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Background: This study aimed to investigate the tumor-related infiltrating lymphocytes
(TILs) affecting the response of trastuzumab and identify potential biomarkers based on
immune-related genes to improve prognosis and clinical outcomes of targeted therapies
in breast cancer.

Methods: Estimation of stromal and immune cells in malignant tumors using expression
data (ESTIMATE) was adopted to infer the fraction of stromal and immune cells through
utilizing gene expression signatures in breast tumor samples. Cell-type identification by
estimating relative subsets of RNA transcript (CIBERSORT) algorithm was applied to
characterize cell composition of 22 lymphocytes from breast cancer tissues using their
gene expression profiles. Immune-related genes were collected from the Immunology
Database and Analysis (ImmPort). Univariate and multivariate Cox regression analyses
were performed to identify the significant independent risk factors associated with poor
overall survival (OS) and breast cancer-specific survival (BCSS) of breast cancer patients.
Hub genes were identified based on the protein–protein interaction (PPI) network analysis.

Results: Based on the ESTIMATE algorithm, a significant reduction of stromal scores was
observed in tumor tissues and pretreated tumor tissues compared with nontumor and
posttreated tumor tissues, respectively, while immune scores failed to present notably
statistical differences between both groups. However, from the results of the univariate
Cox regression analysis, the immune score was identified to be remarkably associated
with the poor OS for breast cancer patients. Subsequently, the infiltrating lymphocytes
were evaluated in tumor tissues based on the CIBERSORT algorithm. Furthermore,
significance analysis identified 1,244 differentially expressed genes (DEGs) from the
GSE114082 dataset, and then 91 overlapping immune-related DEGs were screened
between GSE114082 and ImmPort datasets. Subsequently, 10 top hub genes were
identified and five (IGF1, ADIPOQ, PPARG, LEP, and NR3C1) significantly correlated with
worse OS and BCSS on response to trastuzumab in breast cancer patients.

Conclusions: This study provided an insight into the immune score based on the tumor-
related infiltrating lymphocytes in breast cancer tissues and demonstrates the benefits of
immune infiltration on the treatment of trastuzumab. Meanwhile, the study established a
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novel five immune-related gene signature to predict the OS and BCSS of breast cancer
treated by trastuzumab.
Keywords: breast cancer, tumor microenvironment, immune infiltration, ESTIMATE algorithm, CIBERSORT algorithm
INTRODUCTION

The tumor microenvironment (TME) is composed of various cell
types (such as stromal cells, tumor cells, and immune cells) and
extracellular components (such as cytokines, growth factors,
hormones, etc.) that are involved in each progression stage of
oncogenesis (1). The TME does not only contribute to tumor
initiation, progression, and metastasis but also has a powerful
effect on therapeutic responses. Moreover, the multitude of
interactions between tumor cells and the TME help tumor cells
evade immunological surveillance and devote themselves to
environment-mediated drug resistance (1, 2). Tumor-
infiltrating lymphocytes (TILs) comprised an extensive part of
tumor-infiltrating immune cells and were considered to inhibit
tumor growth resulting in the improved clinical outcomes of
immuno- and chemotherapy in melanoma, colorectal cancer,
and ovarian cancer (3–5). Breast cancer was generally thought to
have a weak immunogenicity, but recent studies have
demonstrated high levels of TILs occurring in HER2+ and
basal-like subtypes which are associated with good prognosis
and with response to certain therapies (6, 7). Therefore, the
immune system contributes a promising option, with targeted
immunotherapeutic approaches to selectively regulate the body’s
immune system to eradicate tumors showing a potent promise in
clinical studies (8, 9).

The advent of targeted therapeutics has intensively changed
the administration landscape across a variety of malignancies,
including breast cancer. Immune checkpoint antagonists
targeting PD-1, PD-L1, and CTLA-4 have reformed cancer
therapy and demonstrated the power of treating the immune
system benefiting multiple cancer types (10, 11). Although
targeted therapeutics is regarded as a potent hope for various
cancers, a considerable number of patients failed to benefit from
the assignment or acquired drug resistance (12). Trastuzumab, a
monoclonal antibody targeted against HER2, has remarkably
improved clinical outcomes for HER2-positive breast cancer
patients (13). However, despite significant advances, only
partial metastatic patients responded to trastuzumab and
approximately 60% suffered resistance after initial response
(14). The comprehensive understanding of tumor-associated
stromal cells and immune cells in breast tumor tissues may
provide important insights into tumor biology and its
therapeutic response, and then explores the potential strategies
to achieve significant clinical benefits of targeted treatment by
regulating factors of the TME.

In the present study, the stromal scores and tumor-related
lymphocytes involved in the response of targeted molecular
therapy were characterized via the ESTIMATE algorithm and
Cibersort algorithm. Subsequently, the diagnostic value of hub
genes of immune-related genes associated with outcomes of
2

trastuzumab treatment was evaluated based on biological
function and signaling pathway enriched analysis of signaling
pathways in breast cancer. These findings could provide a novel
insight into the response of tumor-related lymphocytes and
immune-related genes to targeted molecular therapy and
trastuzumab treatment.
METHODS

Data Collection and Processing
The Cancer Genome Atlas-BReast invasive CArcinoma (TCGA-
BRCA) gene expression level 3 data were downloaded from
TCGA data portal (https://portal.gdc.cancer.gov/repository/),
and the clinical information of breast cancer samples was
collected from the UCSC Xena (https://xena.ucsc.edu/public).
Of them, 467 patients treated by targeted molecular therapy and
99 nontumor samples were screened from TCGA-BRCA
database. GSE114082 dataset was collected from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). GSE114082
dataset contains the gene expression profile from frozen core
biopsies of 17 breast cancer patients before and after brief-
exposure treatment with s ingle-agent neoadjuvant
trastuzumab. The platform was based on GPL14951 (Illumina
HumanHT-12 WG-DASL V4.0 R2 expression bead chip). The
GSE114082 dataset was evaluated by consistency check
(Supplementary Figure 1).

ESTIMATE Algorithm
Estimation of stromal and immune cells in malignant tumor tissues
using expression data (ESTIMATE) utilizes the advantage of the
unique properties of the cancer samples to infer tumor cellularity as
well as the infiltration of normal cells. By conducting single-sample
gene set-enrichment analysis (ssGSEA), stromal and immune
scores were calculated to predict the level of infiltrating stromal
and immune cells, and these form the fundamental ESTIMATE
algorithm (15). The matrix data of gene expression amounts were
normalized with the limma package of the R software, and then
stromal and immune scores were calculated by applying the
ESTIMATE algorithm.

CIBERSORT Estimation
To quantify the proportions of 22 TILs in breast cancer tissues,
we applied CIBERSORT to determine the abundance of cell types
in a mixed cell population using normalized data. CIBERSORT is
a method for characterizing the cell composition of complex
tissues based on gene expression profiles. According to an input
matrix of reference gene expression signatures, the CIBERSORT
collectively estimates the relative proportions of each immune-
cell type (16). The gene expression data were uploaded to the
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CIBERSORT web portal (https://cibersort.stanford.edu/), and
then the algorithm was conducted based on the LM22
signature and 1,000 permutations. The visualization of results
was performed using the R programming language.

Identification of DEGs
For GEO data, the R programming language (the limma
package) was utilized to screen differentially expressed genes
(DEGs) between the untreatment breast group and trastuzumab
treatment breast group. The screen criteria were an adjusted
p value of <0.05 and an absolute log2 fold change (log2FC)
of >1.5 or <−1.5.

Immune-Related Gene Extraction
Immune-related gene (IRGs) data were obtained from the
ImmPort database, and overlapping immune-related genes
were screened from the GSE114082 dataset for further analysis.

Functional and Pathway
Enrichment Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were conducted
usimg R programming language to analyze the potential
biological processes (BP), cellular components (CC), molecular
functions (MF), and pathway of the overlapping immune-related
DEGs. The R programming language was applied to visualize the
results of GO analysis and KEGG pathway enrichment analysis.
p < 0.05 was set as the threshold value.

PPI Network
The online tool, search tool for the retrieval of interacting genes
(STRING, https://string-db.org/), was performed to assess the
interactive relationships of the overlapping DEGs. The STRING
interactome was selected as the PPI database that is with medium
(400) to high (1,000) confidence score. The Cytoscape software
(version 3.8.2) was then used to construct and visualize the PPI
network of common immune-related DEGs. The plugin
cytoHubba was applied to screen the top 10 hub genes from
the PPI network.

ROC Curves and Survival Analysis
The ROC curve, a comprehensive index conducted to assess the
sensitivity and specificity of continuous variables, was applied to
evaluate the risk score and diagnostic capability of the top 10 hub
genes as biomarkers in distinguishing breast cancer from normal
controls, respectively. A p value of <0.05 was considered
statistically significant. The Kaplan–Meier plotter (KM plotter)
was performed using R programming language to predict the
prognostic value of the hub genes in breast cancer patients. The
patients were stratified into two groups according to the hug gene
expression levels (high vs. low expression) and then analyzed the
overall survival (OS), breast cancer-specific survival (BCSS), and
distant metastasis-free survival (DMFS) based on these
categories. The hazard ratios (HRs), 95% confidence intervals,
and log-rank p-values were shown.
Frontiers in Oncology | www.frontiersin.org 3
Statistical Analysis
All statistical analyses were performed using R software (version
4.0.5) and GraphPad Prism v6.00 (GraphPad Software Inc.,
USA). The t-test was used to assess paired samples or a
nonparametric Wilcoxon rank-sum test for unpaired samples
as appropriate. One-way ANOVA was employed for multiple
groups of normalized data. The univariate and multivariate Cox
regression analyses were conducted to assess the remarkable
prognostic factors. The time-dependent receiver operating
characteristic (ROC) curve was applied to evaluate the
predictive accuracy of the diagnostic signatures of hub genes.
The Kaplan–Meier curve log-rank test was applied to assess the
statistical significance of the survival rates between different risk
hub genes. p < 0.05 was considered statistically significant.
RESULTS

Estimation of Infiltrating Stromal and
Immune Cells
To explore the proportion of infiltrating cells in tumor tissues, we
utilized the ESTIMATE algorithm to assess two gene signatures:
a stromal signature that represents the presence of stroma in
tumor tissue and an immune signature that represents the
attendance of immune cells in tumor tissue. According to the
TCGA-BRCA datasets, stromal scores in normal tissues showed
higher levels compared with the tumor tissues (Figure 1A).
Compared with normal tissues, a higher immune score was
determined in tumor tissues, but there were no significant
statistical differences (Figure 1B). However, the administration
of targeted molecular therapy significantly decreased the stromal
score in comparison with normal samples, but there was no
statistical significance on the immune score between groups with
targeted therapy or not (Figures 1C, D). Furthermore, we
assessed the stromal scores and immune scores based on the
GSE114082 datasets, and a significant increase in stromal
signature scores was observed after treatment of trastuzumab,
but there were no significant statistical differences on the
immune scores in the pretreatment samples compared with the
posttreatment samples (Figures 1E, F).

Moreover, the Cox regression analysis was performed to
evaluate the independent indicators of OS in breast cancer. In
the univariate model, age, tumor–node–metastasis (TNM) stage,
and immune score were significantly related to OS in breast
cancer (Table 1). The following multivariate analysis identified
that age and TNM stage were the independent indicators of
unfavorable OS in breast cancer. However, the stromal score and
the immune score failed to attain a significant relation to OS in
multivariate Cox regression analysis (Table 1). In samples with
targeted molecular therapy, stromal score and immune score
showed unmet relation to OS in both univariate and multivariate
Cox regression analyses (Supplementary Table 1). Because of
the lack of key clinical data in the GEO datasets, we failed to
assess the independent risk indicators of OS in breast cancer
treated or not treated by trastuzumab. The results indicated that
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https://cibersort.stanford.edu/
https://string-db.org/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen and Fang Targeted Therapy and Immune Infiltration
the negative immune score as an independent risk factor was
consistently associated with unfavorable OS.

Estimation of Immune Cell-Type Fractions
To explore the proportion of TILs in breast cancer tissues, we
utilized the CIBERSORT algorithm to stratify each immune cell
subset from TCGA-BRCA datasets and GSE114082 datasets. The
results showed that in normal and tumor samples, the TILs with
significantly statistical differences included M2 macrophages, M0
macrophages, resting memory CD4 T cells, naïve B cells, and
resting mast cells between breast normal tissues and breast
cancer tissues (Figure 2A and Supplementary Figures 2A, B).
Additionally, the proportion of TILs with significantly statistical
differences in sample with targeted molecular therapy included
M0 macrophages, M2 macrophages, resting memory CD4 T
cells, naive B cells, and M1 macrophages (Figure 2B and
Supplementary Figure 2C).

Based on the GSE114082 datasets, we identified that the TILs
with significant differences were M2 macrophages, M0
macrophages, gamma delta T cells, plasma cells, resting
memory CD4 T cells, and resting mast cells in breast cancer
Frontiers in Oncology | www.frontiersin.org 4
tissues pre- or posttreated by trastuzumab. Of these cells, M2
macrophages, gamma delta T cells, resting mast cells, and M0
macrophages were significantly higher in the posttreated breast
cancer tissues than those of the pretreated cancer tissues
(Figure 2C and Supplementary Figures 2D, E). The results
suggested that tumor tissues own a specific proportion profile of
TILs and administration of trastuzumab for breast cancers can
rebuild the profile of TILs in the tumor microenvironment of
breast cancer.

Identification of DEGs and
Immune-Related Genes
In the GSE114082 dataset, 1,244 DEGs were identified based on an
adjusted p value of <0.05 and absolute log2FC of >1.5 or <−1.5. Of
these genes, 250 were upregulated and 994 were downregulated.
We utilized heatmap and volcano plots to visualize the top 91
common immune-related DEGs and 10 hub genes (Figures 3A, B).
The consistently upregulated and downregulated genes between
DEGs and immune-related genes were identified viaVenn analysis,
and a Venn diagram was used to depict the 91 common immune-
related DEGs (Figure 3C).
TABLE 1 | Cox proportional hazards regression model analysis of overall survival based on TCGA-BRCA database.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Age (≥65 vs. <65) 2.17 (1.56, 3.03) <0.001 2.43 (1.73, 3.41) <0.001
TNM stage (II vs. I) 1.71 (0.98, 3) 0.061 1.89 (1.08, 3.32) 0.026
TNM stage (III vs. I) 3.17 (1.76, 5.71) <0.001 3.63 (2.01, 6.55) <0.001
TNM stage (IV vs. I) 13.48 (6.57, 27.66) <0.001 14.62 (7.08, 30.18) <0.001
Stromal score (positive vs. negative) 1.08 (0.76, 1.53) 0.687 – –

Immune score (positive vs. negative) 0.63 (0.45, 0.87) 0.006 0.74 (0.52, 1.03) 0.077
March 2022 | Volume 12 | Article
Statistically significant p-values are given in bold, p < 0.05.
HR, hazards ratio; CI, confidence interval.
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FIGURE 1 | The assessment of stromal scores and immune scores using the ESTIMATE algorithm. (A, B) The stromal and immune scores between nontumor
tissues and breast tumor tissues based on the TCGA-BRCA dataset. (C, D) The stromal and immune scores of 99 normal samples and 467 tumor samples with the
treatment of targeted molecular therapy, based on TCGA-BRCA dataset. (E, F) The stromal scores and immune scores between breast tumor tissues whether
treated by trastuzumab or not, based on the GSE114082. The data were presented as the mean ± SD, normal vs. tumor, pretreatment vs. posttreatment.
**p < 0.01; ***p < 0.001.
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A

B

C

FIGURE 2 | The evaluation of tumor-related infiltrating lymphocytes using the CIBERSORT algorithm. (A) Significant statistical analysis of tumor-related infiltration
lymphocytes between normal samples and breast tumor samples. (B) Significant statistical analysis of tumor-related infiltration lymphocytes between normal tissues
and breast tumor samples with targeted molecular therapy. (C) Significant statistical analysis of tumor-related infiltration lymphocytes between breast tumor samples
before and after treated by trastuzumab. The data were presented as the mean ± SD, normal vs. tumor, pretreatment vs. posttreatment. *p < 0.05; **p < 0.01;
***p < 0.001.
Frontiers in Oncology | www.frontiersin.org March 2022 | Volume 12 | Article 8241665
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Function Enrichment Analysis
To take insights into the biological functions of the common
DEGs in trastuzumab treatment of breast cancer, a total of 91
common immune-related DEGs were utilized for GO
enrichment analysis and KEGG pathway enrichment analysis.
In the BP term, the results illustrated that the common DEGs
were mainly enriched in defense response to the bacterium,
humoral immune response, regulation of receptor signaling
pathway via Janus kinase-signal transducer of activation of
transcription (JAK-STAT), hormone-mediated signaling
pathway, and antimicrobial humoral immune response
Frontiers in Oncology | www.frontiersin.org 6
mediated by antimicrobial peptide (Figure 4A). In the cellular
component (CC) term, the common DEGs were mainly
associated with secretory granule lumen, cytoplasmic vesicle
lumen, platelet alpha granule lumen, vesicle lumen, and
collagen-containing extracellular matrix (Figure 4B). In the
molecular function (MF) term, the common DEGs were
mainly involved in the signaling receptor activator activity,
receptor-ligand activity, cytokine activity, hormone activity,
and cytokine receptor binding (Figure 4C).

Enrichment analysis for the 91 unique immune genes
identified 17 related KEGG pathways (p < 0.01). Meanwhile,
A

B

C

FIGURE 3 | Heatmap and volcano plot presenting the significant immune-related DEGs between patients pre- and posttreated by trastuzumab. (A) Heatmap shows
the differential expression of 91 DEGs in breast tumor tissues. (B) The volcano plot was illustrated the significant difference between genes and 10 hub genes.
(C) Venn plot was used to identify the common immune-related genes between GSE 114082 dataset and the ImmPort database.
March 2022 | Volume 12 | Article 824166
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the common immune-related DEGs were mainly involved in the
cytokine–cytokine receptor interaction, neuroactive ligand–
receptor interaction, JAK-STAT signaling pathway, PI3K-Akt
signaling pathway, and natural killer cell-mediated cytotoxicity
(Figures 4D, E) (Supplementary Table 2).

PPI Network and Identification
of Hub Genes
To further explore the interaction between the common
immune-related DEGs and identify the hub genes involved in
this process, we conducted a PPI network using the STRING
database and Cytoscape. As shown in Figure 5A, there were 91
nodes and 214 edges. The top 10 hub genes in the PPI network
Frontiers in Oncology | www.frontiersin.org 7
were screened by cytoHubba, and the top 10 hub genes were
insulin-like growth factor-1 (IGF1), lipopolysaccharide
elimination protein (LEP), parathyroid hormone (PTH),
adiponectin (ADIPOQ), peroxisome proliferator-activated
receptor gamma (PPARG), prolactin (PRL), islet amyloid
polypeptide (IAPP), cAMP response element-binding protein 1
(CREB1), somatostatin (SST), and nuclear receptor subfamily 3
group C member 1 (NR3C1) (Figure 5B).

Survival Prognostic Model Construction
To evaluate the diagnostic values of the top 10 hub genes for
breast cancer patients, we employed the ROC curves based on
the TCGA-BRCA database to assess the diagnostic efficiency.
A

B

D

E

C

FIGURE 4 | Function enrichment analysis of overlapping DEGs. (A) GO cluster plot showing a chord profile circle of biological processes (BP) of the expression
spectrum. (B) GO cluster plot showing a chord profile circle of cellular components (CC). (C) GO cluster plot showing a chord dendrogram of molecular functions (MF)
of the expression spectrum. (D) KEGG pathway enrichment network. The nodes represent the significantly enriched genes on the specific signaling pathway. (E) The y-
axis is the KEGG pathway enriched terms, and the x-axis is the fold of enrichment. The size of the dot means the abundance of enriched genes under the term.
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As shown in Figures 6A–E, the area under the curves (AUC)
of IGF1, LEP, ADIPOQ, CREB1 NR3C1, PPARG, and PRL
were 0.92, 0.941, 0.92, 0.721, 0.968, 0.945, and 0.613,
respectively. Subsequently, a Kaplan–Meier plotter was
employed to assess the prognostic value of the ten hub gens.
Based on the TCGA-BRCA dataset, our results showed that
the low expression levels of ADIPOQ (HR = 0.4, p < 0.001),
IGF1 (HR = 0.529, p < 0.05), LEP (HR = 0.535, p < 0.05),
NR3C1 (HR = 0.549, p < 0.05), and PPARG (HR = 0.464,
p < 0.01) were significantly associated with the worse OS of
breast cancer patients with tumor pathological stages III–IV
(Figures 6F–J). Furthermore, the low expression levels of
ADIPOQ (HR = 0.416, p < 0.01), IGF1 (HR = 0.458,
p < 0.05), LEP (HR = 0.527, p < 0.05), NR3C1 (HR = 0.457,
p < 0.05), and PPARG (HR = 0.491, p < 0.05) were notably
related to the poorer BCSS of breast cancer patients with
tumor pathological stages III–IV. The low expression levels of
NR3C1 (HR = 0.397, p < 0.05) were remarkably associated
with the poorer BCSS of patients with tumor pathological
stages I–II (Supplementary Figures 3A–F).

To identify the association between the expression levels of
these five hub genes and metastasis risk in breast cancer, we used
Frontiers in Oncology | www.frontiersin.org 8
survival information of breast cancer patients to perform survival
analysis for the five hub genes. Of the data collected, low
expression levels of three hub genes, ADIPOQ (HR = 0.142,
p < 0.001), LEP (HR = 0.194, p < 0.01), and PPARG (HR = 0.278,
p < 0.05), were significantly associated with worse DMFS
(Supplementary Figures 3G–I). Meanwhile, we determined
the significant differential expression of the five hub genes
between tumor tissues and nontumor tissues (Supplementary
Figure 4). Overall, these findings confirmed the prognostic value
and the relationships between the four hub genes and the
metastasis of breast cancer.
DISCUSSION

Malignant solid tumor tissues, including breast cancer, were
composed not only of tumor cells but also normal stromal cells,
immune cells, and vascular cells. Accumulating evidence
supported the notion that tumor stromal cells play a pivotal
role in tumor initiation and metastasis (17). Cancer-associated
fibroblasts (CAFs), for example, are consisted of the majority
of tumor stroma, especially in breast cancer, and are thought to
A

B

FIGURE 5 | PPI network and hub gene identification. (A) PPI network was constructed by all the 91 common immune-related DEGs using the STRING database.
(B) The top 10 hub genes in the PPI network were screened by Cytoscape plugin cytoHubba.
March 2022 | Volume 12 | Article 824166
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be novel potential therapeutic targets of estimation in several
clinical trials (18–20). The prognostic values of TILs have been
estimated in several studies that persistently showed that
among patients with triple-negative breast cancer, TILs were
related to an improvement of clinical outcome (21). Moreover,
a prospective-retrospective study of phase 3 clinical trial
revealed that TILs were notably prognostic in the estrogen
receptor (ER)-negative/HER2-negative subtypes, which are
related to higher disease-free survival and OS (22). However,
this phenomenon failed to be observed in HER2-positive
Frontiers in Oncology | www.frontiersin.org 9
subgroups (22). Moreover, a prospective-retrospective
analysis of the herceptin in TNBC patients indicated that
with the increase of TILs, the relative risk of distant
recurrence was reduced (13).

Here, we take a new algorithm, ESTIMATE that utilizes the
properties of the transcriptional profiles of cancer samples to
demonstrate the tumor cellularity and the different infiltrating
normal cells (15), to assess the stromal and immune cells in
breast tumor tissues. A significant reduction in stromal signature
scores was observed in tumor samples compared with the normal
A B

D E

F G

IH

J

C

FIGURE 6 | The ROC curve of the risk score in nontumor tissues and breast cancer tissues. (A–E) The ROC curve of the validation of the diagnostic value of five
immune-related hug genes. (F–J) Kaplan–Meier survival analysis for the subgroup of overall survival (OS) based on tumor–node–metastasis (TNM) stages.
March 2022 | Volume 12 | Article 824166
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samples, as well as in tumor tissues pretreated by trastuzumab
than in tumor tissues posttreated. However, administration of
trastuzumab in patients with breast cancer remarkably
upregulated the stromal scores in comparison with pretreated
trastuzumab. Moreover, lower immune scores were observed in
normal samples and pretreated tumor samples, but there were no
significant statistical differences. However, the negative or
positive immune scores in breast tumor tissues were estimated
as independent risk factors for the overall survival of breast
cancer patients.

TILs were triggered at an early stage of tumors and can
recognize tumor cells to generate large amounts of cytokines
(such as IFN-g) or directly transformed cells (such as
natural killer cells and cytotoxic T lymphocyte (CTL) cells),
causing the elimination of tumor cells (23). In this study, we
utilized the CIBERSORT algorithm that evaluates a large
number o f tumor samples charac te r i zed by RNA
sequencing, to identify the proportion of 22 lymphocytes in
breast cancer tissues. Our result profiled the percentages and
majority of each lymphocyte in the breast tumor tissues
whether it was treated by trastuzumab or not. The
attendance of pivotal cell populations of the innate and
adaptive immune system has been illustrated in breast
cancer (24, 25). For instance, tumor-associated macrophages
(TAMs) are usually stratified into two main categories,
namely classically activated M1 and alternatively activated
M2 macrophages, according to the major biological processes
in the pathogenesis of tumors (26).

Of these TAMs, the M1 phenotype is thought to be involved
in a proinflammatory microenvironment and antitumor
immune reactions by the production of type I cytokines (such
as IL-12, TNF-a, and nitric oxide synthase). In contrast, the M2
phenotype is related to the immunosuppression in the tumor
microenvironment by generating cytokines such as IL-4 and
IL-13 and establishing a permissive environment for tumor
progression (27). However, our results demonstrated that the
M1 phenotype presented higher levels in nontumor tissues than
tumor tissues, and this tendency was reversed by the
administration of trastuzumab. Meanwhile, a significant
reduction of M2 phenotype was observed in tumor tissues
than nontumor tissues and reversed by treatment of
trastuzumab. This phenomenon may be explained by the
phenotype transition of TAMs that is mediated by its
interaction with breast cancer cells, showing tumor subtype
dependence. For instance, the coculture of TAMs with estrogen
receptor-positive breast cancer cells stimulates the generation
of M1 phenotype, while the coculture of TAMs with triple-
negative breast cells enhances the proliferation of M2
phenotype (28, 29). In our study, macrophages still consisted
of the main proportion of immune-infiltrating cells in
breast tumor tissues, as well as in tumor tissues treated
by trastuzumab.

In this study, we focused on the genetic changes in
transcription level between pre- and posttreatment of
trastuzumab in breast cancer patients to investigate the effect
of trastuzumab on the expression of immune-related genes.
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GO and KEGG enrichment analyses revealed that 91 DEGs
mainly enriched in humoral immune response, regulation of
receptor signaling pathway via JAK-STAT, antimicrobial
humoral immune response mediated by an antimicrobial
peptide, signaling receptor activator activity, cytokine
activity, PI3K-Akt signaling pathway, and natural killer cell-
mediated cytotoxicity. Of them, the JAK-STAT signaling
pathway involves almost all immune regulatory processes,
including tumor cell recognition, tumor-driven immune
evasion, and antitumor immune responses (30). Therefore,
this pathway has become a potently attractive therapeutic
target, and relatively therapeutic strategies (such as
tofacitinib targeting JAK3, ruxolitinib as an inhibitor of
JAK1 and JAK2, oclacitinib as a pan-JAK inhibitor) obtained
positive effects in preclinical and clinical models (31–34). The
PI3K/Akt signaling pathway is involved in the essential cellular
biological process, such as cell proliferation, apoptosis, and
angiogenesis (35).

Hub genes were identified based on the protein–protein
interaction (PPI) network, and then the 10 hub genes were
verified using TCGA-BRCA datasets. ROC curves revealed
that 7 hub genes presented a credible classification effect
between tumor and normal tissues and may be involved in
the response of trastuzumab in breast cancer patients. To
further explore the prognostic values of hub genes, a
surviva l analys is was performed based on TCGA-
BRCA datasets. Lower expression levels of five hub gens,
including IGF1, LEP, ADIPOQ, NR3C1, and PPARG, were
determined and were remarkably associated with poorer OS
and BCSS among breast cancer patients. Additionally, of these
hub genes, three (ADIPOQ, LEP, and PPARG) were
significantly related to the poorer DMFS. Therefore, we
considered IGF1, LEP, ADIPOQ, NR3C1, and PPARG as
potential predictors for the poor prognosis of patients with
breast cancer. The IGF1 is a polypeptide that is mediated
mitogenic and anti-apoptotic effects via IGF1 receptor that is a
type 2 tyrosine kinase receptor, and the accumulating
evidence indicated that IGF axis played pivotal roles in
human cancer progression and can be targets for therapeutic
intervention (36, 37).

Although this study provided a viewpoint on the use of the
immune score in the prognosis of breast cancer, it still has
some shortcomings. For instance, the study depended on
retrospective data when prospective data are needed to
verify these outcomes. In conclusion, this study explored the
composition of stroma and immune infiltration cells and
profi led the percentage of tumor-related infi ltrating
lymphocytes in the tumor microenvironment of breast
tumor tissues whether treated by trastuzumab or not.
Understanding the tumor immune microenvironment
provides a pivotal insight that would improve the diagnosis
and response of targeted molecular therapy. Meanwhile, a
novel five gene-based immune gene signature from
breast cancer could predict prognostic factors of the poor
overall survival for patients with breast cancer treated
with trastuzumab.
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