Eka, Sweden) and NaCl (Fluka, USA). The cheese was commercial
grated Emmental (Milbona, Germany). Casein was from bovine milk
(Sigma-Aldrich).
Table 2
Dissociating media and values of respective solubilized cheese protein (n ¼ 3).

Dispersing medium Solubilized Protein
(g protein/g cheese)

Solubilized Protein
(% total protein)

Deionized Water 0.0319 � 0.006a 9.97 � 1.90a

NaCl 50 mM 0.0439 � 0.003a 13.70 � 0.95a
2.2. Experimental methods

2.2.1. Determination of total protein in cheese
The total protein in the Emmental cheese was determined by the

Kjeldahl method (AOAC, 1990) and by a modification of the method by
Reichardt and Eckert (1991). In this, approximately 1.3 g of cheese was
dispersed in 30 mL 0.1 M NaOH, and the mixture was warmed up to
70 �C, under gentle magnetic stirring, for about 10 min, and without a
holding period at that temperature. After cooling down, the samples were
centrifuged at 5000 rpm (4410�g), 4 �C, for 30 min. After centrifugation,
the lipid layer was removed, and the middle clear solution was separated
from the pellet, which was discarded. Then, the absorbance of the solu-
tion at 280 nmwas determined, as detailed below. The absorbance values
were converted to protein concentration using a calibration curve of
casein in 0.1 M NaOH. Three replicates were made.

2.2.2. Determination of solubilized protein by different dissociation media
Aliquots of 35 mL of 0.17 M NaCl solution were drawn into 100 mL

glass beakers and then different dissociating agents were dissolved in the
saline. Additionally, solutions of NaCl at 50 mM and 0.6 M were also
prepared. The dissociating agents used and respective concentrations are
listed in Table 1.

1.33 � 0.5 g of cheese was added to each beaker, and each solution
was slowly heated to 70 �C (in about 10 min), with constant magnetic
stirring. This step of heating the cheese suspension, although not com-
mon in similar works, was included in order to mimetize the conditions
found in the preparation of several cheese-containing foods, such as
sauces or processed cheeses, among others. However, in order to study
the contribution of heating on solubilization of the cheese proteins, the
test with 6 M urea was also carried out at room temperature.

The cheese suspensions were allowed to cool down and the disper-
sions were centrifuged in 50 mL tubes for 30 min, at 5000 rpm (4410�g),
and at 4 �C. That supernatant was left at room temperature overnight, in
order to account for any possible alterations that might still occur.

The protein concentration of this solution was then evaluated by UV
absorbance at 280 nm. For this measurement, 920 μL of 0.1 M NaOH was
mixed with 80 μL of the sample solution in a 1 mL quartz cuvette. The
corresponding blank was made with the same dissociating solution, and
with the same dilution in 0.1 M NaOH.

Preliminary tests of UV spectra of the blanks were carried out, in
order to check if the dissociating agents would interfere with the method.
There were no significant interferences for any of the agents, at the
concentrations employed, and at the wavelength of 280 nm.
Table 1
Dissociating agents and their concentrations used in the study.

Dissociating Agent Concentrations

NaCl 0.05 M and 0.6 M
Urea 1.5 M and 6 M
SDS 2.5%
EDTA 4 mM and 50 mM
Urea þ SDS 6 M þ 2.5%
Urea þ EDTA 6 M þ 4 mM
Urea þ SDS þ EDTA 6 M þ 2.5% þ 4 mM
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The amount of solubilized protein was evaluated based on the cali-
bration curve of casein, and the result compared with the total protein in
cheese.

Each experiment was repeated three times.

2.2.3. Statistical analysis
A t-student test was applied to the results of total protein in cheese

evaluated by Kjeldahl method and by the dissolution in 0.1 M NaOH, as
reported here. An ANOVA one-way was used for the statistical analysis of
the effect of the different dissociating agents.

3. Results and discussion

3.1. Determination of total protein concentration in Emmental cheese

Total protein in the Emmental cheese was determined by two
methods: the reference Kjeldahl and by dissolution in 0.1 M NaOH
followed by UV measurement. This is a modification of the method by
Reichardt and Eckert (1991), that used the biuret method for quanti-
fying solubilized protein. Colorimetric methods for protein determi-
nation, and in particular the biuret method, are much less sensitive
than UV absorbance (Chutipongtanate et al., 2012; Olson and Mark-
well, 2007). Furthermore, it is common with colorimetric methods to
use calibrations made with BSA, while we used the analyte in question,
casein, for that purpose. It should be recalled that colorimetric
methods can give considerable deviations in results with different
proteins (Olson and Markwell, 2007). The calibration curve for the
latter method can be found in Figure A1. The mean value of protein
content of the cheese by the two methods was 0.297 � 0.030 and
0.315 � 0.010 g protein/g of cheese, respectively, indicating no sta-
tistically significant difference (p > 0.05). This shows that the NaO-
H/UV method can be conveniently applied, enabling a quite precise
determination of protein in cheese. Based on these observations, we
believe that this method is likely to be applicable to several other dairy
matrices, justifying a separate work to perform a full validation of the
method.
3.2. Determination of solubilized protein by dissociating agents

The solubilized protein by each dissociating medium was evaluated
by the NaOH/UVmethod, and the results compared to the total protein in
cheese. The values are reported in Table 2.

The statistical analysis of these results used an ANOVA one-way test,
with the application of the Tuckey test for pairwise comparisons between
particular samples.
NaCl 0.6 M 0.0746 � 0.011a 23.33 � 3.52a

Urea 1.5 M 0.167 � 0.018b 52.10 � 5.47b

Urea 6 M 0.269 � 0.025c 85.30 � 6.13c

Urea 6 M (no heating) 0.261 � 0.016c 82.57 � 2.66c

EDTA 4 mM 0.0905 � 0.0079a 28.67 � 2.02a

EDTA 50 mM 0.0730 � 0.0063a 22.83 � 1.96a

SDS 2.5% 0.213 � 0.007b 67.37 � 1.40b

Urea 1.5 M þ SDS 2.5% 0.282 � 0.012c 88.20 � 3.60c

Urea 6 M þ SDS 2.5% 0.270 � 0.016c 85.40 � 2.40c

Urea 6 M þ EDTA 4 mM 0.275 � 0.008c 87.27 � 3.56c

Urea 6 M þ SDS 2.5% þ EDTA 4 mM 0.279 � 0.022c 92.13 � 10.61c

Samples with the same superscript letter do not present statistically significant
differences among them, according to the Tuckey test.
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From the results, we can conclude that ionic interactions might
play some role in this cheese matrix, since 0.6 M NaCl can dissolve up
to 23% of cheese proteins. In contrast, deionized water and 50 mM
NaCl, which have low ionic strength, dissolve up to 13% protein,
which can represent “free” protein in cheese, particularly non-drained
whey proteins. Despite these slight variations, the results obtained
with deionized water and with NaCl (50 mM and 0.6 M) were statis-
tically similar (p > 0.05).

Urea at 6 M, with or without heating to 70 �C, solubilized a great part
(up to 85%) of the cheese proteins. This result is in line with a previous
study that reports that the proteins and large polypeptides in cheese are
completely soluble in 4–6 M urea (McSweeney and Fox, 1997). However,
1.5 M urea dissolves considerably less protein. As stated previously, some
published analyses on protein gels and films (G�omez-Guill�en et al., 1997;
Zhang et al., 2018) used that concentration as a means to probe hydrogen
bond interactions, and urea 8 M to measure, additionally, hydrophobic
interactions. Our results can be interpreted under the same principles,
albeit a clear dependence of urea concentration on each type of bond can
still be questioned.

Hydrophobic interactions are known to strengthen with temperature
(Alessi et al., 2007). However, some authors (G�omez-Guill�en et al., 1997)
point out that temperatures beyond 58 �C can, instead, weaken hydro-
phobic interactions, by destabilizing the hydrogen bonds among water
molecules, which would facilitate hydrophobic hydration and make it
easier for protein denaturation. Furthermore, temperature increases
molecular motions, facilitating separation of aggregated proteins, such as
in cheese. Notably, in our experiments with Emmental cheese, there was
no statistically significant difference (p > 0.05) between the amount of
solubilized protein by 6 M urea heated to 70 �C (85%) and at room
temperature (82%) (Table 2).

EDTA, as a chelating agent, at both 4 mM and 50 mM, only solu-
bilized up to 28% of the cheese proteins, a value similar to the one
obtained with 0.6 M NaCl solution. This suggests that, in this matrix,
the calcium bonds do not require a specific chelating agent for their
disruption (Lefebvre-Cases et al., 1998). Furthermore, there was no
statistically significant difference between 4 mM and 50 mM EDTA
(p > 0.05).

SDS, as opposed to EDTA, solubilized up to 67% of the cheese pro-
teins, which shows that hydrophobic interactions must play an important
role in this matrix (Lefebvre-Cases et al., 1998). This is not unexpected
given the significant number of nonpolar regions found along the caseins
polypeptide chains. Solutions with combinations of urea (6 M or 1.5 M)
with SDS, or with EDTA, dissolved practically the same amount of protein
as 6 M urea alone (up to 88%). In fact, there were no statistically sig-
nificant differences observed between the results of any pair of the so-
lutions 6 M urea, 6 M urea þ SDS, 1.5 M urea þ SDS, 6 M urea þ EDTA,
and 6 M urea þ SDS þ EDTA (p > 0.05). The fact that 6 M urea was
similar to 1.5 M urea with SDS, supports the view that, at high concen-
trations, urea disrupts hydrophobic interactions.

The effect of temperature of the dispersion media was also carried out
with 1% and 2.5% SDS, and with 4 mM EDTA solutions. Unlike urea,
EDTA solutions only solubilized a significant amount of the cheese pro-
teins when heated to 70 �C (up to 28%); at room temperature, no sig-
nificant amounts (ca. 6%) were solubilized. With 2.5% SDS solution at
room temperature, some cheese proteins were solubilized, however, after
the centrifugation, a phase separation occurred, and the turbidity of the
solution turned quantification inviable. At 1% SDS concentration, no
phase separation was noticeable, but the solution remained quite opaque
for UVmeasurement. These problems were not observed when heating to
70 �C was included. Therefore, apart from the case of urea, heating was
needed in order to attain significant levels of protein solubilization. An
interpretation of such observation is that the thermal agitation of the
molecular chains in the protein aggregates in cheese complements the
action of the dissociating agents.
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We also monitored the pH of the separated supernatants of the disper-
sion media. All values ranged between 5.5 for 0.6 M NaCl and 6.64 for 6 M
urea þ2.5% SDS solution; when dispersing cheese in 0.1 M NaOH, the
corresponding pHwas 8.6. Except in this last case, the pH should not have a
significant impact on the extent of protein solubilization, as backed by
previous works (Lam et al., 2018; Marchesseau et al., 1997).

We note that the literature uses the mentioned dissociating solutions
as “sensors” of specific interactions, but clearly several of these solutions
might disrupt more than one type of interaction, with no absolute spec-
ificity. Therefore, the amounts of solubilized protein should be inter-
preted as indicators of the influence of the different types of interactions
in a structure.

4. Conclusions

Even though a consensus has not yet been reached regarding the main
molecular interactions acting in the casein matrix of cheese, this work
was able to provide some insights, for the case of ripened Emmental
cheese.

We suggest that the caseins in this matrix are maintained by a set
of hydrophobic interactions, hydrogen bonds, and other electrostatic
interactions, including ionic bonds. The results obtained with urea
suggest that hydrogen bonds have an important role, comparable to
hydrophobic interactions, a conclusion not commonly reported for
cheese structures. Rather surprisingly, and different from what is
often stated, calcium bonding seems not to have a relevant role in this
case.

Solutions without urea required heating for solubilization of proteins
to some extent, a fact interpreted as thermal agitation helping separation
of the protein chains in aggregates.

It will be interesting to extend the methodology here reported to
different cheeses, including hard and soft ones, and cheeses with
different maturation times. This will enable to see the influences of these
factors on cheese interactions. We can speculate that a softer cheese, due
to higher water content, will lead to higher protein solubilization, as
there are fewer molecular interactions among casein strands. Also, a
longer ripening period is expected to lead to higher protein solubiliza-
tion, as cheese strands are progressively hydrolysed by the action of
proteases originally in milk and, mainly, from the starters (Coker et al.,
2005). A study with different cheeses under the same experimental
conditions is justified.

Finally, in terms of protein quantification, we point out that 0.1 M
NaOH solubilizes the totality of cheese proteins and this fact can be
explored for their quantification, as previously reported (Reichardt
and Eckert, 1991). However, we introduced analytical improvements
in the method that enabled results quite close to the standard Kjeldahl
one.
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Appendices.

Appendix A: calibration curve of casein dissolved in 0.1 M NaOH

The calibration curve of casein in 0.1 M NaOH has shown to be linear up to 1.4 mg/mL concentration, with a value of R2 of 0.9903, as shown in
Figure A1.

Figure A.1. Calibration curve of casein dissolved in 0.1 M NaOH.
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