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Introduction
Multiple myeloma (MM) is a cancer of plasma cells, which 
is the second most common hematological malignancy in 
the United States.1 It is characterized by malignant, neo-
plastic transformation of terminally differentiated B cells 
in the bone marrow known as plasma cells, the principal 
function of which is to produce antibodies, also known as 

immunoglobulins, which play an important role in immune 
surveillance. Immunoglobulins are normally composed of 
small molecules known as heavy chains and light chains. 
There are five types of heavy chains, immunoglobulin G 
(IgG), IgA, IgM, IgD, and IgE, and two types of light 
chains, kappa and lambda, each combination forming one 
type of immunoglobulin complex. When a single abnormal 
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clone of plasma cells results in an excessive number of light 
chains, these do not attach to the heavy chains to form the 
normal immunoglobulin complex, but rather enter the blood-
stream as unattached light chains (and thus are labeled as 
serum free light chains). Myeloma progression is often seen 
when one type of immunoglobulin is excessively produced, 
causing a monoclonal protein spike.2 Correspondingly, there 
will often be a large amount of one type of light chain (kappa 
or lambda) produced as a consequence, leading to an abnor-
mally increased or decreased value in the free light chain 
(kappa/lambda) ratio in the serum. Hence, this ratio is an 
important indicator for the diagnosis, monitoring, and prog-
nosis of MM.2–4 The degree to which the ratio deviates from 
the normal range indicates the extent of monoclonal gam-
mopathy, which relates to the severity of MM. Therefore, the 
identification of specific genomic markers with expression 
levels that are associated with the extent of monoclonal gam-
mopathy could potentially elucidate the molecular mecha-
nisms underlying the progression of MM.

Advances in microarray technologies have increased 
the availability of high-throughput gene expression datasets, 
allowing for genome-wide investigations of molecular activi-
ties underlying diseases, including MM. A common interest 
in such studies is the identification of relevant genetic mark-
ers, eg, genes, that are associated with the development or 
progression of diseases. Traditional studies have mainly relied 
on univariate analysis, in which each gene is modeled inde-
pendently, as in the work of Dryja5 and Golub et al.6 among 
others. However, we assume that the development of a dis-
ease is a complex process that results from the joint effects 
of multiple genes. Thus, it is of great interest to model the 
joint effects of the expression levels of genes over the whole 
genome as measured by microarray assays, and select genes 
whose expression levels exhibit significant associations with 
the clinical outcomes of patients with a specific disease or con-
dition, such as MM. This is essentially a problem of variable 
or feature selection.

Inferential challenges for variable selection based on 
gene expression datasets from microarray assays include not 
only high-dimensionality (relative to sample size), but also 
the presence of a structured hierarchy induced by biological 
mechanisms. Genes typically do not influence the disease 
state by themselves, but act through their involved pathway(s), 
which allows us to consider genes related to a given pathway 
as a natural group of interacting genes. Studies have indicated 
that although many genes may be related to a complex disease 
such as cancer, relatively few pathways play a role in cancer 
development.7 In addition, therapeutic interventions based on 
the inhibition of targeted pathways have been approved by the 
U.S. Food and Drug Administration for a variety of cancer 
types.8 Hence, it is of equal interest for us to identify signifi-
cant pathways as well as individual genes that are associated 
with the clinical outcomes of cancers. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database is a popular public 

database that provides information on discovered pathways 
and their involved genes.9 The pathway information available 
from the KEGG database allows us to assign genes into groups 
based on the specific pathways in which they are involved, 
and conduct analyses at the pathway level. In this article, we 
aim to select both pathways and individual genes mapped to 
these pathways that are significantly associated with clinical 
outcomes of MM based on gene expression profiles obtained 
from microarray assays.

The problem of simultaneously selecting MM-associated 
pathways and genes within those pathways involves variable 
selection at two hierarchical levels: the group level (pathways) 
and the within-group level (genes within a pathway). Many 
variable selection methods have recently been developed to 
incorporate grouping structures in datasets and conduct vari-
able selection at the group level. Yuan and Lin10 proposed 
the group lasso method, in which a lasso penalty function is 
applied to the L2-norm of the coefficients within each group. 
This method was subsequently extended by Raman et  al.11 
for the Bayesian setting. Zhao et al.12 generalized the group 
lasso method by replacing the L2-norm of the coefficients in 
each group with the Lγ-norm for 1 , γ # inf. In the extreme 
case where γ = 1, the coefficient estimates within a group are 
encouraged to be exactly the same. These model selection 
methods focus on group selection without due consideration 
of selection at the within-group level; that is, they only allow 
the variables within a group to be “all in or all out” of the 
model. More recently, some methods have been developed in 
the Bayesian and frequentist frameworks that apply to making 
selections at both the group and within-group levels. Wang 
et al.13 reparameterized the predictor coefficients and selected 
variables by maximizing the penalized likelihood with two 
penalizing terms. Ma et al.14 proposed a clustering threshold 
gradient-directed regularization method for genetic associa-
tion studies. Stingo et al.15 used two sets of binary indicators 
for making respective selections at the group and within-
group levels. Zhang et  al.16 developed a Bayesian approach, 
the hierarchical structured variable selection (HSVS) method, 
which utilizes a generalized “spike and slab” selection prior 
for simultaneous group selection and within-group shrink-
age. They demonstrated through simulations a superior per-
formance of the HSVS method in high-dimensional data 
analysis as a strong variable selector at both the group and 
within-group levels.

In this paper, we generalize the HSVS method of 
Zhang et al.16 and apply it to our gene expression datasets 
from MM cell samples to identify significant pathways as 
well as genes within those pathways that are associated 
with the free light chain kappa/lambda ratio in serum while 
controlling for the demographic/clinical covariates. We 
recognize that individual genes may play multiple roles in 
cellular functions and belong to more than one biological 
pathway, as illustrated in Figure 1, ie, two groups of vari-
ables may overlap. Thus, we generalize the HSVS method 
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to a more flexible overlap-HSVS method to accommodate 
the overlapping group structures in our pathway-based data 
analysis. Similar to our process for employing the HSVS 
method, we employ a selection prior imposed on a latent 
binary indicator for each group for the group-level selec-
tion, combined with a robust shrinkage distribution, such 
as a Laplace prior, for each coefficient in a group to rep-
resent the within-group-level shrinkage. For an individual 
variable that is mapped to multiple pathways, we introduce 
latent variables to represent the parts of the regression of the 
variable on the response that contribute through different 
pathways, with the shrinkage strength on each partial effect 
proportional to the regularization parameter of the corre-
sponding pathway. Although the latent variables represent-
ing the partial effects of the variable on the response through 
each pathway are unidentifiable, the marginal effect of the 
variable, which equals the sum of the latent variables, can 
be uniquely estimated, which provides coherent inference. 
In addition, the proportional shrinkage on each part leads 
to a relatively stable Bayesian estimation of the model. We 
used the overlap-HSVS method to analyze the MM data-
set of 208 patients, and identified both pathways and genes 
within the pathways that are potentially associated with the 
progression of MM.

The rest of the paper is structured as follows. In Methods, 
we introduce the overlap-HSVS hierarchical model in detail 
and describe the algorithm for posterior inference. We pres-
ent the data and the results of our application of the overlap-
HSVS method to the MM genetic association study in detail 
in the subsequent sections.

Methods
Notations. Let Y = (y1,…,yn)T denote the indepen-

dent observations of the continuous clinical outcomes/
responses of interest from n patients/samples and X denote 
the n × q-dimensional covariate matrix of the gene expression 
profiles with
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where xij denotes the expression level of the jth gene for the 
ith subject.

Coding of pathway information. Let G be the total num-
ber of groups/pathways to which the q explanatory cova-
riates/genes belong, where grouping of the genes is based 
on the pathway information obtained via KEGG. We use  
Gj { 1( ), , ( )}

jkg j g j=   to denote the set of pathway indexes 
that include gene j as a group member for j = 1,…,q, and Ψg = 
{ j:g ∈ Γj} to denote the set of genes that lie in the gth pathway 
for g = 1,…,G.

Bayesian hierarchical model for gene/pathway selection. 
We assume that the continuous responses relate to the covari-
ates through the linear regression model

	 Y Z X= + +α β ε,

where Z denotes the demographic covariates, age and gender, 
in our MM dataset, with their associated parameters α, and 
X are the genomic predictors with associated parameters β. 
When the q variables can be partitioned into G groups, ie, 
each variable j belongs to only one group g( j), the HSVS 
method assigns a “spike and slab” prior to each coefficient 
βj as
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where δ0 is a degenerate distribution that places all its mass 
at 0. Here γg( j) is a latent binary indicator variable for group 
g( j) for the group-level selection. When γg( j)  =  0, all the 
predictors in group g( j) are excluded from the regression 
model with the coefficients β j* = 0 for all j* ∈Ψg( j) includ-
ing βj; conversely, when γg( j) = 1, group g( j) remains in the 
model, and βj is then assigned an independent scale mixture 
distribution of normals, allowing for independent shrinkage 
of each individual coefficient within the group and achiev-
ing shrinkage at the within-group level. By setting the scale 
mixing distribution to be an exponential distribution with 
a rate parameter λg( j)/2 for group g( j), we achieve a Bayesian 
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Figure 1. Schematic plot showing the overlapping group structures 
present in the gene expression data. Each gene in the left column can 
belong to one or multiple pathways, the activities of which are associated 
with the clinical outcome.
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lasso estimator of βj with a group-specific regularization 
parameter λg( j).17

In the presence of overlapping groups where variable j 
belongs to multiple groups, g1( j),…,gkj( j) for some j, we mod-
ify the HSVS method above by introducing latent variables 
β βjg jgkj j

j1( ), , ( )…  such that

	
β β β βj jg j jg j jgk j j= + + +1 2( ) ( ) ( ) ( ), 	 (2)

where βj represents the marginal regression coefficient of 
covariate Xj on the response, and βjgk( j) represents the partial 
effect of Xj on the response imposed through the functioning 
of pathway gk( j). We then assign a “spike and slab” prior to 
each partial effect βjgk( j) similar to that in the HSVS method
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where wjgk( j) is a set of weights taking values between [0,1], 
and w jgg g gi

=
∈∑ 1

:
for each j. We note that we can estimate 

the sum, the marginal effect βj which is our focus in posterior 
inferences; however, its latent components βjgk( j) are uniden-
tifiable. This is because any subset of coefficients, βj, is iden-
tifiable only if Xs′ Xs  is invertible where Xs are the columns of 
the data matrix associated with the coefficients. For the vec-
tor of the latent components, βjg( j) = (βjg1( j), βj2g( j),…,βjgk( j)), 
their corresponding covariates, Xjg( j) = (Xj,Xj,…,Xj), are 
repetitive columns of the vector Xj. Therefore, X ′ jg(    j) Xjg( j) is 
not invertible and the latent components βjg( j) are unidentifi-
able. In other words, there is no unique partition of βj, since 
all solutions with β βjgk jj g j

j
( )∈∑ =  are equivalent. The prior 

specification ensures that the latent additive components of 
βj shrink proportionally toward zero, with the shrinkage 
strength of each part βjgk( j) determined by the corresponding 
weight. This leads to a relatively stable Bayesian estimation 
for the latent components. In addition, when γgk( j) = 1 for all 
gk( j) ∈ Ψj, we have
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with the marginal scale τ j
2 from an exponential mixing distribu-

tion. The exponential scale mixture of zero-centered normals 
is equivalent to a Bayesian lasso prior distribution that leads to 
shrinkage on coefficient estimation toward zero. Therefore, we 
achieve a Bayesian lasso estimation of the marginal effect βj, 
as in the HSVS method, where the regularization parameter 
of the Bayesian lasso is equal to 1 1/ / .( )( ): ( )

λgk jgk j gk j gj∈∑( )  
Note that 2/λgk( j) is the scale parameter of the exponential  
mixing prior for the normal scales of the coefficients in group 

gk( j) for g jk j( ) ∈G , and the scale parameter of the exponential 
prior on τ j

2 is the sum of them. The strength of shrinkage on 
the marginal effect βj is thus jointly determined by the shrink-
age strengths of all its involved groups. We call this extended 
HSVS method that is adaptive to overlapping group structures 
the overlap-HSVS method. When there is a perfect partition 
of individual variables without overlap, the overlap-HSVS 
prior defaults to an HSVS prior.

Choice of weights. One way to specify the weights in the 
prior of equation (3) is based on prior biological knowledge of 
the degree to which each gene contributes to the different path-
ways. When no such information is available, which is assumed 
for the application of this paper, we specify the weights as
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where θg = 1/λg This is a natural choice as it leads to
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given θ1,…,θG, which guarantees that the partial effect βjgk( j) 
has the same extent of shrinkage as the other coefficients in the 
group gk( j). For ease of exposition in this paper, hereafter, we 
reparameterize the overlap-HSVS prior by using θg = 1/λg.

Prior specifications. We complete the prior specifications 
by assigning hyperpriors similar to those in the HSVS model. 
We use a diffuse Gaussian prior N(0, cI) for the coefficients for 
fixed effects b, where c is some large value. For the parameter 
p that controls the group-level selection, we use a conjugate 
Beta hyperprior: Beta(a, b) with (fixed) parameters a and b. We 
assign a common inverse gamma distribution Inv-Gamma(r, s)  
on the regularization parameters θ1,…,θG, ensuring their 
positivity. We use the improper prior density π(σ2)  =  1/σ2 
on the error variance. These choices of prior distributions 
lead to closed-form full conditional distributions for most 
of the parameters, facilitating a Bayesian Markov chain 
Monte Carlo (MCMC) computation via the Gibbs sam-
pling algorithm. Please refer to Zhang et al.16 for a detailed 
study and discussion of the sensitivity of the prior choices 
for the HSVS type selection methods. Our full hierarchical 
model for the overlap-HSVS model can thus be succinctly  
written as
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where the weights wjgk( j) are defined as in equation (4).
Posterior inference and summaries. We conduct the 

MCMC computation using a Gibbs sampling algorithm to 
generate posterior samples of all the parameters based on the 
full conditional posterior distributions, with block updating 
of (β1,…,βq), (γ1,…,γG), α, σ2, p, τ τ1

2 2, ,… q( ) and (θ1,…,θG) 
in sequence. The full conditional distributions based on the 
overlap-HSVS hierarchical model presented above are all in 
closed form except for the regularization parameters θ, which 
were updated using a Metropolis–Hastings–within-Gibbs 
algorithm.

Pathway selection. In particular, the MCMC computation 
generates posterior samples of the latent binary indicator vari-
ables γg, indicating the inclusion/exclusion of pathway g in/from 
the model in each MCMC iteration. Briefly, at the tth MCMC 
iteration, we have the group indicator γ g

t( ) = 1 if pathway g is 
selected, and γ g

t( ) = 0 otherwise for each g = 1,…,G. We then 
can estimate the posterior probability of including pathway g in 
the regression model across the MCMC samples by

	 1

1 ( )ˆ { },
T

t
g g

t
p I

T
γ

=
= ∑ 	 (5)

where T is the total number of posterior samples collected. 
Such posterior probabilities of pathway inclusion give us a 
measure of the significance of the candidate pathways that are 
associated with the outcome of interest.

Gene selection. At the within-group (pathway) level, sig-
nificant genes within a pathway can be selected based on the 
95% credible intervals of the regression coefficients obtained 
from their posterior samples. Another method for evaluating 
the significance of the genes is based on the posterior prob-
abilities of gene-specific effects. Suppose φ  .  0 denotes an 
effect size such that a gene j with |βj| . φ is considered to 
have a practically significant impact on the response. Then the 
significance of gene j is indicated by the posterior probability 
of gene j ’s effect as estimated by

	 1

1 ( )ˆ {| | },
T

t
j j

t
I

T
π β φ

=
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where β j
t( ) is the posterior sample of the regression coefficient 

of gene j, βj, in the tth MCMC iteration.
Given these posterior probabilities of pathway inclusion 

or gene effect obtained above, we could identify significant 
pathways or genes using a false-discovery-rate-based thresh-
olding method. That is, we could flag a pathway or gene as 

significant if the corresponding posterior probability is greater 
than some significant threshold, which is determined to con-
trol the overall false discovery rate at a desired level.18,19

Analysis of Gene Expression Datasets from MM 
Cancer Cells

Dataset and pre-processing. The MM data are from the 
Multiple Myeloma Research Consortium Reference Collec-
tion, containing a total of 304 MM patient samples, the gene 
expression profiles of whom were measured using Affymetrix 
U133 Plus 2.0 microarrays. We used Robust Multichip Aver-
age for quantification of the data. Excluding samples with-
out appropriate clinical information, we obtained a dataset 
including 208 patients with MM for further genetic associa-
tion analysis. Since our interest lies in simultaneous selection 
of pathways and genes that are associated with MM, we only 
considered those genes, the pathway information of which is 
available, and excluded those not belonging to any pathway. 
Hence, the resulting dataset consists of the results of microar-
ray assays of gene expression levels for 6,323 genes from the 
208 patients with MM. In addition to the gene expression 
profiles, non-genetic clinical information is also contained in 
the database, including the patient’s age, gender, and measure-
ments of clinical outcomes such as the serum free light chain 
ratio. We took the absolute values of the logarithm of the 
serum free light chain ratios as continuous responses, which 
measure the deviation of the ratios away from 1. They give 
the discrepancy between the amounts of the two types of free 
light chains (kappa and lambda) in logarithmic scale. Plots 
of data show that controlling for the numbers of kappa-type 
and lambda-type MM patients present in the data, the distri-
bution of the log ratios is approximately symmetric about 0.  
Since the amounts of the two types of free light chains are 
extremely unbalanced in MM, this works as an indicator of 
the severity of MM. We use age and gender as the demo-
graphic covariates in our model.

Considering that the dimension of the gene expression 
dataset is too high compared to the sample size, we con-
ducted a pre-screening of the gene variables for the purpose 
of dimension reduction. We first selected 198 individual genes 
by using the univariate t-test and thresholding at a p-value 
of 0.001. We retrieved the pathway information of the set of 
198  genes from the KEGG database and found that these 
genes were involved in 134 biological pathways. There are a 
total of 4,347 genes in the original gene expression profiles 
that are mapped to these 134 pathways. After excluding the 
KEGG pathways with biological functions that are irrelevant 
to myeloma diseases, we further reduced the dimension and 
kept G = 21 pathways for which there were at least 10 gene 
members having a p-value less than 0.05. The final dataset for 
HSVS includes q = 1,387 genes mapped to the 21 pathways. 
The numbers of genes lying in each pathway range from 26 
to 260. Among the 1,387 genes, 277 are mapped to multiple 
biological pathways.
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Finally, we conducted gene and pathway analysis of 
the MM dataset using the overlap-HSVS method, which 
included the 21 candidate pathways as explanatory covari-
ate groups and two demographic covariates, age and gender. 
We collected 5,000 posterior samples after a burn-in of 3,000 
MCMC iterations. The total computational time was 1 hour 
and 10 minutes using a computer with a single core 3.4 GHz 
CPU and 4 GB of memory.

Results. Figure  2 depicts the posterior probabilities of 
pathway selection via our overlap-HSVS method based on the 
MCMC samples of the binary group indicators γg. In essence, 
the posterior probabilities of pathway were obtained by taking 
the average of the values of γg from MCMC as shown in equa-
tion (5). We see that three KEGG pathways have the poste-
rior probabilities of being selected approximately 1, indicating 
their significance, whereas other pathways have the posterior 
probabilities approximately zero, indicating no significance. 
The candidate KEGG pathways are listed in Table  1, with 
the three significant pathways indicated in bold italics. The 
galactose metabolism pathway has been shown to be related to 
a defect in mitochondrial function in cancer cells.20 The cell 
cycle pathway controls the commitment of cells to transition 
from the G1 phase to the DNA synthesis S phase, the misreg-
ulation of which has been known to lead to uncontrolled pro-
liferation of tumor cells in different types of cancers, including 
MM.21,22 The Wnt signaling pathway is functionally related 
to developmental processes such as cell-fate specification, cell 
proliferation, and cell migration, which plays a role in carcino-
genesis in multiple organs.23

Figure 3 shows the 95% credible interval estimates of the 
individual coefficients for the genes lying in the three signifi-
cant pathways, with panel (a) corresponding to the gene set in 
the galactose metabolism pathway, panel (b) to that in the cell 
cycle pathway, and panel (c) to that in the Wnt signaling path-
way. We considered a gene to be significant if the 95% credible 
interval of its coefficient did not include zero. Based on the 
posterior samples of the coefficients, we flagged 28 genes as 
significant; we list them in Table 2. Note that the gene PFKM 

(phosphofructokinase) that was flagged as a member of the 
galactose metabolism pathway is also involved in glucose 
metabolism. Hence, further examination of the two metab-
olism pathways is potentially needed to reveal the oxidative 
energy metabolism in MM cells. In addition, we calculated the 
posterior probabilities of gene-specific effects as described in 
Section 2.3, with the effect size chosen as φ = 0.69, which cor-
responds to the log ratio of a two-fold change in the response 
when the predictor increases or decreases by a unit. Figure 4 
plots 30 genes with the highest posterior probabilities of gene 
effects, most of which were flagged as significant by the 95% 
credible intervals, as expected.

Biological interpretations. Among the selected genes, 
ANAPC7 encodes a protein that is required for the proper 
ubiquitination function of the complex APC/C, a large E3 
ubiquitin ligase that controls cell cycle progression by target-
ing a number of cell cycle regulators, and has been shown to 
be related to carcinogenesis in organs such as the breast.24 The 
genes CCNA1, CCND2, and CCND3 encode proteins that 
belong to the highly conserved cyclin family, whose members 
are characterized by a dramatic periodicity in protein abun-
dance throughout the cell cycle. These proteins have been 
shown to interact with and/or be involved in the phosphoryla-
tion of the tumor suppressor protein Rb, and have been iden-
tified as being related to the occurrence of MM.25 The genes 
WNT11 and WNT5B belong to the WNT gene family that 
encodes secreted signaling proteins implicated in oncogenesis. 
These genes, as well as FZD8, the gene encoding receptors for 
the signaling proteins, have been identified in biological stud-
ies as being associated with MM.25,26 Other genes that are of 
potential interest include CDC14B and MAPK9, which have 
been shown to regulate the well-known tumor suppressor pro-
tein p53; SFRP4, which has been identified as being associ-
ated with MM27; and PPP2R1B and RAC1, which have also 
been identified as playing important roles in carcinogenesis in 
multiple organs.28,29

We analyzed these 28  genes identified as significant 
through the use of Ingenuity Pathway Analysis (IPA) software 
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Figure 2. Posterior probability of including each pathway in the model for the MM data.
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(Ingenuity® Systems, www.ingenuity.com) in order to gain 
insight into the cellular functions associated with this set of 
genes. Our analysis found this set of genes to be related to 
three gene regulatory networks, as shown in Figure 5. These 
networks involve ERK1/2, Rb, TP53, NFKB, ER, and AKT 
as their main downstream targets or upstream regulators. 
These genes are known to play important roles in various can-
cers of different organs. One of the networks also involves the 
production of immunoglobulins, validating their association 
with the response variable. In addition, the IPA identified 
multiple canonical pathways that are significant to this set of 
genes, the top five of which include the cell cycle pathway, 
the Wnt signaling pathway, and two pathways that are related 
to rheumatoid arthritis. This agrees with the biological dis-
covery that occurrence of MM may be increased in patients 
with rheumatoid arthritis.30 These biological discoveries par-
tially support our inferential results of the MM data analysis 
based on the overlap-HSVS method. The agreement between 
our inference and the biological discoveries also validates the 
serum free light chain ratio as a strong indicator for diagnos-
ing and monitoring MM.

We also compared the inferential results to those of 
a popular variable selection method, the lasso, which car-
ries out a selection process at only the individual gene level. 
The lasso method identified 39  genes that were considered 
to be related to the response. Without considering the group 

structure in variable selection, the lasso method identified  
19  KEGG pathways in which the genes are involved to be 
relevant to the response out of the 21 total pathways under 
consideration. In summary, the overlap-HSVS method results 
in a more parsimonious model than the lasso method, with a 
smaller pool of significant genes and pathways selected for fur-
ther biological investigation via future functional validations.

Real data based simulation. We conducted a simulation 
study based on the inferential results to examine the perfor-
mance of our method in the analysis of the MM data. We con-
sidered a data matrix of 1,387 predictors that have the same 
grouping structure as that in the MM dataset. The posterior 
median estimates of the parameters obtained by the overlap-
HSVS method for the MM dataset were taken as the true 
values of the coefficients β and the error variance σ2. Hence, 
the coefficient vector includes 28 nonzero individual coeffi-
cients from three significant groups. Each column of the data 
matrix, X, was generated from a normal distribution N ( , )0 2s j  
with the variance s j

2 the same as that in the gene expression 
data matrix from the MM patients.

We generated 20  simulated datasets and applied the 
overlap-HSVS method as well the lasso method, as a compari-
son, to each dataset for simultaneous selection of pathways and 
genes. At the group level, the overlap-HSVS method has an 
average true positive rate (TPR) of 0.82 (≈2.45 pathways cor-
rectly selected) and an average false positive rate (FPR) of 0.03 

Table 1. Significant KEGG pathways selected for the MM data.

No. KEGG ID KEGG pathway # of genes selected total # of genes

1 hsa00052 galactose metabolism 1 26

2 hsa04010 MAPK signaling pathway 0 265

3 hsa04110 cell cycle 12 117

4 hsa04115 p53 signaling pathway 0 68

5 hsa04210 Apoptosis 0 87

6 hsa04310 Wnt signaling pathway 18 148

7 hsa03018 RNA degradation 0 57

8 hsa03030 DNA replication 0 36

9 hsa03040 Spliceosome 0 116

10 hsa03420 Nucleotide excision repair 0 44

11 hsa04512 ECM reception interaction 0 84

12 hsa04620 Toll like reception signaling 0 102

13 hsa04621 NOD like reception signaling 0 62

14 hsa04622 RIG-I-like reception signaling 0 71

15 hsa05120 Epithelial cell signaling in Helicobacter pylori infection 0 68

16 hsa00310 Lysine degradation 0 44

17 hsa00330 Arginine and proline metabolism 0 54

18 hsa03010 Ribosome 0 87

19 hsa04910 Insulin signaling pathway 0 135

20 hsa05211 Renal cell carcinoma 0 70

21 hsa04540 Gap junction 0 87
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(≈0.60 pathways falsely selected), with the respective standard 
errors being 0.20 and 0.04. In contrast, the lasso method always 
includes all groups in the model for all simulated datasets, 
with TPRs and FPRs both being 1.00. At the within-group 
level, the overlap-HSVS method has an average TPR of 0.60 
(≈16.75 genes correctly selected) and an average FPR of 0.02 
(≈30.80  genes falsely selected), with the respective standard 
errors being 0.34 and 0.02. In contrast, the lasso method has 
an average TPR of 0.94 (≈26.3 genes correctly selected) and an 
average FPR of 0.08 (≈103.75 genes falsely selected), with the 
respective standard errors being 0.03 and 0.01. The results show 

that our overlap-HSVS method can identify most groups as well 
as within-group individual variables while having significantly 
lower FPRs at both levels compared to the lasso method. The 
simulation results are consistent with the results of a detailed 
simulation study on the HSVS methods in Zhang et al.16 sug-
gesting that the overlap-HSVS/HSVS method is a strong vari-
able selector at both the group and within-group levels.

Conclusion
In this paper, we developed the overlap-HSVS method for 
simultaneous selection of groups and variables within the 
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groups when group overlap exists in the data structure. We 
applied the method to a MM dataset to select significant 
pathways and genes that are associated with clinical out-
comes of MM. The method can be applied to a variety of 
structured data such as RNA-Seq data or data from patients 
of other cancer types, in which overlapping group structure 
exists among the predictor variables and group selection is 
of interest. We extended the HSVS method by introduc-
ing latent partial effect variables and corresponding weights 
to proportionally shrink the partial effects toward zero. 
The key idea underlying the model specification is that if 
the group of variables has an overall significant impact on 
the response, with less shrinkage, then the variables that 
are shared with other groups have more influence on the 
response through the contribution of this significant group. 
One weakness of the method brought about from this setup 
is that if the members of a group predominantly overlap with 
those of other groups, it may lead to instability in MCMC 
computations.

In coordination with the performance of the HSVS 
method, the overlap-HSVS method as an extension for 
analyzing overlapping group structures is a strong variable 
selection method, at both the group and within-group lev-
els. Applied to the MM dataset, the method identified three 
significant pathways, including 28  significant genes, which 
were considered to be associated with the outcome measure-
ments (the differences in the measurements of the two serum 
free light chain types in log ratio). Some of the genes and 
pathways we identified have been determined in biologi-
cal investigations to be important biomarkers of MM. Our 
results support the hypothesis that the serum free light chain 
ratio can be an indicative measurement of the severity of 
MM, and is useful in diagnosing and monitoring this dis-
ease. We applied the method to the MM dataset for pathway 
and gene selection. The method can also be applied to a vari-
ety of structured data, in which overlapping group structure 
exists among the predictor variables and group selection is of 
interest. Examples include RNA-Seq data or gene expression 

Table 2. Significant genes selected for the MM data.

No. Gene Symbol Gene Name

1 ANAPC7 anaphase promoting complex subunit 7

2 CAMK2G calcium/calmodulin-dependent protein kinase II gamma

3 CCNA1 cyclin A1

4 CCND2 cyclin D2

5 CCND3 cyclin D3

6 CCNE2 cyclin E2

7 CDC14B cell division cycle 14B

8 CDKN1C cyclin-dependent kinase inhibitor 1C (p57, Kip2)

9 CSNK2B casein kinase 2, beta polypeptide

10 CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa

11 CUL1 cullin 1

12 DBF4 DBF4 homolog

13 FZD7 frizzled family receptor 7

14 FZD8 frizzled family receptor 8

15 MAPK9 mitogen-activated protein kinase 9

16 MCM7 minichromosome maintenance complex component 7

17 NKD2 naked cuticle homolog 2 (Drosophila)

18 PCNA proliferating cell nuclear antigen

19 PFKM phosphofructokinase, muscle

20 PPP2R1B protein phosphatase 2, regulatory subunit A, beta

21 PRKCA protein kinase C, alpha

22 RAC1 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Racl)

23 ROCK1 Rho-associated, coiled-coil containing protein kinase 1

24 SFN stratifin

25 SFRP4 secreted frizzled-related protein 4

26 WIF1 WNT inhibitory factor 1

27 WNT11 wingless-type MMTV integration site family, member 11

28 WNT5B wingless-type MMTV integration site family, member 5B
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Figure 5. Three regulatory networks that involve the 28 flagged genes as identified by IPA. The nodes with filled color correspond to the flagged 
significant genes.
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data from patients of other cancer types, which we leave as 
potential future projects.

Although the overlap-HSVS method is able to deal with 
the overlapping group structures in the pathway-based analy-
sis of MM gene expression data, the model treats the genes 
within a pathway as independent, assigning an independent 
normal-exponential prior to each coefficient. However, in 
reality, genes work in an interactive fashion. With develop-
ments in biological study, we have increased knowledge of the 
regulatory networks between genes within a pathway. In this 
situation, we seek to incorporate such prior biological infor-
mation of the regulatory relationships between genes into the 
HSVS/overlap-HSVS methods. This will allow us to borrow 
strength in inference, not only from samples, but also from 
interactive genes. In addition, the incorporation of prior bio-
logical information of gene regulatory networks can take the 
high correlations among variables into consideration and thus 
result in more robust model selection and estimation. We leave 
this topic for our future studies.
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