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The membrane protein SLITRK1 functions as a developmentally regulated stimulator of neurite out-
growth and variants in this gene have been implicated in Tourette syndrome. In the current study
we have cloned and characterized the porcine SLITRK1 gene. The genomic organization of SLITRK1
lacks introns, as does its human and mouse counterparts. RT-PCR cloning revealed two SLITRK1

transcripts: a full-length mRNA and a transcript variant that results in a truncated protein. The
encoded SLITRK1 protein, consisting of 695 amino acids, displays a very high homology to human

Keywords:

DNA methylation
Pig

SLITRK1

Tourette

SLITRK1 (99%). The porcine SLITRK1 gene is expressed exclusively in brain tissues.
© 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Tourette syndrome (TS) is a complex developmental neuropsy-
chiatric disorder characterized by persistent multiple motor and
vocal tics. Tics are often accompanied by comorbidities such as
attention deficit hyperactivity disorder (ADHD) and obsessive-
compulsive disorder (OCD). The prevalence of TS is uncertain, but
ranges from 1 to 30 per 1000 populations [1-3].

The exact cause of TS is still unknown but both genetic and
environmental factors seem to contribute to its development [4].
Neuroimaging studies have identified specific brain regions, i.e.
prefrontal cortex, anterior cingulated cortex, somatosensory cor-
tex, striatum and thalamus, being involved in the pathophysiology
of TS [5]. Several twin and family studies have indicated that TS is
highly heritable and very likely to be genetically related [6]. Recent
genome wide complex trait analysis has confirmed this by identi-
fication of genetic risk factors for TS [7]. Similarly, a TS genome
wide association study has identified TS susceptibility variants [8].

Among the genes associated with TS are SLITRK1, CNTNAP2 and
HDC [9-13].

Two SLITRK1 gene sequence variants have been implicated in
TS: a rare frameshift mutation giving rise to a truncated form of
the SLITRK1 protein and two independent occurrences of the iden-
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tical variant in the binding site for microRNA189, found in the
3’-untranslated region of the SLITRK1 gene, were associated with
TS [10,14]. Among those is the non-coding variant (var321) within
a conserved binding site for microRNA189. The single nucleotide
variation within the 3'UTR, appears to strengthen the binding of
a miR-189 with consequent downregulation of SLITRK1 expression
[10]. However, subsequent sequence analyses of Tourette patients
did not detect any of these binding site variants [15-18]. Further-
more, a single study identified the same 3’UTR variants in unaf-
fected individuals [19] indicating that SLITRK1 may be of limited
effect in TS. A fourth variation was found in one patient with famil-
ial TS, a heterozygous for a novel 708C > T polymorphism resulting
in a silent mutation Ile236lle [15]. In conclusion, it might be diffi-
cult to precisely establish a clear association with TS and rare vari-
ants in SLITRK1. The SLITRK1 gene is an intronless gene located on
human chromosome 13q31.1 [20]. The gene encodes an integral
membrane protein, SLITRK1, which is a member of the SLITRK (SLIT
and NTRK-like family) protein family. Members of this family are
characterized by the presence of two N-terminal leucine-rich
repeats (LRR) in the extracellular domain, similarly to those found
in the Slit family, and a C-terminal region that shares homology
with trk neurotrophin (tyrosine kinase) receptors (Fig. 1). The SLIT-
RK1 protein differs from other members lacking the region of
homology to neurotrophin receptors. SLITRK1 is expressed pre-
dominantly in the brain, more specifically in the cortex, thalamus
and the basal ganglia [21]. SLITRK1 is involved in neurite out-
growth and branching [22,23]. The aim of this study was to clone
and characterize the porcine SLITRK1 gene, compare its sequence
with known SLITRK1 from other vertebrates and investigate its
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spatial expression. Our data show that the porcine homologue of
SLITRK1 is conserved during evolution and the expression profile
is similar to that in human. Interestingly, two transcript variants
of SLITRK1 were identified of which one represent a full-length
transcript and another encodes a truncated SLITRK1 protein.

2. Materials and methods
2.1. Animals and tissue collection

Pigs were housed and used in compliance with European Com-
munity animal care guidelines. Beforehand, the experimental pro-
cedures were submitted to the National Ethical Committee in
Denmark. The pig cerebellum and parietal cortex used for RT-PCR
cloning of SLITRK1 and various other organs and tissues employed
in the expression analysis were obtained from Danish Landrace
pigs adult pigs (2-3 years old).

2.2. Nucleic acids

The pig cerebellum and parietal cortex tissue used for RT-PCR
cloning of SLITRK and other pig organs and tissues employed in
expression analysis were obtained from two adult pigs. The tissues
were dissected and pulverized in liquid nitrogen after removal.
Total RNA was isolated by the RNeasy method (Qiagen). The integ-
rity of the RNA samples was verified by ethidium bromide staining
of the ribosomal RNA on 1% agarose gels. DNA was isolated from
liver, cerebellum, parietal cortex and occipital cortex according to
standard purification protocols [24].

2.3. Cloning of the porcine SLITRK1 gene and cDNA

Initially we performed a blast search analysis of the porcine
genome (Sus scrofa 10.2), with the human SLITRK cDNA sequence.
The search was carried out with gapped alignment using NCBI Bla-
stall with options blastn minimum value 108, The porcine SLIT-
RK1 sequences identified were subsequently used to derive
oligonucleotide primers for cloning of the SLITRK1 gene and SLITRK
cDNA. Samples of cerebellum and parietal cortex were dissected
from two Danish Landrace pigs aged 2 and 3 years and homoge-
nized in liquid nitrogen. Total RNA was isolated by the RNeasy
method (Qiagen) and RNA integrity was verified by ethidium bro-
mide staining of 1% agarose gels. Synthesis of cDNA was conducted
with 5 g of total RNA isolated from pig cerebellum and parietal
cortex using SuperScript Il RNase H™ reverse transcriptase (Invitro-
gen) and oligo(dT),,_1g primers according to the manufacturer’s
recommendations. The PCR and RT-PCR reaction mix contained:
2.0 uL DNA (50 ng)/2.0 uL cDNA, 1.5 mM MgCl,, 0.2 mM dNTP,
0.5 uM of primers SLITRK1-F: 5-ATGCTGCTTTGGATTCTGTTGCTG-
GAG-3' and SLITRK1-R: 5'-GGGGTCTTAGTCTGAGAGCGAGTGGGA-
3’ and 1 U Phusion DNA polymerase (Finnzymes), contained in a
final volume of 25 pL. The PCR conditions were: 95 °C for 2 min.,
10 touchdown cycles of 95 °C for 20s, 60 °C for 30s, 72 °C for
45 s, followed by 25 cycles of 95 °C for 20s, 55 °C for 30s, 72 °C
for 45s and finally an elongation at 72 °C for 5 min. Two PCR
products of approx. 2100 bp were identified by agarose gel

electrophoresis and ethidium bromide staining. The recovered
cDNA amplicons were cloned directly into the pCR TOPO 2.1 vector
(Invitrogen) and sequenced as previously described, employing the
dideoxy chain termination method using BigDye terminator cycle
sequencing kit with AmpliTaq DNA polymerase FS (PE Applied Bio-
systems [25]. The DNA sequencing analysis was carried out with an
automated DNA sequencer (ABI PRISM™ Genetic Analyzer Model
3730xl, PE Applied Biosystems).

2.4. Methylation status of the SLITRK1 gene

Two male Danish Landrace pigs from unrelated families (no
parents or grandparents in common) of the age of one year were
used in this study. Methylation status of SLITRK1 was determined
by library preparation, sequencing, mapping and analysis as previ-
ously described [26]. In brief, the methylation status of SLITRK1
was performed by library preparation, sequencing, mapping and
analysis. DNA from each sample was extracted and sheared to a
size of 200-300 bp using the Covaris Adaptive Focused Acoustics™
(AFA) process (Covaris). Double-stranded DNA fragments were end
repaired, A-tailed, and ligated to methylated Illumina adaptors.
Ligated fragments were bisulfite converted using the EZ-DNA
Methylation-Kit (Zymo research). Following PCR enrichment, frag-
ments of 325-425bp were size selected and sequenced using
Hiseq 2000 Illumina sequencing system. We used Novoalign short
read aligner (version 2.07.12 http://www.novocraft.com/) to align
reads to a reference genome. Novomethyl (Beta.8.0 http://novo-
craft.com/main/page.php?s=novomethyl) was used to call the con-
sensus sequence, identify cytosines and call their methylation state
or percentage of cytosines methylated. For finding the methylation
percentage of special genes or sequences from our methylome data
file, we used Tabix [27].

2.5. Expression analysis

Expression analysis based ion RNAseq data was performed as
previously described [28]. Ten tissues from two unrelated one year
old Landrace boars were included in the study. Hence, total RNA
was extracted from heart, spleen, liver, kidney, lung, musculus lon-
gissimus dorsi, occipital cortex, hypothalamus, frontal cortex, and
cerebellum employing the mirVana™ RNA extraction kit (Ambion)
according to manufactures protocol, yielding a total of 20 samples.
RNA integrity of the individual RNA samples was assessed on a 2%
agarose gel. Library preparation was performed using the mRNA-
seq library prep kit from Illumina [28]. Mapping and assembly of
fragments was carried out as described previously [28]. Relative
abundance of each transcript for each animal for all tissues in the
unit of fragments per kilobase of exon per million fragments
mapped (FPKM) were estimated.

3. Results and discussion
3.1. Cloning and characterization of the SLITRK1 gene

Using SLITRK1primers derived from porcine genomic sequences
and RT-PCR a SLITRK1 cDNA representing the complete open

Fig. 1. Schematic presentation of the SLITRK1 protein. In the extracellular domain, SLITRKs contains two leucine-rich repeat (LRR) domains, which are each composed of 13-
17 LRRs, flanked by cysteine-rich domains. The characteristic domains of SLITRK1 are indicated by their respective names: SP, signal peptide; LRR, leucine-rich repeat; LRR-CT,

LRR C-terminal domain; TMR, transmembrane region.


http://www.novocraft.com/
http://novocraft.com/main/page.php?s=novomethyl
http://novocraft.com/main/page.php?s=novomethyl

874 K. Larsen et al./FEBS Open Bio 4 (2014) 872-878

SsSSLITRK1 MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLORFTAPTSQF 60
HsSLITRK1 MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLORFTAPTSQF 60
MmSLITRK1 MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQF 60
Ak hkhkhkhkhkhhkhkhkkhhhhrhkkhhkhkhrhkhkhhhkhkrhkkhhkhhkrhkhkhkhkhkhkrhkhkhkhkhkrhkhkkhkhkhhdkkkkkx
C,—sSP ] LRR
SsSLITRK1 YHLFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHE IVPGAFLGLQLVKRLHINNNKIKS 120
HsSLITRK1 YHLFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHE IVPGAFLGLQLVKRLHINNNKIKS 120
MmSLITRK1 YHLFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHE IVPGAFLGLQLVKRLHINNNKIKS 120
Ak hkhkhkhkhkhkhkhkhkhkhkhhhkhkkhhkhhkrhkhkhkhkhkhkhkhkkhhkhkhkrhkhkhkhkhkhkrhkkhkhkhkhkrhkhkkhkhkhhdxkkkkkx
LRR
SsSLITRK1 FRKQTFLGLDDLEYLQADENLLRDIDPGAFQDLNKLEVLILNDNLISTLPANVEFQYVPIT 180
HsSLITRK1 FRKQTFLGLDDLEYLQADENLLRDIDPGAFQDLNKLEVLILNDNLISTLPANVFQYVPIT 180
MmSLITRK1 FRKQTFLGLDDLEYLQADEFNLLRDIDPGAFQDLNKLEVLILNDNLISTLPANVFQYVPIT 180
Ak hkhkkhkhkhkhkhkkhhkhkhkrhkhkhkhkhkhkrhkkhhkhkhkrhkhhkhkhkhkrhkkhkhkhkhkrhkhkkhkhkhkhkrhkkhkkhkhhhdhxkkkhx
LRR
SsSLITRK1 HLDLRGNRLKTLPYEEVLEQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPKNALIGRVV 240
HsSLITRK1 HLDLRGNRLKTLPYEEVLEQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPKNALIGRVV 240
MmSLITRK1 HLDLRGNRLKTLPYEEVLEQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPKNALIGRVV 240
Ak hkhkhkhkhkhkhkhkhhkhhkhhkhhkhkhkhkhkhkhhkhhkrhkhhkhkhkhkhrhkhkhkhkhkrhkhkhkhkhkhkhhkkhkhkhhrdxhkkxx
LRR
SsSLITRK1 CEAPTRLQGKDLNETTEQDLCPLKNRVDSSLPAPPAQEETFAPGPLPTPSKTNGQEDHAT 300
HsSLITRK1 CEAPTRLQGKDLNETTEQDLCPLKNRVDSSLPAPPAQEETFAPGPLPTPFKTNGQEDHAT 300
MmSLITRK1 CEAPTRLOQGKDLNETTEQDLCPLKNRVDSSLPAPPAQEETFAPGPLPTPFKTNGQDEHAT 300
Ak hkhhkhkhkhkhkhhhkhhkhkhhhkhhhkhhhhhhkrhhhkhkhkrdrhkhkhkhkhkrhhhkhkhkrdxdx *hkxx * * *
LRR
SsSLITRK1 PGSAPNGGTKIPGNWQIKIRPTAATIATGG-RNKPPANSLPCPGGCSCDHIPGSGLKMNCN 359
HsSLITRK1 PGSAPNGGTKIPGNWQIKIRPTAATIATGSSRNKPLANSLPCPGGCSCDHIPGSGLKMNCN 360
MmSLITRK1 PGAVPNGGTKIPGNWQLKIKPTPPIATGSARNKPPVHGLPCPGGCSCDHIPGSGLKMNCN 360
* * khkkhkrkhkkhkhkrkhkkkx Kk K%k * Kk kK * Kk Kk x hhkhkkhkhkhkhkhkkhhkkhkhkkhkkkhkkkkk*k
. IRR |
SsSLITRK1 NRNVSSLADLKPKLSNVQELFLRDNKIHSIRKSHEVDYKNLILLDLGNNNIATVENNTFEFK 419
HsSLITRK1 NRNVSSLADLKPKLSNVQELFLRDNKIHSIRKSHFVDYKNLILLDLGNNNIATVENNTEFK 420
MmSLITRK1 NRNVSSLADLKPKLSNVQELFLRDNKIHSIRKSHEVDYKNLILLDLGNNNIANIENNTFEK 420

R R e R R R R R * Kk ok KKKk

SsSLITRK1 NLLDLRWLYMDSNYLDTLSREKFAGLONLEYLNVEYNATIQLILPGTFNAMPKLRILILNN 479
HsSLITRKI1 NLLDLRWLYMDSNYLDTLSREKFAGLONLEYLNVEYNAIQLILPGTFNAMPKLRILILNN 480
MmSLITRKI NLLDLRWLYMDSNYLDTLSREKFAGLONLEYLNVEYNAIQLILPGTFNAMPKLRILILNN 480
khkkhkkhkhkhkhkhkkhkkhhkhhhhkkhhhkhhhhkhkhkhhhhkhkhhkhhkhkhkhhkhhh bk bk hkhkhkhk bk kb khkhkhkhhk
LRR
SsSLITRK1 NLLRSLPVDVFAGVSLSKLSLHNNYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTLVPF 539
HsSLITRK1 NLLRSLPVDVFAGVSLSKLSLHNNYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPF 540
MmSLITRK1 NLLRSLPVDVFAGVSLSKLSLHNNYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPF 540

Fhhk A hhkhk Ak kA rhk kA rhk kA hkkhhkhkhkrhk kA hkkrhkhkhkrhkhkhkrhkkrhhkdkrhkkhkrhkk,kx *kx

SsSLITRK1 KOQWAERLGSEVLMSDLKCETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLA 599
HsSLITRK1 KOQWAERLGSEVLMSDLKCETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLA 600
MmSLITRK1 KOWAERLGSEVLMSDLKCETPVNFFRKDFMLLSNEEICPQLYARISPTLTSHSKNSTGLA 600

Khkkhkhkkhkhkkhkhkhkhhkhkhkhkkhkhhkkhkhkhkkhkhkhkhkhkhkkhhkhkkhhkkx dhkkhhkhkhkhhkhhkhkhkhkhkhkhkkhkhkkkxkkxx

R

SsSLITRK1 ETGTHSNSYLDTSRVSISVLVPGLLLVEVTSAFTVVGMLVEFILRNRKRSKRRDANSSASE 659
HsSLITRK1 ETGTHSNSYLDTSRVSISVLVPGLLLVEVTSAFTVVGMLVFILRNRKRSKRRDANSSASE 660
MmSLITRK1 ETGTHSNSYLDTSRVSISVLVPGLLLVEVTSAFTVVGMLVEFILRNRKRSKRRDANSSASE 660

Khkkkhkkhkkhkhhkhkhhkhkhkhkhkhhkkhkhkhkhkhhkhkhhkhkhkhkkhhkhkhkhkhkhkhkkhkhkhkhkhkkrkkhkhkkkkkkkkkxk

| TVR |

SsSLITRK1 INSLQTVCDSSYWHNGPYNADGAHRVYDCGSHSLSD 695
HsSLITRK1 INSLQTVCDSSYWHNGPYNADGAHRVYDCGSHSLSD 696
MmSLITRK1 INSLQTVCDSSYWHNGPYNADGSHRVYDCGSHSLSD 696

KAKKAAKKAARKKIAA A KA A KNI A AN K’ *Ahd AR h A AR * A * K

Fig. 2. Alignment of amino acid sequences of the porcine SLITRK1 protein (GenBank Access. No. K]210858) with SLITRK1 sequences from human (NM_052910) and mouse
(NM_199065). Sequence alignment was performed using the Clustal W program at Kyoto University Bioinformatics Center (http://www.genome.jp/tools/clustalw). The
numbers represent the positions of the amino acids in the respective protein sequences. Identical amino acids in all three sequences are indicated by asterisks. The following
abbreviations for species names are used: Ss, Sus scrofa; Hs, Homo sapiens; Mm, Mus musculus.

reading frame (ORF) was amplified, cloned and sequenced. The SLIT- The ORF of porcine SLITRK1 shows a G + C content of 51.2% and
RK1 gene was identified by comparison of the nucleotide sequence encodes a protein of 695 amino acids. The SLITRK1 polypeptide

and the deduced polypeptide sequence with human and other iso- has an estimated molecular mass of 77.5 kDa and a pl of 6.0.
lated SLITRK1 sequences. The porcine SLITRK1 gene cloned Amino acid sequence similarity between porcine SLITRK1 and
(Fig. S1) consists of 2094 bp with the translation start found at its human and mouse counterparts was analyzed using the Clustal

nucleotide 1 and the TAA stop codon located at nucleotide 2086. method (Fig. 2). The deduced porcine SLITRK1 and human SLITRK1
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display significant sequence identity (99%). Multiple alignment of
pig SLITRK1 with SLITRK1 sequences from other species also dem-
onstrated significant amino acid identities e.g. mouse (97%) and rat
(97%).

The deduced porcine SLITRK1 amino acid sequence contains
several primary structural characteristics; two leucine-rich repeats
(LRR) at amino acids 29-322 and 344-578, respectively (Fig. 2).
The LRR domains, consisting of approx. 230 amino acids, are
flanked by cysteine-rich regions. Both LRR domains are composed
of three to four characteristic motifs LxxLXLXxN/GXL, where X is
any amino acid [29,30]. The amino acid sequences of pig, human
and mouse SLITRK1 are extremely conserved with the LRR domains
(Fig. 2). The two LRR domains in SLITRK1 are connected by an 81
amino acid intervening sequence. Within this sequence the non-
conserved amino acid residues are found. Of notice is that an
amino acid residue is missing in the pig SLITRK1 sequence com-
pared with the human and mouse counterparts. The amino acid
homology is also highly conserved in the transmembrane region
(amino acids 614-641), the sequence being 100% identical
between the three compared species (Fig. 2). Also, the carboxy-ter-
minal end of SLITRK1 is highly homologous. The hydrophobicity
profile of the porcine SLITRK1 protein, shown in Fig. S2, is highly
similar to those of human and mouse SLITRK1 proteins [20].

3.2. Cloning and characterization of the SLITRK1 cDNA

Two SKLITRK1 cDNA were identified by RT-PCR cloning from
cerebellum and frontal cortex isolated from two pigs of the age
of two and three years, respectively.

Both transcripts amplified were approx. 2100 bp of size. One
transcript, designated SsSLITRK1-wt in Fig. 3, displayed 100%
nucleotide identity with the SLITRK1 gene. The SsSLITRK1-wt clone
consisted of a coding region of 2088 nucleotides and six nucleo-
tides of 3'UTR sequence. In addition to the full-length SLITRK1
cDNA a variant encoding a truncated SLITRK1 polypeptide was
found, SsSLITRK1-tvl (Fig. 3). The first 44 amino acids of
SsSLITRK1-tv1 are completely identical with the wt amino acids
sequence. Deletion of an adenosine at position 133 in the genomic
SLITRLK1 sequence (GenBank ID: KJ210858), i.e. at the triplet
encoding Lys45, results in a change in reading frame creating a
truncated protein. The predicted amino acid sequence of the
mutated SLITRK1 shows 61 nonsynonymous substitutions fol-
lowed by a premature stop codon (TGA). The truncated porcine
SLITRK1 protein lacks a substantial portion of the full-length pro-
tein, 651 out of 695 amino acids, including the two LRR repeats,
LRRCT, LRRNT and the transmembrane region (Fig. 1). The trun-
cated SLITRK1 protein has an estimated molecular mass of
12.1 kDa and a plI of 5.2. The carboxy terminal end of the truncated
SLITRK1 protein of 107 amino acids shows a very low homology
(around 40%) to cytochrome b-c1 complex subunit from horse.
The truncated SLITRK1 may therefore very likely play a different
role than the mature protein. However, there is presently no evi-
dence for a different function.

A frameshift mutation in the human SLITRK1 gene was reported
in an individual diagnosed with TS and ADHD [10]. A single-base

deletion caused a frameshift resulting in a truncated SLITRK1 pro-
tein, which lacks a great portion of the second LRR repeat as well as
its transmembrane and intracellular domains (Fig. 1). This particu-
lar variant has not been identified in pigs.

3.3. Sequence analysis of the 5' flanking region of the porcine SLITRK1
gene

We have PCR cloned a DNA fragment containing the porcine
SLITRK1 gene promoter and exon 1, and performed a sequence
analysis (GenBank ID: KJ210859). The 1756-bp fragment of the
porcine SLITRK1 gene contains 847 nucleotides of a putative pro-
moter sequence (nucleotide 1-847), a 5-untranslated sequence
(5'UTR) (nucleotides 848-1750) and a short coding sequence
(nucleotides 1751-1756). Using the Promoter 2.0 prediction soft-
ware (http://www.cbs.dtu.dk) we confirmed the promoter nature
of the 5'-flanking sequence. The putative promoter sequence of
800 bp aligned with the human SLITRK1 promoter is shown in
Fig. S3. The nucleotide sequence of the genomic DNA 800 bp
upstream of the transcription start site (TSS) of the porcine SLITRK1
gene was analyzed for transcription factor binding sites using the
computer-based MatInspector and TFSEARCH program (http://
molsunl.cbrc.aist.go.jp/htbin/nph-tfsearch) and using the transfac
database. The analysis revealed neither a TATA box nor any CCAAT
box in the 800 bp 5'-flanking sequence of porcine SLITRK1 (Fig. S3).
However, two Sp1 binding sites (TGCACC and CCCTCC, respec-
tively) were identified close to the TSS at positions —60 and —15,
respectively. These sequences were completely conserved between
the porcine and human SLITRK1 promoters. Another Sp1 site was
identified at pos. —425. In addition, the sequence search demon-
strated presence of putative transcription-binding sites for CdxA
(TTTAATGC), and GATA-1 (CCAGATGGAT) (Fig. S3). The porcine
and human SLITRK1 promoter sequences were compared by align-
ment of 800 nucleotides upstream TSS. A high degree of sequence
homology was observed in two separate regions. A nucleotide
identity of 82% was seen in the region —800 to +10 relative to
the TSS. Within this region, the recognition sites for the transcrip-
tion factors GATA-1 (—112) is completely conserved between the
porcine and the human SLITRK1 promoters. The high sequence sim-
ilarity between human and porcine SLITRK1 could indicate the
existence of similar mechanisms for regulation of expression.

The sequences of the porcine SLITRK1 gene, promoter and the
SLITRK6 gene have been submitted to DDBJ/EMBL/GenBank under
the accession numbers GenBank: KJ210858, GenBank: KJ210859
and GenBank: KJ210857, respectively.

3.4. The SLITRK gene localizes to chromosome 11

Recently, we have used Blat software to localize the SLITRK1
gene in the S. scrofa 10.2 genome [31]. The SLITRK1 gene maps to
SsChr11: 60,166,124-60,169,737 (Table S1). The human and mouse
SLITRK1 genes have been mapped to chromosomes 13q31.1 and 14
of these species, respectively [21]. In silico analysis demonstrated
that the chromosomal organization of the SLITRK family in human
is conserved in pig. The porcine SLITRK1, SLITRK5 and SLITRK6 genes

SsSLITRKl1-wt MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLORFTAPTSQF 60

SsSLITRK1-tvl MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKRALQVCSVSPPRLPSFE 60

SsSLITRK1l-wt

YHLFLHGNSLTRLEFPNEFANFYNAVSLHMENNGLHEIVPGAFLGLQL--- 695

SsSLITRK1-tvl TIYFCMAIPSLDFSLMSSLTFIMRLVCTWKTMACMKSFLGLEFWDCSW* 107

Fig. 3. Splice variant of porcine SLITRK1. Amino acid sequence alignhment of porcine SLITRK1 (wt) and a splice variant, SLITRK1-Sp1, hereof. (A). The SLITRK1-Sp1 encodes a

truncated version of the full length protein.
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are located on chromosome 11, SLITRK3 is found on chromosome
13 and SLITRK2 and SLITRK4 are present on chromosome X. This
conservation is also extended to the SLITRK gene family in mouse
[14]. The pig SLITRK1 gene is located approx. 850 Kb from the SLIT-
RK6 gene and 1.6 Mb from the SLITRK5 gene.

3.5. Methylation status of the SLITRK1 gene

To establish global methylation profiles and obtain a quantita-
tive measurement of the methylation status of CpG sites in porcine
brain and liver tissues we applied high throughput bisulfite
sequencing on the Illumina HiSeq platform. Two male Danish
Landrace pigs from unrelated families (no parents or grandparents
in common) of the age of one year were used in this study.
Sequencing of bisulfite converted S. scrofa genomic DNA yielded
a dataset of 1926 and 1302 million reads, equal to 194.5 and
131.5 Gbp of paired-end sequence data for liver and brain, respec-
tively. Prior to mapping, reads with an average base quality of less
than 20 (Phred score) were discarded from the dataset. To ensure
accuracy only CpGs covered by at least three reads were used for
further analysis and determination of methylation levels and sta-
tus. For our analysis the methylation level of a particular CpG could
range continuously from 0 to 100 percent, hence methylation level
of CpGs or average of genomic features could assign as frequency
(B). The SLITRK1 gene and its promoter include 132 and 32 CpG
sites, respectively. Our methylation dataset covers 131-128-130-
131 CpGs of SLITRK1 gene and 23-22-23-21 CpGs of SLITRK1 pro-
moter in two liver and two brain tissues, respectively, with 128
common CpGs (97%) in the gene and 21 common CpGs (66%) in
the promoter were selected for further analysis. Every CpG covers
by some reads which show that this CpG is methylated or unme-
thylated. For example one CpG covers by 10 reads that eight of
them show that this CpG is unmethylated and two of them show
methylated, so the methylation percentage of this CpG is 20%.
For the entire gene this also is the same. Approximately 3.6 kb of
the SLITRK1 gene body, including the coding sequence and the 5’
and 3’ untranslated regions, was investigated for two different por-
cine tissues: occipital cortex and liver. In occipital cortex 219
methylated CpG reads were detected out of a total of 7059 reads
yielding a methylation degree of 3.1% (Table S2). Similarly, in liver
tissue 282 methylated reads were seen in a total of 7183 reads, i.e.
a methylation degree of 3.9%. In conclusion, the methylation
degree is not significantly different in liver and in brain tissue. A
849 bp DNA stretch in the SLITRK1 promoter was also examined
for methylation. In brain tissue 44 reads out of 641 were found
to be methylated yielding a methylation degree of 6.9%, i.e. higher
than in the gene body. Similarly, 13 reads out of 604 reads were
identified in liver tissue yielding a methylation degree of 2.2%
which in significantly lower than that found in brain (using the
chi-square test (P-value <0.001)).

3.6. Evolutionary relationship of SLITRK1

To evaluate the evolutionary relationship of porcine SLITRK1
with homologues from other species we constructed phylogenetic
tree using the computer software MEAGALIGN program (ClustalW
method). The phylogenetic analysis demonstrated that the phylog-
eny of porcine SLITRK1 and human SLITRK1 is most related
(Fig. S4). All The topology of the dendrogram is basically in agree-
ment with the classic taxonomic structure of the animal kingdom.

3.7. Spatial expression of SLITRK1 mRNA
In our RNAseq expression analysis totally, 223 million frag-

ments were sequenced, allowing us to cover approximately 80%
of the genes expressed. The fragments were mapped to the high

quality S. scrofa reference genome build 10.2 [9] using TopHat
enabling the downstream isoform construction. A total of 192 mil-
lion reads were aligned to the reference genome yielding an overall
mapping percentage of 86% with a standard deviation of 9.4%. Fol-
lowing mapping of the RNA-seq reads, transcripts were assembled
using Cufflinks, which also reconstructed the various isoforms
present in the different porcine tissues. Moreover, the relative
abundance of each transcript in fragments per kilobase of exon
per kilobase of fragments mapped (FPKM) was estimated by Cuff-
links. Furthermore, the transcripts were annotated to the human
Refseq database. The SLITRKT mRNA expression was also examined
by RNAseq in various selected organs and tissues from two adult
pigs. SLITRK1 transcript was detected in all examined brain tissues
and a differential expression was observed (Fig. 4). A very high
expression was seen in brain tissues such as occipital cortex, fron-
tal cortex, cerebellum and hypothalamus. Very low, or no, expres-
sion was detected in non-brain organs. The equality of SLITRK1
expression levels between different organs and tissues were tested
for statistical significance using the Relative Expression Software
tool (REST). In occipital cortex the SLITRK1 expression was signifi-
cantly higher compared to lung (P=2.0x107°), liver
(P=1.8 x 107°) and spleen (P=5.1 x 10~>). This was also the case
when comparing cerebellum with lung (P =0.01), liver (P=0.01)
and spleen (P = 0.01). Similar values (P = 0.02) were obtained when
comparing frontal cortex and lung, liver and spleen. Non-signifi-
cant differences in SLITRK1 expression when comparing other tis-
sues and organs. The obtained expression results are very similar
to those found for human and mouse SLITRK1 [20,21]. Expression
profiling of human SLITRKT mRNA revealed differential transcript
levels in various brain tissues with highest values detected in the
cerebral cortex. In addition, SLITRK1 mRNA was found to be differ-
entially expressed in various brain tumours [21].

3.8. Identification of a potential miRNA recognition site in the 3'UTR of
SLITRK1

Using the Target Scan (http://www.targetscan.org) a recogni-
tion site sequence for miR24-1 was identified in the 3'UTR of the
human SLITRK1 gene. The recognition sequence for miR189
(miR24-1) was located 675-696 nucleotides downstream the
TAA stop codon of the human SLITRK1 gene. The position of the rec-
ognition sequence was very similar to that for the porcine counter-
part (pos. 681-702 downstream the TAA stop codon). The
nucleotide identity within a 22 bp stretch of the porcine and the
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Fig. 4. Expression of porcine SLITRKI mRNA determined by RNAseq. Relative
abundance of SLITRK1 is reported in FPKM units. The tissues presented are: occipital
cortex (OCC), frontal cortex (FCO), cerebellum (CBE), hypothalamus (HYP), heart
(HEA), lung (LUN), musculus longissimus dorsi (LDO), liver (LIV), kidney (KID) and
spleen (SPL). The error bars represent the biological variation between the two
animals employed.
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human SLITRK1 recognition sequence for miR24-1 was 91%
(Fig. S5). A porcine homologue of miR24-1 has previously been
identified in our laboratory [32]. Diseases associated with miR24-
1 include familial breast cancer, and cervical cancer. miR24-1 is
conserved in various species, and is clustered with miR-23 and
miR-27, on human chromosome 9 and 19 [33]. The porcine
miR24-1 is located on chromosome 2
(Sscrofa10.2:2:65581874:65582545). A mutation in the 3'UTR of
the human SLITRK gene, named variant 321, has been detected in
two Tourette patients [10]. This mutation, a G to A transition, is
located within the recognition site for miR189, has not been found
in the porcine sequence. Of notice is that this particular nucleotide
in not conserved between the pig and human sequences as shown
in Fig. S5.

Recently, miR-24 has been shown to suppress expression of two
crucial cell cycle control genes, E2F2 and Myc in hematopoietic dif-
ferentiation [34] and also to promote keratinocyte differentiation
by repressing actin-cytoskeleton regulators PAK4, Tsk5 and Arh-
GAP19 [35].

3.9. Porcine SLITRK6

A blast search of the porcine genome (S. scrofa 10.2) with the
human SLITRK6 gene sequence revealed a homologue. The genomic
organization of the SLITRKG gene is similar to that of the human
homologue comprising two exons of which one contains the cod-
ing sequence. The deduced amino acid sequence predicted a pro-
tein with a molecular weight of 95.3 kDa and a pl value of 6.1. A
multiple alignment of porcine SLITRK6 with other SLITRK6 pro-
teins, shown in Fig. S6, demonstrated a very high sequence homol-
ogy. The amino acid identity between pig SLITRK6 and the human
and mouse counterparts was 91% and 87%, respectively.

Expression profiling of SLITRK6 by RNAseq revealed high expres-
sion in cerebellum, hypothalamus and lung and also moderate
expression in spleen and heart (Fig. S7). No expression was detected
in liver, kidney and FCO. The equality of SLITRK6 expression levels
between different organs and tissues were tested for statistical sig-
nificance using the Relative Expression Software tool (REST). In cer-
ebellum the SLITRK6 expression was significantly higher compared
to occipital cortex (P = 0.017), heart (P = 0.02) and spleen (P = 0.02).
Non-significant differences in SLITRK6 expression when comparing
hypothalamus and lung (P-values = 0.14-0.17) and lung (P-values
0.11-0.15) with other tissues and organs. This differential SLITRK6
expression pattern is similar to that observed in human and also
partly to that of mouse, where expression is restricted to few areas
of the central nervous system and a few non-brain organs such as
lung and liver [20,21,36]. As for human and mouse SLITRK6, no
expression is seen in cortex, neither frontal nor occipital (Fig. S7).
The highest human SLITRK6 expression was detected in putamen
and transcript was also found in fetal brain, fetal liver, adult lung
and adult brain [21]. No expression of human SLITRK6 was detected
in fetal kidney and adult kidney and liver [21]. Spleen was not
included in this expression analysis. In mice, a highly compartmen-
talized expression of SLITRKG6 is observed in developing mouse brain
[36-38]. SLITRK6 expression is detected in the eye, in the olfactory
system, in septum, in the diencephalon (thalamus and hypothala-
mus), in the Purkinje layer of the cerebellum and in the spinal cord.
The SLITRK6 expression profile is different from the other SLITRK
family members with the restricted expression in brain and expres-
sion in lung [21].

In conclusion, our study provides fundamental molecular infor-
mation about the porcine SLITRK1 gene. The SLITRK1 gene was RT-
PCR cloned and characterized and two splicing variants were found.
SLITRK1 transcript displayed a brain-specific expression. Finally, the
methylation status for the SLITRK1 gene, including a putative pro-
moter region, was examined. The high degree of similar molecular

properties between human and pig SLITRK1 might indicate that
the pig could serve as a potential model to study TS. Null mutants,
i.e. knock-outs, of the SLITRK1 gene might reproduce the genetic
predispositions that favor the onset and progression of TS. By gener-
ating transgenic pigs with eliminated expression of SLITRK1 we
hope to contribute to the understanding of TS etiology. Hence, in
further studies we will focus on generation of transgenic knock-
out pigs with no or reduced expression of SLITRK1. Porcine models
of TS may help to provide information about the underlying cellular
and molecular mechanisms of the disease, and for the development
of more effective treatment therapies. A SLITRK1-knockout mouse
model of was developed by Katayama et al. [36]. The SLITRK1defie-
cient mice did not precisely recapitulate TS as they exhibited no
motor stereotypies or tics. However, behavioral studies revealed
elevated anxiety-like and depressive-like symptoms and also alter-
ations in the noradrenergic system [36].
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