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and Si-Jin Li1,2,3*

1Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China,
2Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of
Shanxi Medical University, Taiyuan, China, 3Department of Rheumatology, Second Hospital of
Shanxi Medical University, Taiyuan, China, 4Key laboratory of Cellular Physiology, Ministry of
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Differentiated thyroid cancer is the most frequently diagnosed endocrine

tumor. While differentiated thyroid cancers often respond to initial treatment,

little is known about the differences in circulating immune cells amongst

patients who respond differently. A prospective study of 39 patients with

differentiated thyroid cancer was conducted. Serum thyroglobulin levels and

thyroid and immunological functions were tested before and after radioactive

iodine treatment (RAIT). Efficacy assessments were performed 6 to 12 months

after radioactive iodine treatment. Most patients showed an excellent response

to radioactive iodine treatment. Before radioactive iodine treatment, the

excellent response group had considerably fewer circulating CD4+ T cell

subsets than the non-excellent response group. Both the excellent response

and non-excellent response groups had considerably lower circulating CD4+ T

lymphocyte subsets 30 days after radioactive iodine treatment, but those of the

excellent response group were still lower than those of the non-excellent

response group. All circulating CD4+ T cell subsets in the excellent response

group rose by varying degrees by the 90th day, but only Treg cell amounts

increased in the non-excellent response group. Interestingly, in the non-

excellent response group, we noticed a steady drop in Th1 cells. However,

the bulk of circulating CD4+ T cell subsets between the two groups did not

differ appreciably by the 90th day. Finally, we discovered that CD4+ T cell

subsets had strong predictive potential, and we thus developed high-

predictive-performance models that deliver more dependable prognostic

information. In conclusion, in individuals with differentiated thyroid cancer,

there is great variation in circulating immune cells, resulting in distinct
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treatment outcomes. Low absolute CD4+ T cell counts is linked to improved

clinical outcomes as well as stronger adaptive and resilience capacities.
KEYWORDS

differentiated thyroid cancer, efficacy assessment, CD4+ T cell subsets, radioactive
iodine therapy, prognosis
1 Introduction

Thyroid cancer is the most frequently diagnosed endocrine

cancer, with an annual incidence of 8–9 cases per 100,000 persons

worldwide. Differentiated thyroid cancer (DTC) accounts for

more than 90% of all thyroid cancers (1). DTC has become

more widespread in the last 10 years as imaging technology has

improved, and people’s lifestyles have changed (2–4).

The most commonly utilized first-line treatment option for

individuals with DTC is radioactive iodine therapy (RAIT)

following complete thyroidectomy (5). In addition, the

American Thyroid Association recommends that DTC

patients, particularly those at intermediate and high risk,

undergo long-term active follow-up after RAIT (6). At 6–12

months, the initial therapeutic response should be evaluated.

Serum thyroglobulin (Tg) levels in the blood and lymph node

invasion are two major predictors of tumor development that

must be monitored during long-term follow-up of DTC patients

who have received RAIT (7–9). Although this management

strategy has proven effective, some patients continue to face

tumor recurrence and metastasis, which substantially influences

survival (2, 10–14). Previous research has suggested that

thyroglobulin (Tg) or preoperative anti-thyroid peroxidase

antibody (TPOAb) levels are prognostic indicators for DTC

recurrence (7, 15). However, their predictive power is limited.

This necess i tates deeper invest igat ions into novel

predictive tools.

Cancer immune surveillance mechanisms can eliminate

aberrant cells from the body, preventing tumor formation.

Tumor incidence and development in the body result from a

series of dynamic and complicated interactions between the

immune system and tumor cells, including clearance, balance,

and escape (16–18). Tumors are the result of immunological

escape. In addition, tumor cells that developed from normal cells

appear to have a higher chance of developing immune evasion

mechanisms, including tumor cell self-modification, alterations

in metabolism, and changes in the tumor microenvironment. At

a certain point, the body’s anti-tumor immune system will fail in

preventing further development, and tumor cells will grow and

divide uncontrollably (19). Thus, it is important to increase T

cell recognition of tumor cells for anti-tumor immunity.
02
CD8+ cytotoxic T cells, CD4+ T helper cells, and dendritic

cells are important biological mediators of cancer immune

surveillance. CD4+ T cells primarily consist of helper T (Th)

cells, which adhere to the non-polypeptide portion of major

histocompatibility complex class II molecules and participate in

signal transduction using T cell antigen receptors to identify

antigens, thereby activating CD8+ T cells (20–22). CD8+ T cells

can release IFN-g to destroy tumor cells directly (23). These

findings indicate that CD4+ T cells are important in anticancer

immunity (24–26). Currently, tumor immunotherapies seek to

activate the body’s immune system to produce a potent anti-

tumor immune response. However, current methods only show

good outcomes in a limited number of patients (27–29). This

might be due to a lack of understanding of the distribution and

function of CD4+ T cell subsets (Th1, Th2, Th17, and regulatory

T cells (Treg cells)) in the tumor microenvironment and

circulatory system (30, 31).

Therefore, the purpose of this study was to examine the

differences in the dynamic distribution of circulating CD4+ T cell

subsets before and after RAIT in DTC patients who had different

therapeutic outcomes, as well as to assess the diagnostic and

predictive potential of CD4+ T cell subsets (before and after

RAIT) relative to serum Tg before RAIT. Furthermore, we

designed and evaluated multiple predictive models to improve

the prognosis of DTC patients.
2 Materials and methods

2.1 Patients

Between January 2021 and August 2021, 79 participants

consisting of 39 DTC patients and 40 age- and sex-matched

healthy controls (HC) were recruited from Shanxi Medical

University’s First Hospital. According to the EANM guide, all

DTC patients were treated with thyroidectomy and radioactive

iodine therapy (RAIT). Patients with acute inflammatory or

autoimmune disorders, chronic inflammation or other

malignancies, or other conditions that might cause altered

immunity were excluded from this study. In the three months

before recruitment, none of the patients had received
frontiersin.org

https://doi.org/10.3389/fimmu.2022.966550
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2022.966550
glucocorticoids or immunosuppressive medicines. All patients

had peripheral blood samples drawn, and thyroid and immune

function tests were performed on day 0 before RAIT, as well as

on 30 and 90 days after RAIT. Free T3 (FT3), free T4 (FT4),

thyroid-stimulating hormone (TSH), and thyroglobulin (Tg)

levels were all assessed using thyroid function assays (SN-697,

Shanghai Nuclear Research Institute Rihuan Photoelectric

Instrument Co., Ltd, China). Immune function testing

included evaluating CD4+ T cell subset levels, using the

detection methods described in the following section (Figure

2A). Venous blood was taken prior to RAIT for standard

analyses of lymphocytes, neutrophils, four blood lipids

(triglyceride (TG), total cholesterol (TC), high density

lipoprotein cholesterol (HDL-C), and low density lipoprotein

cholesterol (LDL-C)), and liver function. The institutional

review board of Shanxi Medical University’s First Hospital in

China approved this study.
2.2 Flow cytometry

Flow cytometry was used to measure the total number of

lymphocytes in each of the subpopulations (CD3+ T/CD4+ T/

CD8+ T/B/NK cells) which were isolated from peripheral blood

samples. Blood cells were collected by flow cytometry using a BD

FACSCalibur platform (BD Biosciences, Franklin Lakes, NJ,

USA) and quantified using MultiSET software (BD

Biosciences) after 50 µL of EDTA-anticoagulated venous blood

was placed into A and B Trucount tubes (BD Biosciences). The

CD3+/CD4+/CD8+ T cell subsets were identified using the

conjugated monoclonal antibodies fluorescein isothiocyanate

(FITC)-CD3, allophycocyanin (APC)-CD4, peridinin

chlorophyll protein (PerpCP)-CD45, and phycoerythrin (PE)-

CD8 (20210301; Beijing Tongsheng Shidai Biotech Co., Ltd,

Beijing, China). For B and NK cell populations, the monoclonal

antibodies FITC-CD3, APC-CD19, PerpCP-CD45, and PE-

CD16+CD56 were used (20210726; Beijing Tongsheng Shidai

Biotech Co., Ltd.). CD4+ T cell subsets (Th1/Th2/Th17/Treg

cells) were then detected and Th1/Th2/Th17 cells were

stimulated with PMA and ionomycin. These cells were then

labeled with FITC-conjugated anti-CD4 antibodies (20210604;

Beijing Tongsheng Shidai Biotech Co., Ltd.), fixed,

permeabilized using 1 mL freshly prepared fixation/

permeabilization buffer, and then stained with APC-

conjugated anti-IFN-g (C7048040521503; Beijing Tongsheng

S h i d a i B i o t e c h Co . , L t d . ) / P E - c o n j u g a t e d I L - 4

(C7048040521503; Beijing Tongsheng Shidai Biotech Co.,

Ltd.)/PE-conjugated IL-17A antibodies (0314403; Beijing

Tongsheng Shidai Biotech Co., Ltd.). Cell surfaces were stained

with FITC-conjugated anti-CD4 and APC-conjugated anti-

CD25 (0139110; Beijing Tongsheng Shidai Biotech Co., Ltd.),

before being fixed and permeabilized in a 4°C incubator with

1 ml Cytofix/Cytoperm reagent. This was followed by staining
Frontiers in Immunology 03
with anti-Foxp3-PE (2429732; Beijing Tongsheng Shidai Biotech

Co., Ltd.) for 30 min, according to the manufacturer’s protocol

for Treg cells. CellQuest software version 6 was used to compute

the proportion of each subpopulation, and the absolute number

of cells in each subpopulation was estimated as follows: absolute

cell number = percentage of positive cells in each subgroup ×

absolute counts of CD4+ T cells (cells/mL).
2.3 Response assessment

All patients were assessed for treatment effectiveness within

6–12 months of receiving RAIT. According to the 2015

American Thyroid Association guidelines, patients were

classified as: (I) excellent response (ER) (i.e., inhibitory Tg <

0.2 µg/L or stimulatory Tg < 1 g/L, negative imaging

examination); (II) indeterminate response (IDR) (i.e., 0.2 g/L ≤

inhibitory Tg < 1 g/L or 1 g/L ≤ stimulatory Tg < 10 g/L, negative

imaging examination); (III) biochemical incomplete response

(BIR) (i.e., 1 g/L < inhibitory Tg or 10 g/L < stimulatory Tg,

negative imaging examination); or (IV) structural incomplete

response (SIR) (i.e., structural disease testing independent of Tg

and TgAb results).

All individuals in this study were separated into two groups:

efficacy response (ER) or non- efficacy response (NER), which

included IDR, BIR, and SIR classified patients.
2.4 Statistical analysis

All statistical analyses were carried out using SPSS 22.0

(SPSS Inc., Chicago, IL, USA) and/or GraphPad Prism 9

software (GraphPad Software, San Diego, CA, USA). Simple

and relative frequencies were used for analysis of categorical

variables. Median, average, standard deviation, and range values

were used for analysis of continuous variables. Continuous

variable data were tested for normality using the normality

test. Student’s t-tests and the Mann–Whitney U tests were

used for normally distributed continuous data and non-

normally distributed continuous variables, respectively.

Bonferroni correction was used to correct for multiple

variables. One-way ANOVA was used for normally distributed

continuous variables when comparing three or more

populations, and the Kruskal-Wallis rank-sum test was used

for non-normally distributed continuous variables. Repeated

measures ANOVA tests were employed for factors that change

over time. To compare pre- and post-treatment results, paired t-

tests were performed. The predictive efficacy of Tg and CD4+ T

cell subsets was assessed using univariate logistic regression

analysis. Predictive ability was assessed using multiple

regression analysis. To distinguish ER from NER, receiver

operating characteristic (ROC) curves were drawn, and the

optimal cut-off value for each index was selected. The area
frontiersin.org
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under the curve (AUC) was determined using a 95% confidence

interval (CI). Statistical significance was set at p < 0.05.
3 Results

3.1 Comparison of clinical data

The clinical data of the two groups are summarized in

Table 1. The ER group consisted of 21 patients with an average

age of 43.95 ± 12.54 years, 71.4% (n = 15) of whom were female.

The NER group included 18 patients with an average age of 40.77

± 2.24 years, with 61.12% (n = 11) being female. There was no

significant difference between the two groups in terms of age,

gender, tumor volume, number of lesions, BMI, or partial testing

(p > 0.05; Table 1). Furthermore, there were no statistically

significant changes between the two cohorts in the four blood

lipids (TC, TG, HDL-C, and LDL-C), lymphocytes, neutrophils,

ALT, or AST (p > 0.05; Figure S1). Several studies have shown

that these measures are strongly associated with thyroid cancer

(32–34); however, we did not find significant differences between

the two cohorts.
Comparative analysis of thyroid function
and thyroglobulin levels in efficacy
response and non-efficacy response
groups before and after radioactive
iodine therapy (RAIT)

To exclude the possibility of TSH-suppressing treatment

influencing the study, we compared thyroid function in the two
Frontiers in Immunology 04
groups before and after RAIT. Serum FT3 and FT4 levels in the

ER and NER groups rose swiftly after treatment with

levothyroxine sodium pills, whereas TSH levels quickly

decreased, and thereafter, thyroid function stabilized

(Figures 1A–C). Simultaneously, no significant changes in

thyroid function were identified between the two groups (p >

0.05; Figures 1A–C). The variations in serum Tg levels in the two

groups were also studied before and after therapy. The results

indicated that Tg levels in all participants fell immediately and

stabilized following therapy. From 30 days to 180 days after

RAIT, patients in the ER group showed significantly lower Tg

levels than those in the NER group (p < 0.05; Figure 1D).

Although there was no significant difference in Tg levels

between the two groups before RAIT, serum Tg levels in the

NER group tended to be higher than that in the ER group. As a

result, lower baseline Tg levels are closely linked to

RAIT effectiveness.
3.3 Comparative analysis of the
distribution of CD4+ T cell subsets in
pre-RAIT ER, NER, total DTC, and HC
groups

In all DTC patients (ER + NER), the proportion of Th17 cells

(p < 0.05; Figure S2C) was significantly higher, while the

proportion of Treg cells (p < 0.001; Figure S2D) was

significantly lower, compared to the HC group. The

proportions of Th1 and Th2 cells were not significantly

different between the two groups (p > 0.05; Figures S2A, B).

The proportion of Treg cells was significantly lower in the ER

group compared with that of the HC group (p = 0.001; Figure
TABLE 1 Comparison of general clinical data of the two groups of patients.

ER (n=21) NER (n=18) P

Age (year), median (range) 46 (20-77) 37.5 (24-59) 0.386

Tumor size (cm), mean ± SD 1.35 ± 0.89 1.31 ± 1.02 0.908

Gender, n (%) 0.734

Male 6 (28.57) 7 (38.88)

Female 15 (71.43) 11 (61.12)

Number of lesions, n (%) 0.748

Single lesion 10 (47.61) 7 (38.88)

Multiple lesions 11 (52.39) 11 (61.12)

BMI 20.19 ± 3.11 21.01 ± 4.29 0.497

Leukocyte (10’9/L), mean ± SD 5.30 ± 1.16 5.81 ± 1.39 0.224

Red blood cells (10’12/L), mean ± SD 4.80 ± 0.55 5.01 ± 0.42 0.178

Hemoglobin (g/L), mean ± SD 141.09 ± 21.24 146.8 ± 19.69 0.39

Urea (mmol/L), mean ± SD 3.72 ± 1.05 4.04 ± 1.29 0.392

Cr (mmol/L), mean ± SD 70.94 ± 11.14 71.17 ± 17.98 0.962

UA (mmol/L), mean ± SD 309.00 ± 86.14 364.00 ± 112.97 0.093
frontiersi
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S2D). The proportion of Th17 cells was significantly higher in

the NER group compared to the HC group (p = 0.037; Figure

S2C), whereas that of Treg cells was significantly lower (p =

0.013; Figure S2D). Furthermore, relative to the HC group, the

proportion of Th1 cells in the NER group was significantly

higher (p = 0.005; Figure S2A). The proportional distribution of

CD4+ T cell subsets in the ER and NER groups was compared,

and it was discovered that there was no significant difference

between the two groups (p > 0.05; Figure S2). We then examined

how the absolute levels of circulating CD4+ T cell subsets

differed between the different patient groups. In all DTC

patients, we found a substantial decrease only in the absolute

numbers of circulating Treg cells relative to those in the HC

group (p < 0.05; Figure 2B). This may be related to

tumor burden.
3.4 Dynamic observation of the
distribution characteristics of CD4+ T cell
subsets before and after RAIT in ER
and NER groups

Compared with pre-RAIT, the proportions of circulating CD4+

T cell subsets in ER, NER, and all DTC patients were not

significantly altered 30 d after RAIT (p > 0.05; Figures S3A–D).

The proportion of circulating Th1 cells in ER, NER, and all DTC

patients was significantly reduced 90 days after RAIT (p < 0.05,

Figure S3A). The proportion of circulating Th2 cells in NER was
Frontiers in Immunology 05
also significantly reduced 90 days after RAIT (p < 0.05; Figure S3B).

We also compared and analyzed the proportional differences of

circulating CD4+ T cell subsets between ER and NER patients.

Before RAIT, NER patients had a much larger proportion of Th1

cells than ER patients (p = 0.041; Figure S3E). 30 days after RAIT,

the proportion of Th1 cells in the two groups remained significantly

different (p = 0.019; Figure S3E). During the 90 days after RAIT,

numbers of circulating Th1 cells of all participants increased steadily

over time before dramatically decreasing.

Subsequently, we used dynamic analysis to analyze changes

in absolute circulating CD4+ T cell subset numbers before and

after RAIT. The absolute numbers of all circulating CD4+ T cell

subsets in both the ER and total DTC groups were significantly

lower 30 days after RAIT than those pre-RAIT (p < 0.05;

Figures 3A–D). In the NER group, the absolute numbers of

circulating Th1, Th17, and Treg cells were significantly lower 30

days after RAIT than pre-RAIT (p < 0.05; Figures 3A, C, D). 90

days after RAIT, the absolute numbers of circulating Treg cells in

the ER and total DTC groups were significantly greater than

those 30 days after RAIT (p < 0.05; Figure 3D). 90 days after

RAIT, the absolute counts of circulating Th1, Th2, and Treg cells

in the NER group and total DTC groups were significantly lower

than those before RAIT (both p < 0.05; Figures 3A–C).

Surprisingly, we discovered that the absolute Th1 and Th17

cell counts in the ER group were lower 90 days after RAIT than

before RAIT (p < 0.05; Figures 3A, C), but we observed a

recovery trend for both cell types. This indicated that in the

ER group, circulating CD4+ T cells had begun to recover to
B

C D

A

FIGURE 1

Comparative analysis of the dynamic changes and differences in thyroid function and Tg in ER and NER groups before and after RAIT. Changes
in serum FT3 (A), FT4 (B), TSH (C), and Tg (D) in the two groups of patients before and after RAIT. ER, excellent response; NER, non-excellent
response; RAIT, radioactive iodine treatment; Tg, serum thyroglobulin; d, day; 180~, expressed as 6 months to 1 year after RAIT.
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pre-RAIT levels. This might be a key factor underlying better

prognoses in ER patients. In the NER group, however, the

majority of circulating CD4+ T cell subsets had not recovered,

which might be due to persistent tumors and/or metastases

during RAIT (Figures 3A–D). Next, we investigated the

differences in the absolute CD4+ T cell counts between the ER

and NER groups. Results indicated that numbers of the CD4+ T

cell subsets in the ER group were considerably lower than those

in the NER group before RAIT (p < 0.05; Figures 3E–H).

Additionally, 30 days after RAIT, those of the ER group

remained significantly lower than those of the NER group (p <

0.05; Figures 3E–H). The absolute counts of circulating CD4+ T

cell subsets did not differ significantly between the two groups 90

days after RAIT (both p > 0.05; Figure 3E–H). This shows that

whereas the baseline numbers of circulating CD4+ T cell subsets
Frontiers in Immunology 06
in the ER group were much lower than those of the NER group,

each circulating CD4+ T cell subgroup had a greater potential to

adapt and recover in the ER group. This might be because

patients in the NER group had non- or low-functioning CD4+ T

cell subsets, and/or CD4+ T cell subsets which were resistant to

the body’s immune regulatory systems. The molecular pathways

underlying these results should be investigated further.
3.5 Comparative analysis of the
predictive value of CD4+ T cell subsets
and Tg levels

Univariate analysis revealed that the effectiveness responses

(ER and NER) of RAIT were significantly associated with each
B

A

FIGURE 2

Comparative analysis of circulating CD4+ T cell subsets (Th1, Th2, Th17, and Treg cells) between patients with ER, NER, and all DTC patients
(ER + NER) before RAIT and HC.(A) Flow cytometric analysis of representative CD4+ T cell subsets. (B) The absolute counts of circulating CD4+

T cell subsets in each group of patients before RAIT. ER, excellent response; NER, non-excellent response; RAIT, radioactive iodine treatment;
DTC, differentiated thyroid cancer; HC, healthy controls. **p < 0.01, ***p < 0.001.
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CD4+ T cell subgroup before and 30 days after RAIT in the

entire population (p < 0.05; Table 2). We did not conduct

univariate analyses on CD4+ T cell subsets 90 days after RAIT

since there were no significant differences between the two

groups. Our data also revealed that efficacy response was

significantly associated with pre-RAIT Tg levels (b = 0.107,

p = 0.024; Table 2), which is consistent with prior findings (14).
3.6 Construction and evaluation of
multiple predictive models

Using a multivariate approach, we evaluated the absolute

number of immune cells both before and after RAIT as

independent risk variables for RAIT success. Then, several
Frontiers in Immunology 07
prediction models were developed and assessed using

Tg together with other risk variables.
3.6.1 Predictive model based on pre-RAIT
CD4+ T cell subset absolute count
and Tg levels

Even after controlling for the interaction between these two

factors, Tg levels and absolute pre-RAIT Th1 cell counts were found

to be independently associated with RAIT success using logistic

multiple regression analysis (Figure 4A). The optimum cut-off

values separating ER and NER patients, according to ROC curve

measurement, were 5.82 g/L (AUC = 0.651, b = 0.099) and 100.73

cells/L (AUC = 0.775, b = 0.073). The ROC curve findings showed

that the combined model including pre-RAIT CD4+ T cell subset
B

C

D

A E

F

G

H

FIGURE 3

Dynamic changes and differences in absolute counts of circulating CD4+ T cell subsets in patients with ER, NER, and all DTC patients (ER+NER) before
and after RAIT. (A–D) Dynamic changes in the absolute counts of circulating CD4+ T cell subsets before and after RAIT in each group. (E–H) Differences
in the distribution and changes of absolute CD4+ T cell subsets counts before and after RAIT in the ER and NER groups. *p < 0.05, **p < 0.01,
***p < 0.001. ER, excellent response; NER, non-excellent response; RAIT, radioactive iodine treatment.
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count and Tg levels (Model 1; AUC = 0.905, b = 0.048) had a better

predictive capacity than the two indicators alone (Figure 4B).

3.6.2 Predictive model based on CD4+ T cell
subset absolute count 30 days after RAIT and
Tg levels

According to logistic multiple regression analysis, the

absolute numbers of Treg cells 30 days after RAIT and Tg

levels were independently related to RAIT success. The ROC

curve revealed that the appropriate cut-off for the absolute Treg

cell count 30 days after RAIT was 19.04 cells/L (AUC = 0.791,

b = 0.073). Furthermore, the ROC curve findings revealed that

the combined model including CD4+ T cell subset absolute

count 30 days after RAIT and Tg levels (Model 2; AUC = 0.918,

b = 0.043) had a better predictive ability than each index

individually (see Figure 4D).

3.6.3 Predictive model based on Th1 before
RAIT, Treg 30 days after RAIT, and Tg levels

According to a logistic multiple regression analysis, Tg levels

and absolute Treg numbers 30 days after RAIT were

independently associated with RAIT success (Figure 4).

Considering the predictive power of Model 1, we made a

combined prediction model using pre-RAIT Th1 levels, Treg

levels 30 days after RAIT, and Tg levels (Model 3), which had

better predictive power (AUC = 0.952, b = 0.03) than the

individual predictors and Models 1 and 2 (see Figure 4F).
4 Discussion

The distribution of circulating CD4+ T cells before and after

RAIT in DTC patients with various treatment outcomes was

dynamically analyzed for the first time, to the best of our

knowledge, in this study. We also compared differences in

general patient data between the two patient groups.

First, the impact of TSH-suppressing treatment in the two

patient groups was investigated. There were no significant
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differences in the levels of FT3, FT4, or TSH between the two

groups. This confirmed that the study’s findings were not

impacted by differential TSH levels. In addition, a comparison

of Tg levels between the ER and NER groups revealed that lower

baseline Tg levels were directly connected to the efficiency of

RAIT (14, 35, 36).

We examined the responses of circulating CD4+ T cell subsets

to RAIT in 39 DTC patients with varying therapeutic outcomes. A

prior study discovered that the proportion of circulating Treg cells

in DTC patients was considerably higher one month after RAIT

compared to before RAIT (37). This, however, contradicts our

observations. This might be due to the small sample size of our

study as well as the high variability. The absolute numbers of all

circulating CD4+ T cell subsets were reduced by various degrees in

both ER and NER groups 30 days following RAIT, indicating that

RAIT may induce some immune suppression; however, this effect

is transient and indiscriminate. We discovered that 90 days after

RAIT, the circulating CD4+ T cell subsets in the ER group had

mostly recovered to pre-RAIT levels compared with those in the

NER group which did not show similar recovery trends. This

shows that circulating CD4+ T cells in ER patients are more

adaptable and resilient, likely because patients in the NER group

had a higher proportion of non- or hypofunctioning CD4+ T cell

subsets, as well as immune system resistance. Surprisingly, we

discovered that 90 days after RAIT, the absolute amount of

circulating Th1 cells in the NER group continued to fall. These

findings are consistent with the role of Th1 cells in anti-tumor

immunity (38–41). Additionally, this study discovered that

changes in circulating CD4+ T cell subsets in the total DTC

group were the result of a combination of trends in both ER and

NER patients. This implies that the reported immunological

phenomena do not adequately clarify the immune condition of

DTC patients if treatment effectiveness is not differentiated.

Exploring the distribution patterns of circulating CD4+ T cell

subsets in DTC patients with various treatment outcomes is thus

beneficial for targeted and precise immunotherapy.

Simultaneously, we looked at the differences in circulating

CD4+ T cell subset distribution between the two groups of
TABLE 2 Univariate analysis of prognosis in DTC patients.

Variable b Wald OR 95% CI P Value

Tg 0.107 5.116 1.113 1.014-1.221 0.024

Th1 0.019 7.264 1.019 1.005-1.033 0.007

Th2 0.362 4.522 1.436 1.029-2.004 0.033

Th17 0.275 4.204 1.316 1.012-1.712 0.04

Treg 0.135 4.92 1.145 1.016-1.291 0.027

Th1-30 0.022 6.735 1.022 1.005-1.039 0.009

Th2-30 0.409 4.309 1.505 1.023-2.214 0.038

Th17-30 0.311 3.999 1.365 1.006-1.851 0.046

Treg-30 0.204 6.979 1.226 1.054-1.427 0.008
frontier
Tg, serum thyroglobulin; Th1-30, Th2-30, Th17-30, and Treg-30 represent quantification of CD4+ T cell subsets on day 30 after RAIT.
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patients before and after RAIT. Before and 30 days after RAIT,

our findings revealed substantial disparities in circulating

immune cells, and patients with lower absolute numbers of

CD4+ T cell subsets had a better prognosis, consistent with

previous studies (42). Patient prognosis is much poorer when

CD4+ T cells are heavily proliferated, which might imply the

existence of highly inflammatory residuals or recurring foci of

highly inflammatory malignancies which lack specific

immunogenic targets.

The importance of investigating absolute immune cell numbers

is emphasized in this work. As opposed to proportions, absolute

quantitative research can more accurately and comprehensively

depict the state of immunological alterations. This has been

demonstrated in several immunological disorders (43–45).

Finally, we developed and tested three different predictive

models. When compared with the individual metrics, the

performance of the three predictive models were superior.

Model 3 had a greater AUC than the first two, indicating
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greater predictive power. However, we recommend the first two

models due to their economic benefits. Model 1 is easier to

manage, but Model 2 gives predictive data as well as the

immunological state of patients following RAIT. Therefore,

clinicians can select the best-suited model for their requirements.

This study has some limitations: 1) the sample size is small;

2) the present study does not rule out the effects of

hypothyroidism before RAIT on the immunological function

of DTC patients; 3) the study did not perform further study of

tumor tissues and tumor microenvironments. Therefore,

prospective, large-sample, multi-center investigations are

needed in the future, and the impact of pre-RAIT

hypothyroidism on DTC patient immunological function

should not be ruled out.

In summary, our data demonstrate, for the first time, that

circulating immune cell profiles in DTC patients are highly

heterogeneous. These differences can be exploited to predict

patient prognosis and develop more targeted treatment
B

C

D

E

F

A

FIGURE 4

Multivariate logistic analysis and receiver operating characteristic (ROC) analysis. (A, D) Model 1 is based on pre-RAIT Tg and absolute counts of
pre-RAIT CD4+ T cell subsets. (B, E) Model 2 is based on pre-RAIT Tg and absolute counts of CD4+ T cell subsets 30 d after RAIT. (C, F) Model 3
is based on pre-RAIT Tg and absolute counts of CD4+ T cell subsets before and 30 d after RAIT. RAIT, radioactive iodine treatment; Tg, serum
thyroglobulin. * represents the parameters of the model establishment.
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regimens. Fewer absolute counts of circulating immune cells are

linked to improved clinical outcomes as well as stronger adaptive

and resilience capacities. Moreover, differences in the tumor

microenvironment appear to play an integral role (46–50). As a

result, more research is needed to differentiate individuals with

high absolute T cell counts from those with low absolute T cell

counts. In the future, single-cell sequencing and gene expression

profiling approaches should be coupled to properly characterize

the distinctions between the two. Furthermore, in DTC patients,

RAITmay produce transient and indiscriminate radiation damage

to circulating immune cells, which may have implications that we

do not currently understand. Finally, we built various predictive

models using the high predictive power of CD4+ T cell subsets to

offer more accurate prognostic information.
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