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Lipid metabolism is essential for all major cell functions and has recently gained increasing

attention in research and health studies. However, mathematical modeling by means of

classical approaches such as stoichiometric networks and ordinary differential equation

systems has not yet provided satisfactory insights, due to the complexity of lipid

metabolism characterized by many different species with only slight differences and by

promiscuous multifunctional enzymes. Here, we present an object-oriented stochastic

model approach as a way to cope with the complex lipid metabolic network. While all

lipid species are treated objects in the model, they can be modified by the respective

converting reactions based on reaction rules, a hybrid method that integrates benefits

of agent-based and classical stochastic simulation. This approach allows to follow the

dynamics of all lipid species with different fatty acids, different degrees of saturation and

different headgroups over time and to analyze the effect of parameter changes, potential

mutations in the catalyzing enzymes or provision of different precursors. Applied to yeast

metabolism during one cell cycle period, we could analyze the distribution of all lipids to

the various membranes in time-dependent manner. The presented approach allows to

efficiently treat the complexity of cellular lipid metabolism and to derive conclusions on

the time- and location-dependent distributions of lipid species and their properties such

as saturation. It is widely applicable, easily extendable and will provide further insights in

healthy and diseased states of cell metabolism.

Keywords: lipidomics, Saccharomyces cerevisiae, Gillespie algorithm, spatial distribution of lipids, fatty acid

saturation

INTRODUCTION

The Importance of Lipid Metabolism in Health and Disease
Lipids are crucial players in a wide range of cellular processes. Their production is required for
cell cycle progression and cell division. Furthermore, lipids are important mediators in signaling
pathways, components of essential cofactors, building blocks of lipoproteins and glycerolipids and
can be used to store and mobilize excess energy. In those contexts lipids execute structural as
well as functional roles: By building membranes, they can create isolated reaction environments.
The membranes form diffusion barriers and stabilize membrane associated enzymes (Daum et al.,
1998). Lipids are also required to structurally anchor agents to specific regions of the cell, thereby
substantially altering their activity. In form of cofactors, they actively take part in enzymatic
reactions. Lipids can also be direct mediators of cellular signaling, for example in the regulation
of endocytosis, ubiquitin dependent proteolysis or cell cycle control (Nielsen, 2009).

The internal lipid composition of membranes is variable and shapes membrane properties such
as viscosity and permeability. For example, the sterol content defines the integrity of a membrane
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(Klug and Daum, 2014). Hence, lipid metabolism needs to supply
the required membrane lipids in the right proportions and
adapt them in response to external cues. In situations of excess
energy supply, lipid metabolism can be rerouted to produce high
energy, low maintenance storage compounds, which accumulate
intracellularly in lipid droplets. Their dynamic build up and
consumption ensures the energy-save passage through cell cycle.

This multitude of functions in turn also involves lipid
metabolism in a wide range of pathological contexts. Due to the
biosynthetic aspect, altered lipid metabolism has implications in
mammalian cancer development (Natter and Kohlwein, 2013).
In neurodegenerative diseases, such as Alzheimer’s, accumulation
of cholesterol in combination with the apolipoprotein E in the
brain is thought to be a major risk factor (Liu et al., 2013)
along with changes in the sphingolipid metabolism (van Echten-
Deckert and Walter, 2012). An altered lipid metabolism has also
been observed in kidney aging and related diseases (Braun et al.,
2016). Increased lipogenesis occurs in obesity (Diraison et al.,
2002), insulin resistance (Adams et al., 2005) and other metabolic
diseases (Ameer et al., 2014).

Despite their essentiality, lipids only recently came into
focus of systematic studies, aiming to understand the lipid
contribution to a fully functional cell. One reason could be their
extreme diversity that poses difficult challenges tomodern -omics
approaches. Mammalian cells contain thousands of different
lipids (Fahy et al., 2009), with a multitude of potential functions,
which are far from being understood in detail. In addition,
the enzymes of lipid metabolic routes are often promiscuous,
handling many different fatty acid species with appropriate
efficiency. The resulting combinatorial complexity hampers an
easy reconstruction of mass and information flow in the lipid
processing system.

Systems Biology of Lipid Metabolism
The large number of involved reactions as well as the
combinatorial complexity of the fatty acids, render studying
lipid metabolism by means of classical molecular biology almost
infeasible. Systems biology approaches can help to disentangle
such complex systems and to keep track of the large numbers
of involved entities. In addition, the integration and analysis
of different complex, high-dimensional datasets as produced
by novel -omics approaches can greatly contribute to the
understanding of such large biological networks.

Experimental Studies
In recent years, mass spectrometry based lipidomics have
greatly advanced the understanding of cellular lipid biology.
Experimental studies focused on describing the general nature of
the lipidome, including lipid transfer, composition, diversity, and
intracellular location in eukaryotic cells (Chiapparino et al., 2016)
or the overall lipid composition of yeast cells (Ejsing et al., 2009).
Effects of temperature, growth phase and media composition on
the lipid composition have been measured (Klose et al., 2012), as
well as screening studies of yeast mutant libraries to identify key
genes (Tarasov et al., 2014). In plants, organellar lipidomics are
well established (Horn and Chapman, 2011), but for yeast and
mammalian cells, such data—dissecting growth or composition

of subcellular membranes—is either lacking, or based on older
sources (Zambrano et al., 1975; Griffiths et al., 1989; Zinser et al.,
1991).

To handle the vast amount of data, standardization efforts
have established a comprehensive classification system for
lipids as an interface between experimental and computational
approaches, allowing for the unique identification of lipids in
experimental datasets (Lipid Maps, Fahy et al., 2009; van Meer
and de Kroon, 2011). To analyze these kind of complex and
interdependent datasets, mathematical modeling has proven to
be a powerful tool.

Common Modeling Approaches for Metabolic

Networks and Lipid Metabolism
Computational systems biology uses two major approaches to
study metabolic networks. On the one hand, the distribution of
metabolite fluxes can be described by flux balance analysis (FBA),
a constraint based method that considers the stoichiometric
wiring of reactions in a cell. FBA models often aim to cover
the entirety of metabolic reactions within a cell. Extended
methods can include thermodynamic, fluxomic, proteomic
or gene expression data, but all lack the ability to capture
dynamic changes in the system. On the other hand, small scale
ordinary differential equation (ODE) based models simulate
the time evolution of fluxes and metabolite concentrations,
while integrating detailed knowledge about enzyme kinetics.
They require a much deeper understanding of the examined
system alongside a dense data coverage, but also yield in-depth,
functional understanding.

Both methods are based on the detailed topological
description of reactions and metabolites in the modeled
network—which, in the case of lipid metabolism, is highly
complex with the need to account for thousands of combinations
of many enzymes with even more lipid species.

Stochastic Modeling Methods—the Stochastic

Simulation Algorithm and Agent-Based Modeling
Opposed to the above described deterministic methods,
several modeling approaches try to capture stochastic aspects
of biological systems. Those become important at small
molecule numbers that show a stochastic interaction with their
environment and such that their time evolution cannot be
described accurately by the mean over their population.

One common method is agent-based modeling, where the
agents are autonomous objects that are able to make decisions.
Following defined rules, each agent decides in each time step how
to behave, depending on their own state as well as on interactions
with other agents (Cilfone et al., 2015). Agent-based models are
the highly flexible in the implementation of rules and can be
applied to large, heterogeneous populations (Bonabeau, 2002),
as they occur in lipid metabolism. Spatial aspects can be easily
included to simulate for example the behavior of cell populations.
They are less frequently used for biochemical networks, where the
agents would be molecules and very numerous.

Also the stochastic simulation algorithm (SSA, Gillespie,
1976) tackles the stochastic nature of biochemical reactions.
As opposed to the agent-centered approach, SSA simulates all
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successive reactions occurring in a system. For its execution,
two random numbers are required for each reaction event: One
defining the waiting time until the next reaction event, and
one selecting which reaction is executed after that waiting time.
The simulation will produce one time resolved realization of
the chemical master equation of the modeled system. For a full
understanding, the system is usually simulated many times, to
relieve the bias of stochastic noise.

Especially for stiff systems (i.e., systems combining wildly
different time scales) the classical stochastic simulation algorithm
requires extensive computation times, as it simulates each
reaction step successively. A workaround for such problems can
be τ-leaping (Gillespie, 2001; Rathinam et al., 2003). In this case
a fixed time interval τ is set, and all reactions occurring during
this time in the stochastic system are executed at once, thereby
drastically reducing the number of steps taken during one
simulation. However, only for small τ-values we can assume that
the reaction propensities remain constant during that interval,
which results in a simulation error increasing with the size of τ.

These stochastic methods are dealing with many different
types of molecules, which do not require one detailed reaction
equation for each type. Rather, the algorithms keep track of each
molecule in the system and allows it to be modified by a set of
applicable reactions. These reactions can be defined per class of
reactants (i.e., all phospholipids, regardless of their side chains,
can be dephosphorylated), drastically reducing the complexity of
the implementation.

Stochastic simulations are usually not applied to metabolic
systems, due to the high concentrations of reactants, which would
result in short time steps and long computation times. In the case
of lipid metabolism, this might be true for the overall system (the
concentration of lipids within the cell is high) but due to the vast
diversity of lipid types, single species can easily be represented in
a very low number only.

Existing Models of Lipid Metabolism
Modeling lipid metabolism, especially in the model system yeast,
was mostly tackled by FBA based approaches. Initial genome
scale models did, however, not cover the lipid metabolism in
great detail. Nookaew et al. (2008), extended the existing model
iFF708 (Förster et al., 2003) specifically to include important
reactions in lipid metabolism, thereby identifying new reporter
metabolites indicating neighboring reactions responding to
system perturbations. The model was further expanded, also with
regard to the lipid metabolism, by the YeastNet community (e.g.,
Yeast 4.0, Dobson et al., 2010).

Dynamic pathway models are available for the sphingolipid
pathway in yeast (Alvarez-Vasquez et al., 2004), along with its
experimental validation (Alvarez-Vasquez et al., 2005). Fatty acid
beta oxidation has been described recently by an ODE based
model by van Eunen et al. (2013). The specific metabolism of
lipoprotein particles was modeled by Knoblauch and co-workers
to describe the dependency of serum lipid concentrations on
various genetic and environmental cues (Knoblauch et al., 2000).
Especially for cholesterol metabolism, with its many implications
in cardiovascular diseases, a number of models on different levels

of granularity have been developed (reviewed in Mc Auley and
Mooney, 2015).

All of the above models do not provide a comprehensive
view of lipid metabolism and its dynamics. They also neglect
the spatial aspect of distributing lipids to their designated
membranes and the establishment of specific lipid compositions
within them. Here, we therefore present a model, which will
use yeast as model organism and focus on a comprehensive
description of lipid synthesis and distribution. This first
application of stochastic, agent-based modeling to lipid
metabolism will highlight the unique benefits of such approaches
to resolve metabolic complexity and ambiguity. As in detailed
ODE models, time evolutions and dependencies on substrates
are covered, but without the requirement for a large number of
deterministic reaction equations. What can be seen as a proof of
principle here, is easily extendable to larger systems and other
biological questions.

Yeast Lipid Metabolism—a Test Case of
Moderate Complexity
Compared to most mammalian cells, yeast (Saccharomyces
cerevisiae) uses a rather small set of lipid species to build up
its membranes. The four main fatty acids found in yeast lipids
are palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid
(C18:0), and oleic acid (C18:1) (Daum et al., 1998), representing
∼90% of the cellular lipids. An additional major compound,
cerotic acid (C26:0), which is required for the synthesis of
sphingolipids (Smith and Lester, 1974), is the most abundant
of the very long chain fatty acids that make up ∼1% of
the cellular fatty acids (Schneiter and Kohlwein, 1997). Each
lipid can occur in every membrane, but depending on the
membrane functions, the compositions differ: e.g., there is a
high ergosterol content in the plasma membrane to maintain
its rigidity and cardiolipin is overrepresented in the inner
mitochondrial membrane stabilizing transmembrane proteins
(Gomez and Robinson, 1999).

As opposed to most enzymes in central carbon metabolism,
which use one substrate exclusively, enzymes in lipid metabolism
are promiscuous and can act on a whole substrate class.
Prominent examples are enzymes responsible for chemical
changes in the phospholipid headgroups or enzymes like the
triacylglycerol (TAG) lipase Tgl4 which can also function as
a steryl ester hydrolase (Rajakumari and Daum, 2010). The
agent-based approach can cover all substrate specificities without
the need for individual reaction equations.

The limited set of actors renders yeast a practicable test case
for novel methods and more generalist approaches to study lipid
metabolism and membrane dynamics. The general structures
of lipid metabolic processes, such as the promiscuity of the
involved enzymes, are thereby conserved. We choose to model
the underlying production process of lipid de novo synthesis,
which establishes all cellular membranes and covers the overall
material flow of lipids in the cell. The produced lipids and their
distribution can then be the connection point for other models of
lipid related biological processes. In addition, lipid metabolism is
well conserved between yeast and mammalian cells (e.g., Weeks
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et al., 1997). The approaches and results of our model can hence
be easily adapted to other species or disease related questions to
lipid metabolism.

MATERIALS AND METHODS

Model Topology
The model represents the lipid metabolism in yeast. As the
complexity of a metabolic system in a cell is much too high
to be reproduced in a new modeling approach, we focused on
the main reactions of the lipid producing de novo pathway of
a yeast cell. The chosen reactions illustrate the production of
lipid molecules from small molecule precursors from the central
carbon metabolism in short, but continuous and without gaps.
The reaction network was designed to connect all the major
metabolites relevant to lipid metabolism in the cell, while keeping
a low level of complexity. The included lipid species are the main
molecule classes that are found in yeast cell membranes (see also
Section Results).

Agent-Based Model Setup
We implemented a simulation framework that combines aspects
of agent-based modeling and τ-leaping in Python. We defined
the participating biomolecules (c.f. Table 1) as objects, which can
be equipped with a set of attributes. These attributes include
bound elements (fatty acids with different saturation states
or headgroups) and the localization to a specific membrane
(c.f. Figure 1C). Reactions are implemented to modify those
attributes, in dependency of the substrate availability and specific
kinetic parameters. The reactions can thereby use different
allowed substrates (i.e., fatty acids or headgroups) as defined
by the reaction rules and append them to a specific lipid.
We adopted the time discretization from τ-leaping: The model
is simulated in 1 s time steps for 120min, representing the
transition through one cell cycle. Within this time interval, more
than one reaction can be executed. For the stochastic simulation
we use the random number generator from the Python package
numpy, which implements a version of the Mersenne twister
sequence. To save computation time, we scaled all compound
numbers by a factor of 104.

Simulation of Enzymatic Reactions
To describe the production of lipids from metabolic precursors
lumped enzymatic reactions were implemented, similarly to the
rules in purely agent-based approaches (all reactions depicted in
Figure 2A). We used two general parameters to describe how
often each of those reactions is executed during the current
time step. In analogy to the Michaelis-Menten kinetic, which is
commonly used to describe enzymatic reactions, each reaction
has a maximum number of executions Nmax per time step
(corresponding to the vmax) and a certain probability p that the
reaction actually takes place in each execution. Following the
analogy, the probability is calculated from the substrate-limited
KM term in the MM equation as

p =
[S]

KM + [S]
(1)

TABLE 1 | All lipid groups that are represented in the model with their

category membership and headgroup.

Category Name Headgroup Abbreviation

Phospholipid Phosphatidic acid Phosphate PA

Phosphatidylserine Serine PS

Phosphatidylethanolamine Ethanolamine PE

Phosphatidylcholine Choline PC

Phosphatidylinositol Inositol PI

Cardiolipin Phosphate CL

Neutral lipid Diacylglycerol – DAG

Triacylglycerol – TAG

Sterol Ergosterol – ES

Steryl ester – SE

Sphingolipid Mannosyl-diinositolphosphate

ceramide

Inositol SL

Each lipid group can form a several different species regarding to the attached fatty acids.

To implement substrate dependency, the probability p is updated
before every time step according to the substrate concentrations
after the previous time step. For reactions with more than one
substrate we used a product of the above simple saturation terms
for each substrate, resulting in exactly one KM parameter per
substrate and reaction.

Within one time step, the enzymatic reactions are then
executed in the following manner: The order in which the
reactions are executed is randomly permuted (Figure 1A). To
calculate howmany times reaction i in the ordered list is executed
in the time step, we draw Nmax,i random numbers. Each time the
random number exceeds the current pi, we allow reaction i to
run (Figure 1B). Each executed reaction changes the attributes
of a lipid based on its rule (Figure 1C, one function for each
reaction type, c.f. Supplementary Table 1). After the reactions
took place, the precursor metabolite pools are replenished with
given constant rates, simulating a flux from the central carbon
metabolism.

Simulation of Transport Reactions
Distributing Produced Lipids to
Membranes
The produced lipids are distributed with fixed, data based
ratios to the different membranes via dedicated transport
reactions (Figure 2B). The transport process is a pure agent-
based implementation. Each lipid type has a certain probability to
be localized to each membrane. The probabilities of the transport
rules are thereby products of the membrane sizes (partially
based on Uchida et al., 2011, see below) and the particular
membrane composition based on the data of Zinser et al. (1991;
c.f. Supplementary Table 2). The transport reaction distributes
10% of each lipid type to the membranes per time step by
changing their “membrane” attribute. The transport reaction
responsible for formation and degradation of lipid droplets are
modeled via constant fluxes, which are dependent on the cell
cycle phase (for the values see Supplementary Table 1).
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FIGURE 1 | Model workflow scheme. Schematic representation of the model workflow, exemplified for PS synthase. (A) In every time step the order of reaction

events is randomized. (B) A random number is drawn Nmax times, if the number exceeds the threshold P the reaction is performed once. (C) A random CDP-DG

object i is taken from the substrate list, here CDP-DG list. The reaction consumes a serine precursor molecule and releases a CMP from the CDP-DG headgroup (sn3

position). The new PS object is appended to the product list, here PS list.

Model Initialization
A start function is used to initialize the model, producing all
membranes and free lipids required for a cell in early G1 phase,
the first phase of the cell cycle. The amounts are adjusted to the
data from Uchida et al. (2011), and the lipid compositions to the
Zinser measurements (Zinser et al., 1991). Some noise is added,
such that each simulation starts with a slightly different cell. Small
molecule precursors are initialized before the simulation starts.

Data Basis and Parameter Determination
Kinetic parameters were adjusted manually to ensure that the
model runs lead to results as close as possible to the given data
from Zinser et al. (1991) and Uchida et al. (2011). Also, these
data were used directly as probability factors for lipid transport
(Supplementary Table 2).

For parameter adjustment, the model was executed many
times. After each of these test model runs, the parameters
Nmax and p were manually changed stepwise to increase the
accuracy of the reproduction of the given data. Therefore, the
changes became smaller with higher numbers of test runs leading
to the best precision possible. Finally, the maximum velocity
Nmax was highest for precursor molecules producing reactions
(e.g., Nmax(acetyl−CoA synthase) = 650) and low for lipid synthesis

reactions (e.g., Nmax(PC synthase) = 5). The production rate of
precursor molecules was determined to not be the limiting
factor for lipid synthesis leading to a nearly constant amount
of them.

The study of Uchida et al. (2011) provides us with membrane
surface areas of the nuclear membrane (12µm2), the vacuolar
membrane (5µm2), and the outer mitochondrial membrane
(5µm2). The areas of the remaining subcellular membranes
were unknown and set to physiologically reasonable estimates
(Table 2). Uchida et al. (2011) also provides values for the average
volume of the cell (50 fL), which we translate, assuming an
ideal spherical cell to an initial area of the plasma membrane
of 65.9µm2. We assume that the cell doubles its size within the
simulation time of 120min (average period of one cell cycle) to
100 fL of which we account 60% (62.5 fL) to mother cell, the
rest to the bud (37.5 fL). The assumption of two individual round
cells leads to a total final plasma membrane surface of 130.4µm2.
Assuming a general conversion constant of 5 × 106 lipids per
µm2 lipid bilayer (Alberts et al., 2007) enables the calculation
of lipid numbers per membrane, the unit used in the model
simulations.

The distribution of fatty acids within the lipid species
were based on experimental work from Martin et al. (2007).
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FIGURE 2 | Model scheme. (A) Schematic representation of the model.

Small molecule precursors, whose concentrations are held constant during the

simulation, are depicted in orange, intermediate metabolites in light blue and

lipids that can be incorporated in the different membranes in dark blue

(abbreviations as in Table 1). The reactions I - XIX are described in detail in

Supplementary Table 1. (B) Schematic representation of the transport

reactions that move produced lipids to the compartment membranes with

different stoichiometries (gray arrows).

They state percentages of fatty acids in the pool of lipids of
approximately 50% C18:1, 30% C16:1, 9% C16:0 and a small
amount of C18:0. In the model, to reduce the number of
possible fatty acids, we lump all remaining compounds that
occur rarely into the C18:0 fatty acid species making up 11%
altogether.

Model Output and Availability
The model produces time series of the membrane lengths, which
can be saved in table format. Also the final lipid composition and
the fatty acid distribution can be requested.

All scripts for the model and simulations are made
publicly available via GitHub https://github.com/tbphu/lipid_
metabolism.

RESULTS

Tackling Combinatorial Complexity
To solve the problem of combinatorial expansion and to allow
time-dependent simulation of lipid metabolism in normal and
perturbed states, we developed a hybrid object-oriented approach
that combines aspects from agent-based modeling and generic
stochastic simulation via the Gillespie algorithm. From the agent-
based approach we adopt the definition of lipids as autonomous
agents, implemented as Python objects. The lipid objects can
be equipped with several attributes representing side chains,
headgroups and membrane association, which are targets of
modification by the lipid metabolic reactions. As the reactions
“take the decision” about the fate of the lipid agents, not
the agents themselves, the classical agent-based method is not
applicable. We hence decided on an implementation close to
the principles of Gillespie’s Stochastic Simulation Algorithm
(Gillespie, 1976), where the execution of a reaction step depends
on two random numbers selecting the next executable reaction
and its waiting time. Due to the object nature of the substrates,
the reactions can be promiscuous, choosing with defined
probabilities from a set of allowed substrates. This drastically
reduces the complexity of the model setup, as we do not need
to define all possible combinations of substrates and enzymes as
individual reactions.

As another novel feature, we transfer the deterministic idea
of the Michaelis-Menten kinetics to a stochastic environment,
by changing the reaction propensities according to the current
number of eligible substrate objects (see Section Materials and
Methods and Supplementary Figure 1).

The implementation is described in more detail in the
Materials and Methods section.

Network Topology and Coverage
We apply our approach to the mayor lipid metabolic routes
in yeast S. cerevisiae. The model includes 19 reactions of the
lipid metabolism, whereby some are lumping several reaction
steps of the living cell (Figure 2 and Supplementary Table 1).
The modeled metabolism starts with small molecule precursors
from the central carbonmetabolism (pyruvate, dihydroxyacetone
phosphate (DHAP), glycerol 3-phosphate) and ends with the
newly synthesized lipids.

The model includes several subtypes of phospholipids,
neutral lipids, sterols and a sphingolipid species (summarized
in Table 1). The phospholipids phosphatidic acid (PA),
phosphatidylserine (PS), phosphatidylethanolamine (PE),
phosphatidylcholine (PC), and phosphatidylinositol (PI) contain
two fatty acids at positions sn1 and sn2 and differ in their
headgroup connected to position sn3, which determines the
lipid class. Possible headgroups accounted for in the model are
phosphate, cytidine diphosphate (CDP), serine, ethanolamine,
choline, and inositol.

The main pathway in the lipid metabolism is the production
of these phospholipids. All lipid species of this class are derived
from PA. To generate this precursor lipid, which is also used
as a membrane lipid itself, two fatty acids need to be added
to a glycerol backbone. This backbone can be derived from
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TABLE 2 | Membrane sizes at the start and the end of one cell cycle.

Membrane Initial lipid number Final lipid number Mean final lipid number std of final lipid

(model/data) × 104 (data) × 104 (model) × 104 number (model) × 104

Plasma membrane 32950* 65900 60195 512

Secretory vesicles 500 1000 975 23

Vacuoles 2500* 12000* 10812 119

Nucleus 6000* 12500* 10756 93

Peroxisomes 500 1000 858 20

Light microsomes 500 1000 817 19

Inner mitochondrial membrane 5000** 7000** 6828 52

Outer mitochondrial membrane 2500* 3500* 3363 32

Lipid particles 1000 2000 1799 575

All Simulations are initialized with equally large membranes with noisy lipid distributions. *Values calculated from Uchida et al. (2011), **Calculated as twice the area of the outer

mitochondrial membrane. All other final lipid numbers were assumed to be twice the initial number, unknown initial lipid numbers were assumed. Standard deviation (SD) and mean are

calculated from 1000 model runs.

glycerol 3-phosphate or a DHAP, two intermediates of the
central carbon metabolism. The attachment of the nucleotide
cytidine triphosphate (CTP) activates the PA headgroup, making
it accessible for chemical changes: transformations to all other
phospholipid species are now possible. Directly derived from the
CDP-DG (active PA) are PI, cardiolipin (CL) and PS. PS in turn
is used as a precursor for PE and which can be further processed
to PC (Daum et al., 1998; Henry et al., 2012; Klug and Daum,
2014).

The model also includes lipids with more complex structures,
with different numbers of attached fatty acids (triacylglycerides
(TAG)), aromatic elements (sterols: ergosterol (ES) and steryl
ester (SE)) or a ceramide backbone (sphingolipids (SL)).
Ergosterol and the sphingolipids are synthesized via individual
pathways with connections to intermediates of the phospholipid
metabolism. The ergosterol synthesis in yeast normally includes
more than 15 reactions and almost 30 enzymes, but is lumped
to a single reaction in the model: 18 acetyl-CoA molecules build
up one ergosterol (c.f. reaction XVI, Supplementary Table 1

and Figure 2). The sphingolipid synthesis reaction uses
upstream intermediates (ceramide, PI) to produce the most
abundant sphingolipid in yeast, mannosyl-diinositolphosphate
ceramide, again as a lumped version of the entire synthesis
route.

We include fatty acids of type C16:0, C16:1, C18:0, C18:1 as
well as C26:0 for the synthesis of sphingolipids. Each lipid can
have an individual combination of attached fatty acids, with the
constraint of having an unsaturated fatty acid at the sn2 position
(Daum et al., 1998).

The boundary conditions for simulations of the lipid
metabolism with our model are the following: Concentrations
of small precursor molecules were considered constant,
implemented by a refill reaction in each time step of the
simulation. Their consumption was tracked during the
simulation to ensure carbon conservation. The produced
lipids are distributed to the respective membranes via transport
reactions. These serve as a sink for free lipids and feed the growth
of the individual membranes.

The yeast genome also encodes a functional Kennedy pathway
for the production of PE and PC from extracellular precursors
(Gibellini and Smith, 2010). In the model we do not include
this scavenging pathway, as it would be difficult to assess it
experimentally. The de novo synthesis, in contrast, has a defined
input from the central carbon metabolism and is hence a clean
experimental target that allows for easy validation.

Data Used for Model Calibration
Composition and Size of the Different Cellular

Membranes
Despite the broad availability of novel lipidomics data, there are
only few studies intending to resolve the distribution of lipids
in the different subcellular membranes or their evolution during
the different cell cycle phases. As we need this level of detail
to calibrate the model, we used an older dataset from Zinser
et al. (1991), who report measurements of the phospholipid
compositions and the ergosterol to phospholipid ratio of
subcellular fractions. Our developed lipid metabolism model
is geared to these data and thus, exclusively the membranes
characterized in Zinser et al. (1991) are used as membranes in
the model: the plasma membrane, secretory vesicles’ membranes,
vacuolar, nuclear, peroxisomal, inner and outer mitochondrial
membrane. The ergosterol to phospholipid ratio of 3.31 for the
plasma membrane described by Zinser et al. (1991) is not used,
because the biological plausibility is questioned by van der Rest
et al. (1995) based on data by Patton and Lester (1991). Van der
Rest et al. argue that the rigidity of a membrane with three sterols
around each phospholipid would be too high to build a functional
membrane and suggest a more lifelike value of 0.94 for the ratio,
which we use as target value in the model.

A study by Uchida et al. (2011) measured the sizes and
surface areas of yeast organelles by soft X-ray chromatography
in different cell cycle phases. We used this data to define
the sizes (i.e., number of lipids) in the nucleus, vacuole and
outer mitochondrial membrane and used size estimates for the
remaining membranes. A detailed description of how the target

Frontiers in Molecular Biosciences | www.frontiersin.org 7 September 2016 | Volume 3 | Article 57

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Schützhold et al. Model of Lipid Metabolism

membrane sizes and compositions were obtained can be found in
the Material and Methods section.

Behavior of Lipid Droplets
We additionally considered the dynamic build-up and
exploitation of lipid droplets during the cell cycle. The cell
cycle is divided into four phases, whereas two phases are gap
times (G): the G1 phase, the synthesis phase (S phase), the G2
phase and at last the Mitosis, when cell division takes place. Lipid
droplets store neutral lipids (TAG) and steryl esters during G1
phase and release them via a Cdk1/Cdc28-dependent activation
of the lipase Tgl4 (Kurat et al., 2009) from S-phase on, when
more lipid precursors are needed to build up new membranes
for the growing bud. While lipid droplets have a multitude
of functions and interactions (Wang, 2015), we only focus on
their storage capacity in the model. We neglect the surrounding
phospholipid monolayer and assume the droplets to consist only
of TAG and steryl esters in a 50:50 ratio (Clausen et al., 1974). As
our primary data source form Uchida et al. (2011) does not state
size or volume of lipid particles, we assumed them to contain 107

lipids at the start of G1 phase.

Dynamic Model Behavior
Reproducing Membrane Growth and Subcellular

Membrane Composition
The developed model was able to simulate the growth of all
membranes over the time of one cell cycle (Figure 3). The
simulated growth reproduces with satisfactory accuracy the
benchmark data values (Table 2), while including stochastic
effects. It also captures the dynamic build-up of lipid droplets
during G1 phase (first 30min of the simulation). Upon entry to S
phase, the formation of the bud requires a higher biosynthetic
capacity. In the model, the lipid droplets are consumed in
this phase, to allow for a faster growth of all other organelles’
membranes, in accordance with their behavior in vivo (Wang,
2015). The lipid droplets are also the component with the highest
variability in its size (c.f. standard deviation in Figure 3B), which
can be explained by the reversible nature of their build-up. In
contrast to the remaining membranes, from which lipids cannot
be freed once they were included in the membrane, neutral lipids
can be released again from lipid droplets via the TAG lipase
reaction.

The lipid composition of each membrane can be retrieved
from the model (Figure 4A and Supplementary Table 3). The
membranes can have vastly different compositions, as was shown
by Zinser et al. (1991), which is captured well by the model
(Figure 4B). In addition, the model can also be used to gain
insight into the fatty acid composition of the lipids, which again
reproduces the experimental data of Martin and co-workers
(Martin et al., 2007; Supplementary Figure 2).

Sensitivity Analysis
Due to the model structure that combines the benefits of agent-
based modeling with the classical approaches of enzyme kinetics,
we can test and quantify the influence of parameter variations
on the size and composition of the cellular membranes. For
example, just like a common experiment in experimental biology,

we can test the influence of changes in enzyme concentrations by
modifying the Nmax parameter, the equivalent to the Michaelis-
Menten vmax, the product of enzyme amount and catalytic
activity.

We see that in our modeled system, the size of the lipid
droplets is most sensitive to perturbations in the reaction
rates (Figure 5). In turn, the reactions which synthesize and
degrade lipids from the droplets have a larger influence also
on the sizes of the other cellular membranes, highlighting the
importance of storage lipids and their mobilization. Overall the
sensitivities are relatively small, with amaximumof 48.6% change
per parameter unit changed (TAG lipase on lipid droplets),
but with the majority of the sensitivities lying below 1%
(see also Supplementary Figure 3 for sensitivities of membrane
compositions). Hence, the model behavior is in general rather
robust to changes in the rate parameters.

Test Cases of Disturbed Lipid Metabolism
To assess the plausibility of the model, we simulated two
biological test cases of disturbed lipid metabolism. In our
implementation, all model parameters are easily accessible and
can be modified to simulate experimental perturbations. We
tested a case of altered enzyme activity as well as a perturbation
in precursor availability as two structurally different experimental
setups.

Inhibition of Ergosterol Synthesis
Leber et al. (1995) describe the effect of terbinafine treatment
on the ergosterol content of the membranes. Terbinafine inhibits
the ergosterol synthesis pathway such that no ergosterol can be
produced by the cell. It does not affect the production of any other
lipid species, resulting in growingmembranes that are depleted of
ergosterol. Leber et al. (1995) report a reduction of about 40% of
the cholesterol content in comparison with untreated cells after
4 h of treatment.

In the model the treatment was simulated by setting the
ergosterol production rate to 0, leading to an average reduction
in ergosterol content of about 30% in all membranes compared
to the unperturbed simulations (Figure 6A). Leber et al. (1995)
also reports a slightly reduced cell growth as a side effect of
the blocked ergosterol production, which we also observe in the
simulated membrane growth (∼80,000 instead of ∼96,000 lipids
total). The different membrane growth rates after ergosterol
synthesis inhibition are also a proof for the utilization of the
storage lipids: While lipids from the lipid droplets can be
mobilized, all membranes grow faster. However, once the lipid
droplets are completely emptied, the membranes grow with
significantly decreased rates (Supplementary Figures 4A,B).

Addition of Inositol in External Medium
Loewen et al. (2004) reported that addition of inositol to the
culture medium generally increases the content of PI. Inositol is a
precursor for the synthesis of PI and as the reaction probabilities
are dependent on substrate availabilities, the production of
PI should be increased when more inositol is added to the
model. We implemented the inositol addition as an additional
refilling flux for the inositol precursor pool. In the unperturbed
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FIGURE 3 | Trajectories of the membrane sizes (time courses). Dynamic behavior of the model during one cell cycle, with a G1-phase duration of 30min. The

time evolution of the membrane sizes, measured by the number of lipids in each membrane is shown. Thick lines represent the mean, shaded areas the standard

deviation of 1000 model simulations. (A) Plasma membrane growth (B) Growth of all other subcellular membranes occurring in the model.

FIGURE 4 | Subcellular membrane composition and agreement with data. (A) The relative contributions of each lipid class (abbreviations as in Table 1) to the

total number of lipids in each membrane. Error bars denote the standard deviation of 1000 model simulations. (B) Agreement of the simulate fractions with the data of

Zinser et al. (1991), each dot represents the fraction of a lipid in a subcellular membrane, all fractions of one membrane are colored according to the color key above.

The red line describes a linear regression line between model and data fractions, the resulting coefficient of determination R2 is shown. Error bars as in (A).

simulation, all inositol molecules needed to be produced from
glucose 6-phosphate, whereas now they can be replenished
directly from the external medium.

The resulting membrane compositions show that indeed there
is a positive effect of the inositol addition to the PI production
rate: All membranes have higher PI percentages at the end of
the simulation time (Figure 6B), whereas the membrane growth

is not affected (Supplementary Figures 4C,D). However, the
reported massive increase in the overall PI formation, could not
be reached in the simulation, where the largest effect was an about
5% higher PI content (vacuolar membrane). In conclusion, the
model can reproduce the qualitative, but not the quantitative
response of the cell to increased inositol availability. This can
be due to specific parameter choices or due to the availability of
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FIGURE 5 | Sensitivities. Sensitivities of the membrane sizes to changes in the maximum rates Nmax of the synthesis reactions. The sensitivities are shown as

percent of change in membrane size upon a parameter change of one unit. Sensitivities are color coded, values larger than one percent are additionally given as

numbers.

precursors or due to the level of detail with respect to the included
reactions and their regulation.

DISCUSSION

In this study we present a novel methodology for dynamic
quantitative modeling of lipid metabolism. We cope with its
inherent complexity by applying a hybrid approach combining
the general concept of agent-based modeling with the temporal
update strategies of the stochastic Gillespie algorithm. This

integrative approach allows us to describe all lipid species and
their evolution in time. We keep track of the main properties of
all lipids such as headgroups, fatty acid lengths and saturation
degrees as well as their localization. Applied to the comparatively
simple lipid metabolism of the model organism Baker’s yeast, we
could demonstrate the temporal evolution of the lipid species
in different cellular membranes. We could also successfully test
different experimentally studied scenarios, such as addition of
inositol to the medium or deficiency in ergosterol synthase.

The presented approach has a number of advantages and
shortcoming when compared to the traditional approach
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FIGURE 6 | Simulated test cases of the model behavior. (A) Ergosterol content in each membrane after simulation of the terbinafine treatment (yellow) in

comparison with previous untreated simulations (blue). (B) Fractions of PI in all membranes after standard simulation (blue) and simulated inositol addition (green).

Error bars represent standard deviations of 1000 simulations.

in metabolism, i.e., the description of the dynamics of all
components with ordinary differential equations, where all
reactions are assigned to specific enzymes.

Advantages
First of all, the mathematical complexity in our approach is
computationally feasible. Since we avoid formulating differential
equations for all individual potentially occurring lipid species,
we prevent dealing with combinatorial explosion caused by
different potential combinations of headgroups, fatty acid
lengths and saturation degrees, even more complicated by the
fact that many enzymes have multiple substrates. Instead, we
use an object-oriented approach, where a lipid is an object
that has rules stating which transformation it can undergo
with defined probabilities. Promiscuity of enzymes can be
addressed by defining individual substrate classes for reactions
dependent on object properties. The flexibility of the object
definitions provides furthermore an useful interface to integrate
ambiguous data sets. This way of modeling will become
especially helpful for more extended models considering even
more types of (longer) fatty acids and additional saturation
degrees.

Second, despite its structural difference from common
metabolic modeling approaches, our implementation also
allows to simulate many types of experimental perturbations
(varying enzyme amounts, knockouts, enzyme activity changes,
substrate concentration changes etc.). This can be used
to understand the effects of single nodes in the lipid
metabolic network in mechanistic detail, even if they should
be inaccessible to experimental methods. Thus, comparable
analysis opportunities are available as for common ODE based
models.

Limitations
While the approach allows in principle to keep track of every
individual molecule, the molecule numbers in lipid metabolism
are too high to allow for useful simulation times. Therefore, we
applied an upscaling by multiplication with a factor (104). In
strict terms, this reduces the precision, however to a degree of
no relevance. It does not seem to affect predictive power of the
approach.

Hitherto, we have tested the approach. It can be extended
by including further details of lipid metabolism such as (i)
the transport of lipids between different membranes, (ii) lipid
degradation and recycling, (iii) the influence of energetic or
redox limitations in the cell on the model reactions or (iv)
the mechanistic details of lipid distribution to the different
membranes. The consideration of these aspects would allow
for more detailed analyses, given that significant data become
available to compare to.

In mathematical terms, the combination of agent-based
modeling with stochastic simulation meets the general problem
that there are no established methods for parameter estimation
in stochastic systems. The aim is always a minimal deviation of
the simulation results from available experimental data. While
mean values are easy to obtain, it remains a challenge to compare
higher moments. Here, we estimated two parameters for each
reaction, the probability and the maximal velocity. A reaction
and substrate specific Michaelis-Menten constant is calculated
with this adjusted set of parameters at the beginning of a model
run and is used for all executions of this particular reaction.
To test the validity of the approach, we compared the model’s
stochastic description with the deterministic Michaelis-
Menten-kinetic. As shown in Supplementary Figure 1,
when using the same parameter values, the average of the
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stochastic approach follows the deterministic reaction, thereby
conserving the substrate dependency of the flux in a stochastic
manner. The applicability of Michaelis-Menten-kinetics to
2-dimensional case of membranes remains an open issue, but
alternative formulations could be included easily in the modeling
approach.

Here, the applicability of the hybrid, object-oriented approach
has been demonstrated for the complex lipid metabolism
in yeast. It now opens the way to more complicated types
of analysis. For example, it will allow to understand the
experimentally determined distributions of lipid species, fatty
acids and saturation degrees. It also permits to investigate the
effects of different types of perturbation and regulation such
as gene knockout or overexpression or inhibition of specific
enzymes.

The interesting challenge remains to extend the approach
to the human or mammalian metabolism, which entails more
different lipid species, fatty acid chain lengths and saturation
degrees. The other way around, more detailed, time and
compartment resolved measurements with newly available
techniques would greatly advance the efforts in modeling yeast
lipid metabolism.
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of 1000 model simulations), the yellow bars the corresponding data from Martin

et al. (2007).

Supplementary Figure 3 | Sensitivities. Sensitivities of subcellular membrane

composition to changes in Nmax . Colors represent changes in the range of 0.5%

of the total lipid content of one membrane, larger values are printed in black

(scaled by a factor of 100).

Supplementary Figure 4 | Membrane growth in the two test cases. Model

dynamics for the two test cases described in the main text. (A,B) Test case 1:

Inhibition of ergosterol synthase. (C,D) Test case 2: Addition of inositol to the

medium.

REFERENCES

Adams, L. A., Angulo, P., and Lindor, K. D. (2005). Nonalcoholic fatty liver disease.

CMAJ 172, 899–905.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2007).

Molecular Biology of the Cell, 5th Edn. New York, NY: Garland Science, Taylor

and Francis.

Alvarez-Vasquez, F., Sims, K. J., Cowart, L. A., Okamoto, Y., Voit, E.

O., and Hannun, Y. A. (2005). Simulation and validation of modelled

sphingolipidmetabolism in Saccharomyces cerevisiae.Nature 433, 425–430. doi:

10.1038/nature03232

Alvarez-Vasquez, F., Sims, K. J., Hannun, Y. A., and Voit, E. O. (2004). Integration

of kinetic information on yeast sphingolipid metabolism in dynamical pathway

models. J. Theor. Biol. 226, 265–291. doi: 10.1016/j.jtbi.2003.08.010

Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H., and Zaidi, N. (2014).

De novo lipogenesis in health and disease. Metabolism 63, 895–902. doi:

10.1016/j.metabol.2014.04.003

Bonabeau, E. (2002). Agent-based modeling: methods and techniques for

simulating human systems. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl. 3),

7280–7287. doi: 10.1073/pnas.082080899

Braun, F., Rinschen, M. M., Bartels, V., Frommolt, P., Habermann, B.,

Hoeijmakers, J. H. J., et al. (2016). Altered lipid metabolism in the aging

kidney identified by three layered omic analysis. Aging 8, 441–457. doi:

10.18632/aging.100900

Chiapparino, A., Maeda, K., Turei, D., Saez-Rodriguez, J., and Gavin, A. C. (2016).

The orchestra of lipid-transfer proteins at the crossroads between metabolism

and signaling. Prog. Lipid Res.61, 30–39. doi: 10.1016/j.plipres.2015.10.004

Cilfone, N. A., Kirschner, D. E., and Linderman, J. J. (2015). Strategies for efficient

numerical implementation of hybrid multi-scale agent-based models to

describe biological systems. Cell. Mol. Bioeng. 8, 119–136. doi: 10.1007/s12195-

014-0363-6

Clausen, M. K., Christiansen, K., Jensen, P. K., and Behnke, O. (1974). Isolation of

lipid particles from baker’s yeast. FEBS Lett. 43, 176–179.

Daum, G., Lees, N. D., Bard, M., and Dickson, R. (1998). Biochemistry

Cell biology and molecular biology of lipids of Saccharomyces cerevisiae.

Yeast 14, 1471–1510. doi: 10.1002/(SICI)1097-0061(199812)14:16<1471::AID-

YEA353>3.0.CO;2-Y

Diraison, F., Dusserre, E., Vidal, H., Sothier, M., and Beylot, M. (2002). Increased

hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue

in human obesity. Am. J. Physiol. Endocrinol. Metab. 282, E46–E51.

Dobson, P. D., Smallbone, K., Jameson, D., Simeonidis, E., Lanthaler, K., Pir, P.,

et al. (2010). Further developments towards a genome-scale metabolic model

of yeast. BMC Syst. Biol. 4:145. doi: 10.1186/1752-0509-4-145

Ejsing, C. S., Sampaio, J. L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm,

R. W., et al. (2009). Global analysis of the yeast lipidome by quantitative

shotgun mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 106, 2136–2141. doi:

10.1073/pnas.0811700106

Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu,

T., et al. (2009). Update of the LIPID MAPS comprehensive classification

system for lipids. J. Lipid Res. 50(Suppl.), S9–S14. doi: 10.1194/jlr.R800095-

JLR200

Förster, J., Famili, I., Fu, P., Palsson, B. Ø., and Nielsen, J. (2003). Genome-scale

reconstruction of the Saccharomyces cerevisiae metabolic network. Genome

Res.13, 244–253. doi: 10.1101/gr.234503

Frontiers in Molecular Biosciences | www.frontiersin.org 12 September 2016 | Volume 3 | Article 57

http://journal.frontiersin.org/article/10.3389/fmolb.2016.00057
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Schützhold et al. Model of Lipid Metabolism

Gibellini, F., and Smith, T. K. (2010). The Kennedy pathway–De novo synthesis of

phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, 414–428.

doi: 10.1002/iub.337

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of

chemically reacting systems. J. Chem. Phys. 115, 1716. doi: 10.1063/1.1378322

Gomez, B. Jr., and Robinson, N. C. (1999). Phospholipase digestion of bound

cardiolipin reversibly inactivates bovine cytochrome bc1. Biochemistry 38,

9031–9038.

Griffiths, G., Back, R., and Marsh, M. A. (1989). Quantitative analysis of the

endocytic pathway in baby hamster kidney cells. J. Cell Biol. 109, 2703–2720.

Henry, S. A., Kohlwein, S. D., and Carman, G. M. (2012). Metabolism and

regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190,

317–349. doi: 10.1534/genetics.111.130286

Horn, P. J., and Chapman, K. D. (2011). Organellar lipidomics. Plant Signal. Behav.

6, 1594–1596. doi: 10.4161/psb.6.10.17133

Klose, C., Surma, M. A., Gerl, M. J., Meyenhofer, F., Shevchenko, A., and Simons,

K. (2012). Flexibility of a eukaryotic lipidome–insights from yeast lipidomics.

PLoS ONE 7:e35063. doi: 10.1371/journal.pone.0035063

Klug, L., and Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast

Res.14, 369–388. doi: 10.1111/1567-1364.12141

Knoblauch, H., Schuster, H., Luft, F. C., and Reich, J. (2000). A pathway model of

lipid metabolism to predict the effect of genetic variability on lipid levels. J. Mol.

Med. (Berl.) 78, 507–515. doi: 10.1007/s001090000156

Kurat, C. F., Wolinski, H., Petschnigg, J., Kaluarachchi, S., Andrews, B., Natter,

K., et al. (2009). Cdk1/Cdc28-dependent activation of the major triacylglycerol

lipase Tgl4 in yeast links lipolysis to cell-cycle progression.Mol. Cell 33, 53–63.

doi: 10.1016/j.molcel.2008.12.019

Leber, R., Zinser, E., Hrastnik, C., Paltauf, F., and Daum, G. (1995). Export of steryl

esters from lipid particles and release of free sterols in the yeast, Saccharomyces

cerevisiae. Biochim. Biophys. Acta 1234, 119–126.

Liu, C.-C., Kanekiyo, T., Xu, H., and Bu, G. (2013). Apolipoprotein E and

Alzheimer disease: risk, mechanisms and therapy.Nat. Rev. Neurol. 9, 106–118.

doi: 10.1038/nrneurol.2012.263

Loewen, C. J., Gaspar, M. L., Jesch, S. A., Delon, C., Ktistakis, N. T., Henry,

S. A., et al. (2004). Phospholipid metabolism regulated by a transcription

factor sensing phosphatidic acid. Science 304, 1644–1647. doi: 10.1126/

science.1096083

Martin, C. E., Oh, C.-S., and Jiang, Y. (2007). Regulation of long chain unsaturated

fatty acid synthesis in yeast. Biochim. Biophys. Acta 1771, 271–285. doi:

10.1016/j.bbalip.2006.06.010

Mc Auley, M. T., and Mooney, K. M. (2015). Computationally modeling lipid

metabolism and aging: a mini-review. Comput. Struct. Biotechnol. J. 13, 38–46.

doi: 10.1016/j.csbj.2014.11.006

Natter, K., and Kohlwein, S. D. (2013). Yeast and Cancer cells - common

principles in lipid metabolism. Biochim. Biophys. Acta 1831, 314–326. doi:

10.1016/j.bbalip.2012.09.003

Nielsen, J. (2009). Systems biology of lipid metabolism: from yeast to human. FEBS

Lett. 583, 3905–3913. doi: 10.1016/j.febslet.2009.10.054

Nookaew, I., Jewett, M. C., Meechai, A., Thammarongtham, C., Laoteng, K.,

Cheevadhanarak, S., et al. (2008). The genome-scale metabolic model iIN800

of Saccharomyces cerevisiae and its validation: a scaffold to query lipid

metabolism. BMC Syst. Biol. 2:71. doi: 10.1186/1752-0509-2-71

Patton, J. L., and Lester, R. L. (1991). The phosphoinositol sphingolipids

of Saccharomyces cerevisiae are highly localized in the plasma membrane.

J. Bacteriol. 173, 3101–3108.

Rajakumari, S., and Daum, G. (2010). Multiple functions as lipase, steryl

ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the

yeast Saccharomyces cerevisiae. J. Biol. Chem. 285, 15769–15776. doi:

10.1074/jbc.M109.076331

Rathinam, M., Petzold, L. R., Cao, Y., and Gillespie, D. T. (2003). Stiffness

in stochastic chemically reacting systems: The implicit tau-leaping method.

J. Chem. Phys. 119:12784. doi: 10.1063/1.1627296

Schneiter, R., and Kohlwein, S. D. (1997). Organelle structure, function,

and inheritance in yeast: a role for fatty acid synthesis? Cell 88,

431–434.

Smith, S. W., and Lester, R. L. (1974). Inositol phosphorylceramide, a

novel substance and the chief member of a major group of yeast

sphingolipids containing a single inositol phosphate. J. Biol. Chem. 249,

3395–3405.

Tarasov, K., Stefanko, A., Casanovas, A., Surma, M. A., Berzina, Z., Hannibal-

Bach, H. K., et al. (2014). High-content screening of yeast mutant libraries

by shotgun lipidomics. Mol. Biosyst. 10, 1364–1376. doi: 10.1039/c3mb

70599d

Uchida, M., Sun, Y., McDermott, G., Knoechel, C., Le Gros, M. A., Parkinson, D.,

et al. (2011). Quantitative analysis of yeast internal architecture using soft X-ray

tomography. Yeast 28, 227–236. doi: 10.1002/yea.1834

van der Rest, M. E., Kamminga, A. H., Nakano, A., Anraku, Y., Poolman, B., and

Konings, W. N. (1995). The plasma membrane of Saccharomyces cerevisiae:

structure, function, and biogenesis.Microbiol. Rev. 59, 304–322.

van Echten-Deckert, G., and Walter, J. (2012). Sphingolipids: critical

players in Alzheimer’s disease. Prog. Lipid Res. 51, 378–393. doi:

10.1016/j.plipres.2012.07.001

van Eunen, K., Simons, S. M., Gerding, A., Bleeker, A., den Besten, G., Touw,

C. M., et al. (2013). Biochemical competition makes fatty-acid β-oxidation

vulnerable to substrate overload. PLoS Comput. Biol. 9:e1003186. doi:

10.1371/journal.pcbi.1003186

van Meer, G., and de Kroon, A. I. (2011). Lipid map of the mammalian cell. J. Cell

Sci. 124, 5–8. doi: 10.1242/jcs.071233

Wang, C.-W. (2015). Lipid droplet dynamics in budding yeast. Cell. Mol. Life Sci.

72, 2677–2695. doi: 10.1007/s00018-015-1903-5

Weeks, R., Dowhan, W., Shen, H., Balantac, N., Meengs, B., Nudelman, E., et al.

(1997). Isolation and expression of an isoform of human CDP-diacylglycerol

synthase cDNA. DNA Cell Biol. 16, 281–289.

Zambrano, F., Fleischer, S., and Fleischer, B. (1975). Lipid composition of the

Golgi apparatus of rat kidney and liver in comparison with other subcellular

organelles. Biochim. Biophys. Acta 380, 357–369.

Zinser, E., Sperka-Gottlieb, C. D., Fasch, E. V., Kohlwein, S. D., Paltauf, F., and

Daum, G. (1991). Phospholipid synthesis and lipid composition of subcellular

membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol.

173, 2026–2034.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Schützhold, Hahn, Tummler and Klipp. This is an open-access

article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 13 September 2016 | Volume 3 | Article 57

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive

	Computational Modeling of Lipid Metabolism in Yeast
	Introduction
	The Importance of Lipid Metabolism in Health and Disease
	Systems Biology of Lipid Metabolism
	Experimental Studies
	Common Modeling Approaches for Metabolic Networks and Lipid Metabolism
	Stochastic Modeling Methods—the Stochastic Simulation Algorithm and Agent-Based Modeling

	Existing Models of Lipid Metabolism
	Yeast Lipid Metabolism—a Test Case of Moderate Complexity

	Materials and Methods
	Model Topology
	Agent-Based Model Setup
	Simulation of Enzymatic Reactions
	Simulation of Transport Reactions Distributing Produced Lipids to Membranes
	Model Initialization
	Data Basis and Parameter Determination
	Model Output and Availability

	Results
	Tackling Combinatorial Complexity
	Network Topology and Coverage
	Data Used for Model Calibration
	Composition and Size of the Different Cellular Membranes
	Behavior of Lipid Droplets

	Dynamic Model Behavior
	Reproducing Membrane Growth and Subcellular Membrane Composition
	Sensitivity Analysis

	Test Cases of Disturbed Lipid Metabolism
	Inhibition of Ergosterol Synthesis
	Addition of Inositol in External Medium


	Discussion
	Advantages
	Limitations

	Author Contributions
	Acknowledgments
	Supplementary Material
	References


