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Abstract

The idea that life may have started with an “RNA world” is attractive. Wherein, a crucial

event (perhaps at the very beginning of the scenario) should have been the emergence of a

ribozyme that catalyzes its own replication, i.e., an RNA replicase. Although now there is

experimental evidence supporting the chemical feasibility of such a ribozyme, the evolution-

ary dynamics of how the replicase could overcome the “parasite” problem (because other

RNAs may also exploit this ribozyme) and thrive, as described in the scenario, remains

unclear. It has been suggested that spatial limitation may have been important for the repli-

case to confront parasites. However, more studies showed that such a mechanism is not

sufficient when this ribozyme’s altruistic trait is taken into full consideration. “Tag mecha-

nism”, which means labeling the replicase with a short subsequence for recognition in re-

plication, may be a further mechanism supporting the thriving of the replicase. However,

because parasites may also “equip” themselves with the tag, it is far from clear whether

the tag mechanism could take effect. Here, we conducted a computer simulation using a

Monte-Carlo model to study the evolutionary dynamics surrounding the development of a

tag-driven (polymerase-type) RNA replicase in the RNA world. We concluded that (1) with

the tag mechanism the replicase could resist the parasites and become prosperous, (2) the

main underlying reason should be that the parasitic molecules, especially those strong para-

sites, are more difficult to appear in the tag-driven system, and (3) the tag mechanism has a

synergic effect with the spatial limitation mechanism–while the former provides “time” for the

replicase to escape from parasites, the latter provides “space” for the replicase to escape.

Notably, tags may readily serve as “control handles”, and once the tag mechanism was

exploited, the evolution towards complex life may have been much easier.

Introduction

The idea that an RNA world [1] existed before the DNA and protein-based life has become a

central hypothesis in regard of early evolution [2–5]. Moreover, it has been argued that the

RNA world may have represented the start point of life, as described in the so-called “RNA

first” scenario [6,7]. In this scenario, it has been popularly assumed that an RNA replicase,
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namely, a template-dependent RNA synthetase ribozyme capable of catalyzing its own replica-

tion (via an intermediate of its complement), should have emerged first [5–8]. If this RNA spe-

cies, benefiting from its own function, could indeed spread (through replication) in the

prebiotic environment, then its emergence may have represented a significant event in the ori-

gin of life, marking the outset of Darwinian evolution [9].

There have been long-standing efforts to construct such an RNA replicase by in vitro evolu-

tion experiments [10–15]. Recently, an artificial ribozyme was reported being able to catalyze

the copying of some RNA templates as long as itself (~200nt) [16], and it seems that the chemi-

cal potential of RNA to fulfill its own replication has almost been confirmed. Moreover, an

interesting study demonstrated that such an RNA polymerase ribozyme may appear by assem-

bling from simple RNA oligomers (e.g., about 30nt long, possibly arising from prebiotic chem-

istry) under certain conditions involving freeze-thaw cycles [17]. However, even if such an

RNA replicase is chemically feasible and may appear (as one or several molecules) in the early

RNA world as well, how could the ribozyme be selfish enough to favor its own replication,

while ignoring other RNA molecules under the same circumstances [6,7], and thus spread

(thrive) in the system? None of these experimental studies could offer an answer. This prob-

lem, which is referred to as the “parasite” problem, is not a chemical problem, but a problem

of evolutionary dynamics [9].

To date, theoretical modeling and computer simulation has become a most powerful

approach to address issues concerning evolutionary dynamics in the field of origin of life

[9,18–21]. In fact, by computer simulation, it has been shown that spatial limitation [22] may

have played an important role for an RNA replicase to overcome the parasite problem–if the

ribozyme’s molecules tend to assemble together and be kept away from parasite molecules,

they may be more likely to catalyze their own replication. However, if the replication process is

considered in detail, i.e., not as an instantaneous step, then the replicase may be difficult to

spread in the system, even if spatial limitation is assumed [23]. The reason should be that

when the replicase is functioning, it would bind on the template, and thus have less chance to

work as a template itself, compared with other RNA molecules [24–26]. In other words, the

replicase, which needs to be selfish for the sake of its spreading, is, in practice, altruistic. It

would be difficult for this altruistic ribozyme to resist parasites–counting merely on the spatial

limitation. Indeed, in a previous modeling study, we revealed that if the replicase was a tem-

plate-dependent ligase instead of a template-dependent polymerase (as it is usually assumed),

it may spread in the system–because the ligase would loosely bind to the template (unlike the

polymerase), it may easily drop from the template and thus have more chance to act as a tem-

plate itself [27]. However, obviously, the efficiency of the ligase-type replicase would be quite

limited, especially considering its “loosely binding” feature. It seems that even if the first repli-

case had been of the ligase-type, the emergence of a polymerase-type replicase, which bound

the template tightly and was more efficient, would have been unavoidable before the RNA

world became advanced, with more and longer “genes” needed to be replicated.

Then, beyond spatial limitation, can the RNA replicase have other strategies that aid in

overcoming the parasite problem? Indeed, a possible solution is the tag mechanism [6,7,28].

The ribozyme may recognize itself through a short subsequence. Actually, tag mechanisms are

commonly used mechanism in modern life, including in the recognition of the starting sites of

DNA/RNA that should be replicated, transcribed, or translated. For example, the “origin of

replication” represents a specific subsequence within DNA which may be bound by special

proteins that can initiate the DNA’s replication. Thus, the replication could always start at pre-

cisely the same locus, while neglecting others. As for transcription and translation, the corre-

sponding cases are the promoter and the ribosome-binding site, respectively. In fact, such

specific recognition events at the molecular level are so common in modern life that we can
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cite pages of examples, indicating that it is an easy-to-exploit mechanism. Thus, in the earliest

scenario concerning life, the RNA polymerase ribozyme may also have made use of it–adding

a specific tag sequence to the ribozyme (and its complementary chain) may represent a solu-

tion to the parasite problem. That is, through the tag, the ribozyme can recognize and replicate

itself but neglect unrelated species. However, apparently, there is a new problem: the unrelated

species, i.e., parasites, can also contain the tag! Moreover, as it was pointed out, with respect to

the “sequence space”, the relative abundance of the replicase versus the parasites does not

change at all when the tag is added [29]. In other words, the tag mechanism is “equitable” for

the replicase and the parasites. In this consideration, then, it seems that the tag mechanism can

hardly help to solve the parasite problem.

To study in depth whether the tag mechanism can help the RNA replicase (polymerase-

type) to overcome the parasite problem, we conducted a computer simulation. The results pro-

vided a positive answer to this question. In a tag-ruled system, parasite molecules, especially

those strong ones, are more difficult to appear. This effect, synergizing with the spatial limita-

tion effect, would result in a “better” dynamic spatial distribution structure, which leads to the

prosperity of the RNA replicase.

Methods

Our computer simulation was based on a Monte-Carlo method (similar to the cellular automa-

ton) that we established approximately a decade ago [23]. It has been used to conduct a series

of studies on the evolutionary dynamics involved in the development of the RNA world

[27,30–34]. In particular, the model used here is directly derived from that of a study on the

behavior of a ligase-type RNA replicase in the early RNA world [27]. In the present study,

our focus turns to a polymerase-type RNA replicase, which exploits the so-called tag mecha-

nism to recognize itself and its complementary sequence during the catalysis of its own

replication.

Generally, we assume a two-dimensional surface for the system, with an N × N square grid,

among which units are distributed, including the raw materials to synthesize nucleotides (or

say, nucleotide precursors, in quotient of nucleotides), nucleotides, and RNAs. An RNA con-

taining a characteristic domain (arbitrarily presumed) is assumed to be able to act as a tem-

plate-dependent polymerase ribozyme. A short specific sequence (also arbitrarily presumed) is

assumed to be a tag (only valid when at the 3’-end of an RNA, see below), and its reverse com-

plement is referred to as a “reverse-tag” (at the 5’-end of an RNA). Here, using arbitrarily pre-

sumed sequences to characterize the replicase and the tags is on account of our ignorance in

this aspect and based on our understanding that the key factor in the evolutionary dynamics is

the correspondence between a sequence and its relevant function rather than the actual

sequence. Also based on such an understanding, we tend to adopt sequences that are much

shorter than those plausible in reality, in order to avoid cumbersome computations–typically,

9nt for the characteristic domain of the ribozyme and 3nt for the tag and reverse-tag, as

adopted in the cases shown here in the results. But note that a tag shorter than 3nt is obviously

not representative and should be avoid. A tag should substantially label specificity–just sup-

pose that a 2nt tag means 1/16 of random sequences would carry it, and even more extremely,

a 1nt tag means 1/4 of random sequences would carry it. In a Monte-Carlo step (time step), for

units in a grid room, the following events may occur (also refer to Fig 1):

1. A quotient of raw materials may form a nucleotide (randomly as A, G, C, or U) with PNF

(see Table 1 for a description of the abbreviation and those appearing in the following).

2. A nucleotide may decay to a quotient of raw materials with PND.
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3. RNAs (including nucleotides) may conduct random ligation with PRL, thus forming longer

RNAs.

4. A polymerase ribozyme may bind onto an RNA template with PRB, but if the template is a

single chain containing the tag at its 3’-end, then the binding probability would be PRBT. It

should be noted that to be bound by a polymerase, the RNA template must be longer than

the cover-length of the polymerase. Considering the ribozyme’s folding, the cover-length is

assumed to be (L+2)1/2, where L is length of the characteristic domain of the ribozyme.

5. An RNA template may attract a substrate (nucleotide/oligomer) with PAT if the correspond-

ing residue(s) could base-pair correctly or not correctly but within the limitation of false-

pairing PFP. An RNA template with a bound polymerase ribozyme may attract a substrate

(nucleotide) with PATR if they could base-pair correctly or not correctly but within the

limitation of false-pairing PFPR. The PFP and PFPR are associated with the fidelity of the

replication.

Fig 1. Events occurring in the system and their associated probabilities. The diagram shows these

events in a background of one grid room in the N ×N grid. L-shapes represent nucleotides, dots represent raw

materials (nucleotide precursors) and crescent-shapes represent the replicase. Dashed lines outline a

complete turn of the template-directed copying catalyzed by the polymerase-type replicase. Note that

nucleotides and RNAs may also move into or out of the room, with a probability in relation to PMV (see the text

for details).

doi:10.1371/journal.pone.0172702.g001
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6. Substrates assembling on an RNA template may conduct template-directed ligation with

PTL in a non-enzymatic mode or with PTLR under the catalysis of a bound polymerase

ribozyme.

7. A bound polymerase ribozyme would drop from its template when the whole chain is cop-

ied, or may drop with PRD when the copying has not yet been completed.

8. An RNA double chain region may dissociate, given the separation of base pairs with

PSP−the probability of the dissociation is actually set as PSP
n/2, where n is the number of the

base pairs, and the introduction of the 1/2 corresponds to the consideration that self-folding

of the single chains may aid in the dissociation.

9. An RNA may degrade into shorter RNAs (including nucleotides), given the breaking of

phosphodiester bonds with PBB. The breaking probability for the bond at the end of an

RNA chain (either the 3’ or 5’-end) is FEB times that for those bonds within the chain.

When the breaking site is within a double-chain region, the breaking probability becomes

PBB
2. The bound polymerase ribozyme on the template has a chain-breaking probability of

PBB
3/2, because the self-folding of the ribozyme may protect it from degradation to an

extent. Certainly, when the ribozyme’s chain breaks, the resulting pieces would drop from

the template.

10. A unit may move to an adjacent grid room, the probabilities of which for a quotient of raw

materials is PMV, for a nucleotide is assumed to be PMV/2, and for an RNA is assumed to

be (PMV/2)/m1/3, where m is the mass of the RNA relative to a nucleotide. The introduc-

tion of the 1/3 corresponds to the approximation that the diffusion rate is proportional to

a one-dimensional factor of that RNA molecule.

Table 1. Parameters used in the Monte Carlo simulation.

Probabilities Descriptions Magnitudesa Valuesb

PAT (Nts or oligomers) attracted by template (non-enzymatic) [0.001, 0.01] 0.01

PATR (Nts) attracted by template with a ribozyme binding on [0.1, 0.9] 0.9

PRB Ribozyme binding onto template (without the tag) [1×10−4, 0.01] 0.001

PRBT Ribozyme binding onto template containing the tag [0.1, 0.9] 0.9

PNF Nucleotide formation. [0.001, 0.01] 0.01

PND Nucleotide decay [0.001, 0.01] 0.001

PRL Random ligation of nucleotides and oligonucleotides [1×10−7, 1×10−5] 2×10−6

PBB Phosphodiester bond breaking in an RNA chain [1×10−6, 1×10−4] 2×10−5

PFP False base-pairing [0.01, 0.1] 0.01

PFPR False base-pairing with ribozyme on the template [1×10−4, 0.01] 0.001

PTL Template-directed ligation (non-enzymatic) [1×10−4, 0.01] 0.001

PTLR Template-directed ligation catalyzed by the ribozyme [0.1, 0.9] 0.9

PRD Ribozyme dropping from the template. [1×10−4, 0.01] 0.001

PSP Separation of a base pair. [0.01, 0.1] 0.08

PMV Movement [1×10−4, 0.01] 0.001

Others Descriptions Magnitudesa Valuesb

N The scale of the system (i.e., it is defined as an N × N grid) [20, 40] 20

TNPB Total nucleotide precursors introduced in the beginning [20000, 80000] 40000

FEB Factor for end-breaking of an RNA chain [10, 30] 20

a. The magnitudes represent the general scopes of the values that were adopted in our study.

b. The values correspond to those used in the case shown in Fig 2A.

doi:10.1371/journal.pone.0172702.t001
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For the setting of the probabilities, some principles should be followed. According to the

tag mechanism, PRBT should be much greater than PRB. Because the RNA replicase works as a

polymerase ribozyme, PRD should be quite small, PATR>>PAT, PTLR>>PTL, and PFPR>PFP.

Other considerations may include PTL >> PRL, PBB� PRL, and PNF� PND. The general magni-

tudes used to set the parameters in the study are listed in Table 1.

Fig 2. The tag mechanism is important for the polymerase-type RNA replicase to resist parasites and spread in the system. (A) The

system in which the tag mechanism works. See Table 1 (the last column) for the parameter values adopted in this case. Characteristic domains of

the polymerase: CGACGUCAG; 3’-tag: AUG; and 5’-reverse-tag: CAU. At step 1×104, four grid rooms, chosen randomly, were each inoculated

with five molecules of the following RNA species: a double-tagged polymerase (AUGCGACGUCAGCAU), the complement of the double-tagged

polymerase, a double-tagged control (AUGCAGUCGUACCAU) and the complement of the double-tagged control. Circles represent the double-

tagged polymerase plus its complement. Triangles represent the RNA species (longer than the polymerase’s cover-length) that contain a 3’-tag

but not a characteristic domain of the polymerase (or its complement). Squares represent the double-tagged control plus its complement. (B) The

system in which the tag mechanism does not work. The situation is the same as that in the case shown in A, except that PRB is set to be equal to

PRBT (0.9). (C) The system in which the tag mechanism does not work and also, no tag sequences are introduced. The situation is the same as

that in the case shown in B, except that the polymerase and its complement (circles), as well as the control and its complement (squares), do not

contain the two tags. Triangles represent the RNA species (longer than the polymerase’s cover-length) that do not contain the characteristic

domain of the polymerase (or its complement). (D) The same case as that shown in A, but PRB is turn up to be equal to PRBT (0.9) at step 3×106.

doi:10.1371/journal.pone.0172702.g002
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At the beginning of a simulation, raw materials are introduced into the system such that

they are randomly distributed among the grid rooms. The raw materials would form nucleo-

tides, which then form RNAs by random ligation–the system evolves step by step through the

events in the model (as described above). A few molecules of the polymerase ribozyme (i.e.,

the RNA replicase) are inoculated soon after the initial step. The quantities of the ribozyme

and the parasites are monitored by checking relevant subsequences (i.e., the ribozyme’s char-

acteristic domain, the 3’-tag and the 5’-reverse-tag). Other features could also be traced or

recorded if necessary, such as the quantities of raw materials, nucleotides, the chain-length dis-

tribution of the RNAs, and the spatial distributions of the replicase and parasites.

Results

Spread of the tag-driven polymerase-typed RNA replicase

The simulation showed that the tag-driven polymerase may thrive in the system. Fig 2A shows

a typical case of such a situation. Initially, a few molecules of the polymerase with a tag and a

reverse-tag (at its 3’- and 5’-ends, respectively) were inoculated, and then they spread in the

system, reaching a level obviously higher than that of parasites. Here, a parasite refer to any

RNA molecule longer than the polymerase’s cover-length (see “Methods”) that contains a tag

at its 3’-end but is not a ribozyme or its complement. They are called “parasites” because they

may occupy the polymerase and thus interfere with the self-favoring replication of the ribo-

zyme. Actually, if a parasite does not contain a reverse-tag at its 5’-end, it cannot really repli-

cate because its complementary sequence, even being copied out, would not contain a 3’-tag,

and thus cannot be recognized by the polymerase. So here we refer to a parasite only contain-

ing a 3’-tag as a “pseudo-parasite”. Indeed, “true-parasites” should be those really able to repli-

cate. Thus, here only the parasites containing both a 3’-tag and a 5’-reverse-tag can act as

“true-parasites” (note that all parasites in a system without the tag mechanism are true para-

sites, see below). In fact, to determine whether the polymerase’s spread is caused by its own

function, a control RNA species was introduced together with the ribozyme at the initial inoc-

ulation, in the same number of molecules. The control species contains both a 3’-tag and a 5’-

reverse-tag, thus being a true-parasite, but it is rather “weak” because its sequence is long (the

same as that of the ribozyme)–later in this paper we will address the issue of parasite length.

However, when PRB is set to the same value as that of PRBT, which means the tag mechanism

does not work, the inoculated polymerase cannot spread (Fig 2B). It may be argued that in this

case, the failure of the polymerase is caused by the useless subsequences, the tag and reverse-tag,

which retarded its replication. To exclude such a potential reason, we conducted another simu-

lation in which the inoculated polymerase does not containing the useless tag and reverse-tag,

and the result showed that the polymerase could not spread either (Fig 2C). Moreover, in fact,

after the replicase spread in the system, when we turned up the value of PRB midway to equal

that of PRBT, the prosperity would collapsed immediately (Fig 2D). These results are in accor-

dance with our previous work in which a positive outcome for the thriving of a polymerase-type

RNA replicase, based only on the mechanism of spatial limitation, was not found [23,27].

As mentioned in the introduction, the tag mechanism appears to be “equitable” for the rep-

licase and the parasites. Obviously, such an “equitable” rule could result in different influences

on the replicase and the parasites, leading to the prosperity of the replicase. Then why? Where

does the difference come from?

Why the tag mechanism can work

There are two ways for an RNA molecule to appear in the system, de novo or through replica-

tion. Except for in the very beginning, nearly all the replicase molecules in the system arise
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from replication. The introduction of the tags would add a little burden to the replication, but

this is trivial (when compared with its influence on parasites, as explained below). In contrast,

parasitic molecules may form de novo at any time, through various routes (see below), and

this is an important way for them to appear. Additionally, because the parasites cannot repli-

cate by themselves, they will tend to die out if the replicase in the same region dies out, unless

they can move to a new region containing the replicase, which is not always successful, espe-

cially if the spatial limitation takes effect (see “Synergism between the tag mechanism and the

spatial limitation mechanism” for details). That is, parasites, often, “have to” appear de novo.

Notably, this is just the point at which the tag mechanism could work.

The tag mechanism makes the de novo appearance of parasites more difficult. Firstly, in a

system without the tag mechanism (i.e., a “tag-free” system, for short), any RNA species that

appeared through the random ligation of nucleotides and oligonucleotides would act as parasites

(if only they reaches the polymerase’s cover-length), and all of them would be true-parasites. In a

Fig 3. Influence of the tag mechanism on the two routes of the parasites’ de novo appearance. (A) Naturally appearing through random

ligation. The data are from different cases with different PRL values, and they were sampled at step 5 × 105 in these cases, which has the same

parameter settings (except PRL) as the case shown in Fig 2A but without the initial inoculation of the replicase (and the control). All of the RNA

molecules (longer than the cover-length of the polymerase) that are not the replicase or its complement were counted. Because of the limitation of

raw materials, the molecules would not increase with the enlargement of PRL continuously. White bars denote the molecules without the tag, gray

bars denote the 3’-tagged molecules, and black bars denote the double-tagged molecules. The lower half is an amplified version of the upper half,

to show those extremely rare double-tagged parasites (black bars) clearly. (B) Derived from the ribozyme (here only degradation is considered,

while partial replication is another important route–see the text). The data are from one case but recorded at different time steps. 104 double-

tagged replicase molecules were inoculated into the system at step 1 × 104, and only the event of RNA degradation is allowed (PBB = 2×10−5) in

the model. The bars are interpreted the same way as in A, and the lower half is an amplified version of the upper half.

doi:10.1371/journal.pone.0172702.g003
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system with the tag mechanism (i.e., a “tag-ruled” system, for short), however, only those happen

to contain a 3’-tag could be parasites, and only those happen to contain both a 3’-tag and a 5’-

reverse-tag could act as true-parasites! Indeed, a test simulation study with no initial inoculation

(of the RNA replicase, the control and their complements) demonstrates that within the natu-

rally formed RNA molecules (coming largely from the random ligation), those including the 3’-

tag (i.e., the 3’-tagged ones, for short), and especially those including both the 3’-tag and the 5’-

reverse-tag (i.e., the double-tagged ones, for short), are rare (Fig 3A).

Secondly, in the system, an important route for the appearance of parasites is from the deg-

radation of the RNA replicase or the partial replication of the RNA replicase. In the beginning

of a simulation case, raw materials are abundant, and the replication of the RNA species would

be quite active. However, because of the exponential feature of the amplification, the raw mate-

rials would soon become insufficient. In fact, like any ecological systems in our modern living

world, a shortage of raw materials should have been a common situation in the RNA world,

which is just a key driving factor for the Darwinian evolution therein. Thus, many replicase

(or its complement) molecules would stay in a “partially copied” status. Then, if the partially

copied products separate from their templates, or the templates break, parasites may arise nat-

urally. This is particularly the case for a tag-free system because there is nearly no limitation

for the parasites’ sequences. Howbeit, for a tag-ruled system, parasites, especially true-parasites

do not so readily appear from the “ribozyme-derived” route. In such a system, partial copying

would never give rise to 3’-tagged parasites because the chain synthesis starts at 5’-end. Addi-

tionally, although the degradation may bring about 3’-tagged parasites, they would be less in

quantity (than those parasites arise likewise in the tag-free system) because after the chain

breaking, the 5’-end remain cannot act as a parasite. In addition, the degradation cannot result

in double-tagged parasites (i.e., true-parasites in the tag-ruled system). In a test simulation, we

inoculated a large number of the ribozyme molecules, and only allowed the event of RNA deg-

radation to occur. The short RNA molecules derived from the degradation of the ribozyme

molecules first increased and then decreased (Fig 3B), wherein the 3’-tagged RNA molecules

adopt a same trend, but, generally, at a much lower level. Surely, the double-tagged RNA mole-

cules cannot be found throughout the process, because only degradation is allowed–for a ribo-

zyme to derive shorter double-tagged RNA molecules, at least two chain breakings plus a

chain ligation (i.e., omitting the middle part) must occur.

Here, we should talk a little more about the true-parasites–in the context of their chain

length. In the system, true-parasites are more detrimental than pseudo-parasites because they

may give rise to more parasites through replication. However, long true-parasites cannot yet

threaten the replicase, as already shown in Fig 2A, wherein the control species is just a long

true-parasite (as long as the replicase). That is to say, one really important consequence of

introducing the tag mechanism should be that “short/strong true-parasites”, instead of true-

parasites per se, are difficult to appear. Obviously, in a tag-free system, either the de novo

route or the ribozyme-derived route would create short true-parasites readily. In a tag-ruled

system, however, things are different–short true-parasites, namely short double-tagged para-

sites therein, are difficult to form from random ligation (Fig 3A) or the replicase’s partial repli-

cation or degradation (Fig 3B). In fact, it is worth noting that double-tagged parasites may also

appear by mutation of the ribozyme during its replication. This can also be ascribed to the

ribozyme-derived route of the parasites’ emergence. Supposing that the mutation occurs in

the characteristic domain of the ribozyme (the region between the two tags), a double-tagged

parasite would arise and this seems not so difficult, depending on fidelity of the replication

(related to PFPR and PFP in our model). However, the resulting true-parasite is as long as the

ribozyme (similar to the control RNA species, Fig 2A), and can hardly threaten the replicase.

For this long double-tagged parasite to give rise to shorter double-tagged parasites, just like the
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situation for the ribozyme itself (mentioned above), at least two chain breakings plus a chain

ligation must occur. Certainly, there are also other ways for short double-tagged parasites to

appear by chance. For example, a partially copying product (which has a 5’-reverse-tag already)

happens to gain a 3’-tag by mutation and then drops from the template. But obviously, such

cases should be rather occasional. Notably, in the modern living world, “replication slippage”

may occur during replication and lead to the deletion of a few nucleotide residues [35,36].

Such a phenomenon, if occurring in our target system, might generate short double-tagged

parasites relatively easily. However, in practice, the “replication slippage" is a rather special

phenomenon. It is often associated with tandem repeats in the DNA genome, in which DNA

polymerase plays a significant role. Indeed, as we know, in general, during the replication of

genetic molecules, insertion-deletion mutations are much less frequent than substitution

mutations. That is, no matter how, in the tag-ruled system, short/strong true parasites should

be very difficult to appear.

In summary, while the tag mechanism almost does not influence the appearance of the rep-

licase molecules, it significantly influences the appearance of parasitic molecules in the system.

De novo appearance is an important way for parasitic molecules to form. But in a tag-ruled

system, it is difficult for parasites to appear de novo. In particular, those short/strong true-par-

asites, which may generate new ones by replication and really threaten the replicase, are very

difficult to appear de novo, either by random ligation or the ribozyme-derived route. This is

the main reason why the tag mechanism can work and promote the prosperity of the replicase.

Synergism between the tag mechanism and the spatial limitation

mechanism

Fig 4A shows the statistics of the RNA molecules which are not the replicase and its comple-

ment (but longer than the polymerase’s cover-length) during the spread of the replicase (the

case of Fig 2A). Firstly, indeed, a large portion of them do not contain the 3’-tag (white bars).

Thus, these RNA molecules, which would otherwise be parasites in a tag-free system, cannot

act as parasites here. That is, the self-catalyzed replication of the replicase is much less inter-

fered with in a tag-ruled system. Secondly, while we appreciate that, of all the parasites (gray +

black bars), only a portion are true parasites (black bars), we somewhat wonder why there is

still a substantial quantity of these double-tagged parasites (e.g., several dozen), given that they

are difficult to form de novo. They are likely mutants derived from the replication of the repli-

case, because this is a relatively easy way (comparing with others) for double-tagged parasites

to form. These long true-parasites, though not able to threaten the replicase, may still replicate

and increase to some extent. Then we checked into the length distribution of the double-

tagged parasites in the system (Fig 4B). The result shows that this speculation is right, because

almost all the double-tagged parasites are as long as the replicase.

However, we can notice that there are still some short double-tagged parasites, which show

up sporadically during the whole process. That is to say, in the case shown here, although short

double-tagged parasites may appear in the system occasionally, they cannot threaten the repli-

case also. Considering that spatial limitation has been shown to be important for early replica-

tors to resist parasites [22,37–42], which was also evidenced in our own studies [27,30], we

doubted that this mechanism may also have worked someway here, favoring the replicase.

Indeed, if we adopt a higher value of PMV, those short double-tagged parasites, especially the

shortest one–a “super-parasite” species consisting of merely a 3’-tag sequence and a 5’-reverse-

tag sequence, if appearing by chance, might spread in the system and the prosperity of the rep-

licase would be seriously compromised (Fig 5A, the parameter values are identical to those

adopted in the Fig 2A case, except that PMV’s value is doubled). Then, if we turn down PMV to
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the original value (as adopted in Fig 2A), the super-parasite descend and the replicase would

“fight back” (Fig 5B). Surely, if, instead of turn down, we turn up PMV further, the super-para-

site may become more prosperous, until the replicase cannot sustain the system (S1 File).

However, here, obviously, only the spatial limitation cannot take effect (we mean that the tag

mechanism does work) because in a tag-free system (e.g., the cases shown in Fig 2B and 2C)

we could not see any prosperity of the polymerase replicase no matter what a PMV value we

adopt. Taken together, these results support our speculation. That is, while the tag mechanism

is important for the replicase to spread, the mechanism of spatial limitation is also important

here. In particular, spatial limitation is important to suppress the spread of short true-parasites.

Then, it is interesting to ask: “How could the tag mechanism cooperate with the spatial limita-

tion mechanism in the process during which the polymerase replicase confronts parasites?”

We traced into the spatial distributions of the replicase and the parasites in the system. In

the tag-ruled system with a low PMV, as in Fig 2A, the polymerase spreads over the grid, while

the parasites, especially the true-parasites only show up sporadically–and they tend to be long

ones (as long as the double-tagged replicase; note that the sequence length is represented by

Fig 4. Parasites’ statistics during the spread of the replicase in the tag-ruled system. The case is the one shown in Fig 2A. (A) The RNA

molecules other than the replicase and its complement (longer than the polymerase’s cover-length). White bars denote the molecules without the

3’-tag, gray bars denote the 3’-tagged molecules (thus, pseudo-parasites), and black bars denote the double-tagged molecules (thus, true-

parasites). (B) The chain-length distribution of the double-tagged parasites. The longer the chain, the upper its corresponding bar is placed in the

stack. The super-parasites (6nt), which have a sequence that consists of merely a 3’-tag and a 5’-retag, are denoted in purple, and the double-

tagged parasites longer than the length of the double-tagged replicase (i.e., “16~”nt), are denoted in white. Others are denoted in different tones

from dark red to light yellow, according to their chain-length (the longer, the lighter)–those as long as the double-tagged replicase (15nt) are in the

lightest yellow. Note that those “16~” parasites are rare (e.g., see step 1.4×106 and 2.5×106), and this is not surprising because they are difficult to

form (though not impossible, for example, by the chain breaking of two double-tagged replicases and re-ligation of the longer remains), and even

if they could appear, they are at a disadvantage in the “proliferation” competition owing to their length.

doi:10.1371/journal.pone.0172702.g004
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the diameter of the dots) (Fig 6A). However, if a higher PMV is adopted, as in Fig 5A, then

when those short true-parasites, especially the super-parasites, appear by chance, they may

also spread over the grid, and the prosperity of the polymerase would be obviously suppressed

(Fig 6B). Significantly, the spatial distribution of the polymerase and the parasites alternates

dynamically. For example, in one step (Fig 6B), the polymerase is mainly distributed in periph-

eral areas of the grid and the parasites are also plentiful in these areas (because there are poly-

merase molecules there), but at a later step (Fig 6C), the co-existing location shifts to the

center of the grid, and peripheral areas become relatively “clean” areas in which the polymer-

ase could evade parasites temporally (also see S1 Movie for a movie showing the dynamically

Fig 5. Influence of spatial limitation on the tag-ruled system. The denotations in the upper panel of the subfigures are the same as those in

Fig 2A, and the denotations in the lower panel of the subfigures are the same as those in Fig 4B. (A) The case is that shown in Fig 2A, except that

the value of PMV is changed from 0.001 to 0.002. The super-parasite appears at about step 3.2 × 105 and spreads in the system, thus impairing the

thriving of the replicase. (B) When the value of PMV is returned to 0.001 at step 6 × 105, the super-parasite disappears and the replicase increases

again.

doi:10.1371/journal.pone.0172702.g005
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alternating spatial distribution; the details of this phenomenon are reminiscent of the “wave

dynamics” studied in the Hogeweg group, resulting from spatial limitation [37,40–42]).

However, in a tag-free system, as in Fig 2B, it seems that the polymerase could never get rid of

the surrounded parasites (Fig 6D).–thus, the ribozyme cannot spread in the system, even

though there are still abundant building blocks (nucleotides, shown as background yellow) in

other regions. What is the underlying reason that leads to these different spatial distribution

structures?

Firstly, the development of the replicase and the parasites in one grid room when PMV is set

to 0 were observed and compared in the tag-ruled and tag-free systems (Fig 7). Two molecules

Fig 6. Spatial distributions of the replicase and parasites in the dynamic process. Green dots represent the double-

tagged replicase (or its complement); orange dots represent the pseudo-parasites; and red dots represent the true-

parasites. The length of the RNA species is represented as the diameter of the dots. For a grid room, the depth of the

background yellow represents the quantity of free nucleotides therein (the deeper the color, the greater the quantity). (A)

The case shown in Fig 2A, step 1 × 106. (B) The case shown in Fig 5A, step 9.07 × 106. (C) The case shown in Fig 5A, step

9.33 × 106. (D) The case shown in Fig 2B, step 4 × 104.

doi:10.1371/journal.pone.0172702.g006
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of the replicase were inoculated into the grid room initially and it began to proliferate. In

both situations, the final state of the grid room showed the disappearance of the replicase on

account of the parasitism (and the parasites also disappeared owing to the ribozyme shortage).

This is understandable because the ribozyme-derived parasites are unavoidable and the repli-

case is an altruist (see “Introduction”). Thus, the replicase cannot get rid of the parasites when

trapped in the same room, and its only chance it to thrive in the system would be to escape

into other grid rooms (PMV would not equal to 0 in an ordinary simulation case) before the

parasites overwhelm the grid room. Here is the key point. In a tag-free system, the parasites,

all of which are true-parasites and most of which are short true-parasites, are easily formed

(Fig 7, the lower row, note that the sequence length is represented by the diameter of the dots),

whereas in the tag-ruled system, the parasites, especially the short true-parasites, would

develop much later (Fig 7, the upper row). Consequently, the tag-ruled grid room “collapses”

much later than the tag-free grid room. In other words, the tag mechanism would earn more

time for the replicase molecules to escape outwards into other regions and start new rounds of

amplification.

Secondly, what would happen if PMV is set to a large value? The influence of spatial limita-

tion has been well elucidated by many previous studies in the area [37–42]. For the present

model system, if the spatial limitation is relaxed to an extent, in which both the replicase and

parasites move across the grid easier, the system would be better mixed. Then, when the repli-

case molecules moves to other grid rooms, they would have less chance to find a region with-

out parasites to start a new round of amplification. Indeed, for the case shown in Fig 5A, after

the spread of the super-parasite, if we turn up PMV further, the super-parasite would become

more prosperous, and the level of the replicase decreased further (Fig A and B in S1 File). The

worst situation is that when PMV reaches a rather high level, the super-parasite would pervade

the whole system and the replicase could not escape from them. Thus, the whole system would

collapse (Fig C in S1 File)–the replicase disappears and then the parasites disappear because of

the replicase shortage. (Note: actually, the single grid room shown in Fig 7, in which the repli-

case and parasites are trapped together, can represent an extreme situation involving no spatial

limitation, and surely, such a completely mixed system would destine to end in collapse).

In fact, the effects of spatial limitation can be observed readily in our simulations, not neces-

sarily in regard to the super-parasite. For example, in the case shown in Fig 5B, we can see that

the level of the true-parasites as long as the double-tagged replicase (yellow bars) before the

spread of the super-parasite (i.e., before step 3.2 × 106) is obviously higher than that (yellow

Fig 7. Tracking the molecular evolution in a single grid room. The denotations are the same as those in Fig 6, except

that the quantity of nucleotides is not shown here (as the background yellow). The upper row shows the development of a

room in a tag-ruled system. It is a room picked from a 5 × 5 grid, having the same parameter values as those used in Fig 2A,

except that PMV is set to 0 here. The lower row shows the development of a room in a tag-free system. It is a room picked

from a 5 × 5 grid, having the same parameter values as those used in Fig 2, except that PMV is set to 0 here. In each case,

two molecules of the double-tagged replicase were inoculated into the room at step 1 × 104, and then its development was

monitored.

doi:10.1371/journal.pone.0172702.g007
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bars) after we turned down the PMV and the super-parasite disappeared (after step 6 × 106). In

fact, the only difference between the two situations is just that the PMV value for the former is

higher, and these long true-parasites thus have more chances to replicate in such a better

mixed system. Additionally, resource depletion, as an important factor affecting the spatial

dynamics, should be related to the particular sequences that are replicated. This factor may

have some evolutionary consequences, for example, resulting in the coexistence of different

composition-biased sequences [43]. However, for simplification, the factor is here not a focus.

In particular, although our model is at the nucleotide resolution, different nucleotides are

assumed to form from, and decay into, a common pool of precursors (see “Methods” for an

explanation of parameters PNF and PND).

In summary, in a tag-ruled system, there is a synergistic effect between the tag mechanism

and the spatial limitation mechanisms. While the tag mechanism would delay the replicase

being overwhelmed by the parasites in a local region and thus, earn “time” for the replicase to

move out and start a new round of amplification, the spatial limitation mechanism would

avoid the inter-pervasion of the replicase and the parasites (especially the short true-parasites)

in the system and thus, earn “space” for the replicase to move out and start a new turn of

amplification. In short, this is a system with a dynamic spatial distribution that is mainly

rooted in the repeated process of the replicase trying to escape from the parasites which are

generated by the replicase itself. No doubt, by interpreting its synergy with the spatial limita-

tion mechanism, we become clearer about the reason why the tag mechanism can work.

Discussion

The origin of life on the Earth is an interesting subject. Wherein, a central issue is how Darwin-

ian evolution could have started, given that Darwinian evolution is one of the two key aspects of

the life phenomenon [44]. Darwinian evolution may have started at molecular level because

molecules are natural, simple independent entities that may be subject to natural selection. The

RNA replicase, which has been supposed to have initiated that hypothetic RNA world [5–8], is

just such a candidate. However, the evolutionary dynamics concerning the replicate, describing

how it can be self-favoring enough to catalyze its own replication, is a long-standing problem.

Here, we showed by computer simulation that the tag mechanism would be effective, but

not in a manner as people previously believed. It does not work by favoring the replicase

directly but by weakening the parasites in the same system. While de novo appearance is an

important way for parasite molecules to occur, in a tag-ruled system, the molecules of para-

sites, especially those of strong parasites, have difficulty appearing de novo. In addition, the

study of the cooperation between this mechanism and the spatial limitation mechanism pro-

vides us further insights into how the tag mechanism may have worked in the scenario.

The ultimate reason for the seemingly equitable tag mechanism to work against the para-

sites is that the added sequence limitation exerts a strong influence on the parasites, which

would otherwise be completely unrestrained with regard to their sequence, while it has little

influence on the replicase, which is already quite restrained in sequence because of the charac-

teristic sequence feature of the ribozyme itself. The addition of the tag(s) to the sequence

would not affect the replicase in the way it affects the parasites because almost all of the repli-

case molecules in the system occur owing to replication rather than de novo. Indeed, even in a

tag-free system, the ribozyme is already quite restrained in sequence and we cannot “count

on” that their molecules “often” appear de novo by chance. For the replicase, the negative

influence of adding the tag(s), at most, means the addition of some burden to its replication,

which should be a trivial factor, especially considering that in reality the ribozyme may have

been much longer than the tag.
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In fact, in the typical cases shown in “Results”, the shortest true-parasites in the tag-ruled

system are 6nt in length (the super-parasite consisting of only a 3’-tag and a 5’-reverse-tag,

both 3nt in length), whereas the shortest true-parasites in the tag-free system are 4nt in length,

because the characteristic domain of the polymerase assumed in these cases is 9nt, and the

cover-length of the polymerase is assumed to be (L+2)1/2 (note: to be bound by a polymerase,

the RNA template must be longer than the cover-length of the polymerase–see “Methods”).

One may argue that this is unfair to the tag-free system, and in reality this is not necessarily the

case. The cover-length of the polymerase could be equal to or longer than twice of the tag’s

length. We can easily exclude this factor by changing the assumption concerning the cover-

length of the polymerase. For example, we can assume the cover-length to be (L+2)1/2+ 3, and

then the shortest true-parasites in both the two systems are 7nt in length, and the results show

no qualitative difference (S2 File, comparing with Fig 2). Here, the shortest true-parasites in

the tag-ruled system have a sequence containing a 3’-tag, a 5’-reverse-tag and an additional

nucleotide residue between them, whereas those in the tag-free system have a random se-

quence of 7nt. In fact, this example, in an explicit way, offers us a chance to present an alterna-

tive explanation concerning the influence of the tag mechanism. Indeed, with respect to

sequence space, adding the tag(s) to the ends of the parasites’ sequences, per se, does not alter

the species abundance of the parasites (see “Introduction”), but it does reduce such an abun-

dance if the total sequence length is limited. In the present example, the sequence length is

restricted to 7nt and there are only four kinds of the parasites for the tag-ruled system, which

are determined by the type of the middle nucleotide residue, whereas there are 47 kinds of the

parasites in the corresponding tag-free system. This is a good alternative explanation especially

considering that the replicase is most threatened by the shortest true-parasites. Nonetheless,

this explanation is consistent with our major assertion–just because these strongest parasites

are seriously limited in regard of the species abundance, they are very difficult to appear de

novo, in a tag-ruled system.

In this study, two kinds of molecules were monitored throughout the simulation process,

the double-tagged polymerase (as well as its complement) and the parasites, which contain a

tag at their 3’-end but are not the polymerase (or its complement). In fact, another kind of

molecule, the polymerase (and its complement) that contain only a 3’-tag, only a 5’-tag, or

none of the tags, also deserves attention. These polymerase molecules cannot be replicated

themselves, but would be functionally active. They can be deemed as “expression products” in

the system. We do not focus on these molecules in this study for the sake of simplicity, but

they are interesting. As it has been shown, non-replicating functional sequences, as a pheno-

type, may be crucial for the viability and stability of the RNA-like replicator system [45]. Per-

haps we can address this aspect in a future study. In addition, it should be noted that as a

portion of these expression products, polymerases (and its complement) containing a 3’-tag

(but not a 5’-tag) are not counted into parasites in the present study, because parasites, as it is

named, should not contribute to the molecular replication in the system. A 3’-tagged polymer-

ase is functionally active and a 3’-tagged complement of the polymerase may direct the synthe-

sis of a polymerase, thus contributing to the replication in the system.

To explore the effects of the tag mechanism, the characteristic domain of the replicase we

designed was completely separated from the 3’-tag and the 5’-reverse-tag. Under this assump-

tion, in principle the ribozyme benefits the RNA species with the tag(s) rather than itself only.

Somewhat surprisingly, the system showed immense superiority to the tag-free system. This

result indicates that the tag mechanism itself worked, nothing else. Corresponding to this

assumption, a practical situation may be that the replicase recognizes the tag through some

three-dimensional structural element(s), and thus the sequence of the ribozyme per se has no

direct relevance with the tag. In reality, the condition may be more positive for the spread of

Tags emerging in the very beginning

PLOS ONE | DOI:10.1371/journal.pone.0172702 March 2, 2017 16 / 20



the replicase. For example, the polymerase ribozyme might recognize the template’s 3’-tag

through base-pairing with a 5’-reverse-tag contained in its own sequence. There has been

experimental evidence that base-pairing was important for a polymerase ribozyme to bind

onto its template [10,14–16]. If so, the complementary chain of the replicase would naturally

contain a 3’-tag, and thus, the replicase would have a superior status in the tag-mediated

replication.

Because the tag mechanism can work even when no superior position is given to the repli-

case, the mechanism may be exploited in more complex systems in which other ribozymes can

also be labeled by the tag(s) and be replicated. Thus, an interesting future work is to extend the

tag mechanism to RNA-based systems containing other ribozymes, like the nucleotide synthe-

tase ribozyme and the amphiphile (membrane component) synthetase ribozyme [30–32].

Indeed, one of our original motives to study the evolutionary dynamics of the polymerase-type

replicase was that it should have emerged in the RNA world sooner or later as the RNA world

evolved, developing various ribozymes and thus requiring a more efficient replicase.

As mentioned already in the introduction, tag mechanism is used ubiquitously in modern

organisms. Indeed, our present study suggests that the mechanism may have been important

already at the very beginning of life. Once the mechanism was employed by these early life

forms, we can envision that it would have become easier for them to evolve more complex

mechanisms to control and regulate their own replication or metabolism because the tag(s)

might readily act as handle(s) which could be exploited within these complex mechanisms.

Thus, the event we study here, concerning the development of the ability to make use of tags,

could be a rather significant event in early evolution, or say, in the process of the origin of life.

Supporting information

S1 File. Further relaxing the spatial limitation in the tag-ruled system. For the case shown

in Fig 5A, at step 6×106, PMV is turned up from 0.002 to (A) 0.01, (B) 0.05, (C) 0.5. The deno-

tation is the same as that in Fig 5. Notably, in the case shown in C, when PMV is turned up to

0.5, the replicase and the super-parasite decrease to a level approaching zero, but they rebound

some steps later, and then disappear forever. The rebound is not difficult to comprehend: due

to the quick decrease of the super-parasite, some replicase molecules may gain the chance to

start new turns of amplification and rise to a certain level (see C, step 6.5×106), but then, on

account of the “resurrection” of the replicase, the super-parasite would rebound dramatically

(step 6.6×106), which turns out to be the final blow for the replicase.

(TIF)

S2 File. Changing the polymerase’s cover-length to equate the length of the shortest true-

parasites in the tag-free system and that in the tag-ruled system. The cases shown in this fig-

ure are the same as those shown in Fig 2, except that the cover-length of the polymerase is

changed from (L+2)1/2 to (L+2)1/2+3 (wherein, L represents the chain length of the character-

istic domain of the ribozyme, equal to 9nt here). Note that the super-parasite in the tag-ruled

system has a length of 6nt (a 3’-tag plus a 5’-reverse-tag, each 3nt), which does not exceed the

polymerase’s cover-length, and thus is actually not able to act as a parasite here (to be bound

by a polymerase, the RNA template must be longer than the polymerase’s cover-length–see

Methods). That is, here, for either the tag-free system or the tag-ruled system, the shortest

true-parasites are 7nt long.

(TIF)

S1 Movie. The dynamic spatial distribution of the replicase and the parasites in the case

illustrated Fig 5A (from step 9 × 106 to 9.5 × 106, the intervals between two frames is
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1 × 104 steps). See the legend of Fig 6 for the interpretation of a frame in the movie (Fig 6B

and 6C are two frames from this movie).

(MP4)

Author Contributions

Conceptualization: WTM.

Data curation: SLY YC.

Formal analysis: SMW SLY YC.

Funding acquisition: WTM.

Investigation: SMW SLY YC YF.

Methodology: CWY WTZ WTM.

Project administration: WTM.

Resources: SMW SLY YC.

Software: SMW CWY WTZ YF WTM.

Supervision: WTM.

Validation: SMW SLY YC WTM.

Visualization: SMW SLY YC.

Writing – original draft: SMW WTM.

Writing – review & editing: SMW SLY YC WTM.

References
1. Gilbert W. The RNA world. Nature. 1986; 319:618.

2. Joyce GF. The antiquity of RNA-based evolution. Nature. 2002; 418:214–221. doi: 10.1038/418214a

PMID: 12110897

3. Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all

the others). Biol Direct. 2012; 7:23. doi: 10.1186/1745-6150-7-23 PMID: 22793875

4. Pressman A, Blanco C, Chen IA. The RNA World as a model system to study the origin of life. Curr Biol.

2015; 25:R953–R963. doi: 10.1016/j.cub.2015.06.016 PMID: 26439358

5. Higgs PG, Lehman N. The RNA World: molecular cooperation at the origins of life. Nat Rev Genet.

2015; 16:7–17. doi: 10.1038/nrg3841 PMID: 25385129

6. Joyce GF, Orgel LE. Progress toward understanding the origin of the RNA World. In: Gesteland RF,

Cech TR, Atkins JF, editors. The RNA World. New York: Cold Spring Harbor Laboratory Press.

2006; pp. 23–56.

7. Robertson MP, Joyce GF. The origins of the RNA world. Cold Spring Harbor Perspect Biol. 2012; 4:

a003608.

8. Cech TR. RNA chemistry—ribozyme self-replication. Nature. 1989; 339:507–508. doi: 10.1038/

339507a0 PMID: 2660002

9. Ma WT. The origin of life: A problem of history, chemistry, and evolution. Chem Biodivers. 2014;

11:1998–2010. doi: 10.1002/cbdv.201400188 PMID: 25491343

10. Bartel DP. Re-creating an RNA replicase. In: Gesteland RF, Cech TR, Atkins JF, editors. The RNA

World. New York: Cold Spring Harbor Laboratory Press. 1999; pp. 143–162.

11. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP. RNA-catalyzed RNA polymerization:

Accurate and general RNA-templated primer extension. Science. 2001; 292:1319–1325. doi: 10.1126/

science.1060786 PMID: 11358999

Tags emerging in the very beginning

PLOS ONE | DOI:10.1371/journal.pone.0172702 March 2, 2017 18 / 20

http://dx.doi.org/10.1038/418214a
http://www.ncbi.nlm.nih.gov/pubmed/12110897
http://dx.doi.org/10.1186/1745-6150-7-23
http://www.ncbi.nlm.nih.gov/pubmed/22793875
http://dx.doi.org/10.1016/j.cub.2015.06.016
http://www.ncbi.nlm.nih.gov/pubmed/26439358
http://dx.doi.org/10.1038/nrg3841
http://www.ncbi.nlm.nih.gov/pubmed/25385129
http://dx.doi.org/10.1038/339507a0
http://dx.doi.org/10.1038/339507a0
http://www.ncbi.nlm.nih.gov/pubmed/2660002
http://dx.doi.org/10.1002/cbdv.201400188
http://www.ncbi.nlm.nih.gov/pubmed/25491343
http://dx.doi.org/10.1126/science.1060786
http://dx.doi.org/10.1126/science.1060786
http://www.ncbi.nlm.nih.gov/pubmed/11358999


12. Zaher HS, Unrau PJ. Selection of an improved RNA polymerase ribozyme with superior extension and

fidelity. RNA. 2007; 13:1017–1026. doi: 10.1261/rna.548807 PMID: 17586759

13. Cheng LKL, Unrau PJ. Closing the Circle: Replicating RNA with RNA. Cold Spring Harbor Perspect

Biol. 2010; 2:a002204.

14. Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P. Ice as a protocellular medium for RNA repli-

cation. Nat Commun. 2010; 1:76. doi: 10.1038/ncomms1076 PMID: 20865803

15. Wochner A, Attwater J, Coulson A, Holliger P. Ribozyme-catalyzed transcription of an active ribozyme.

Science. 2011; 332:209–212. doi: 10.1126/science.1200752 PMID: 21474753

16. Attwater J, Wochner A, Holliger P. In-ice evolution of RNA polymerase ribozyme activity. Nat Chem.

2013; 5:1011–1018. doi: 10.1038/nchem.1781 PMID: 24256864

17. Mutschler H, Wochner A, Holliger P. Freeze-thaw cycles as drivers of complex ribozyme assembly. Nat

Chem. 2015; 7:502–508. doi: 10.1038/nchem.2251 PMID: 25991529

18. Szathmary E. Concepts and dynamics: A theoretical issue of OLEB. Orig Life Evol Biosph. 2003;

33:313–317. PMID: 14604180

19. Szathmary E. The origin of replicators and reproducers. Philos Trans R Soc Lond B Biol Sci. 2006; 361:

1761–1776. doi: 10.1098/rstb.2006.1912 PMID: 17008217

20. Coveney PV, Swadling JB, Wattis JA, Greenwell H. Theory, modelling and simulation in origins of life

studies. Chem Soc Rev. 2012; 41:5430–5446. doi: 10.1039/c2cs35018a PMID: 22677708

21. Takeuchi N, Hogeweg P. Evolutionary dynamics of RNA-like replicator systems: A bioinformatic

approach to the origin of life. Phys Life Rev. 2012; 9:219–263. doi: 10.1016/j.plrev.2012.06.001 PMID:

22727399

22. Szabo P, Scheuring I, Czaran T, Szathmary E. In silico simulations reveal that replicators with limited

dispersal evolve towards higher efficiency and fidelity. Nature. 2002; 420:340–343. doi: 10.1038/

nature01187 PMID: 12447445

23. Ma WT, Yu CW, Zhang WT. Monte Carlo simulation of early molecular evolution in the RNA World. Bio-

systems. 2007; 90:28–39. doi: 10.1016/j.biosystems.2006.06.005 PMID: 17014951

24. Takeuchi N, Hogeweg P. The role of complex formation and deleterious mutations for the stability of

RNA-Like replicator systems. J Mol Evol. 2007; 65:668–686. doi: 10.1007/s00239-007-9044-6 PMID:

17955153

25. Takeuchi N, Hogeweg P. Evolution of complexity in RNA-like replicator systems. Biol Direct. 2008;

3:11. doi: 10.1186/1745-6150-3-11 PMID: 18371199

26. Takeuchi N, Hogeweg P, Koonin EV. On the Origin of DNA Genomes: Evolution of the Division of Labor

between Template and Catalyst in Model Replicator Systems. PLoS Comput Biol. 2011; 7:e1002024.

doi: 10.1371/journal.pcbi.1002024 PMID: 21455287

27. Ma WT, Yu CW, Zhang WT, Hu JM. A simple template-dependent ligase ribozyme as the RNA repli-

case emerging first in the RNA world. Astrobiology. 2010; 10:437–447. doi: 10.1089/ast.2009.0385

PMID: 20528198

28. Weiner AM, Maizels N. 3’ terminal tRNA-like structures tag genomic RNA molecules for replication:

Implications for the origin of protein synthesis. Proc Natl Acad Sci. 1987; 84:7383–7387. PMID:

3478699

29. Ma WT, Yu CW. Intramolecular RNA replicase: Possibly the first self-replicating molecule in the RNA

world. Orig Life Evol Biosph. 2006; 36:413–420. doi: 10.1007/s11084-005-9006-1 PMID: 16909330

30. Ma WT, Yu CW, Zhang WT, Hu JM. Nucleotide synthetase ribozymes may have emerged first in the

RNA world. RNA. 2007; 13:2012–2019. doi: 10.1261/rna.658507 PMID: 17878321

31. Ma WT, Yu CW, Zhang WT, Zhou P, Hu JM. The emergence of ribozymes synthesizing membrane

components in RNA-based protocells. Biosystems. 2010; 99:201–209. doi: 10.1016/j.biosystems.

2009.11.003 PMID: 19961895

32. Ma WT, Hu JM. Computer simulation on the cooperation of functional molecules during the early stages

of evolution. PLoS ONE. 2012; 7:e35454. doi: 10.1371/journal.pone.0035454 PMID: 22514745

33. Ma WT, Yu CW, Zhang WT. Circularity and self-cleavage as a strategy for the emergence of a chromo-

some in the RNA-based protocell. Biol Direct. 2013; 8:21. doi: 10.1186/1745-6150-8-21 PMID:

23971788

34. Ma WT, Yu CW, Zhang WT, Wu SM, Feng Y. The emergence of DNA in the RNA world: an in silico sim-

ulation study of genetic takeover. BMC Evol Biol. 2015; 15:272. doi: 10.1186/s12862-015-0548-1

PMID: 26643199

35. Lovett ST, Drapkin PT, Sutera VA Jr, Gluckman-Peskind TJ. A sister-strand exchange mechanism for

recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics.1993; 135:631–

642. PMID: 8293969

Tags emerging in the very beginning

PLOS ONE | DOI:10.1371/journal.pone.0172702 March 2, 2017 19 / 20

http://dx.doi.org/10.1261/rna.548807
http://www.ncbi.nlm.nih.gov/pubmed/17586759
http://dx.doi.org/10.1038/ncomms1076
http://www.ncbi.nlm.nih.gov/pubmed/20865803
http://dx.doi.org/10.1126/science.1200752
http://www.ncbi.nlm.nih.gov/pubmed/21474753
http://dx.doi.org/10.1038/nchem.1781
http://www.ncbi.nlm.nih.gov/pubmed/24256864
http://dx.doi.org/10.1038/nchem.2251
http://www.ncbi.nlm.nih.gov/pubmed/25991529
http://www.ncbi.nlm.nih.gov/pubmed/14604180
http://dx.doi.org/10.1098/rstb.2006.1912
http://www.ncbi.nlm.nih.gov/pubmed/17008217
http://dx.doi.org/10.1039/c2cs35018a
http://www.ncbi.nlm.nih.gov/pubmed/22677708
http://dx.doi.org/10.1016/j.plrev.2012.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22727399
http://dx.doi.org/10.1038/nature01187
http://dx.doi.org/10.1038/nature01187
http://www.ncbi.nlm.nih.gov/pubmed/12447445
http://dx.doi.org/10.1016/j.biosystems.2006.06.005
http://www.ncbi.nlm.nih.gov/pubmed/17014951
http://dx.doi.org/10.1007/s00239-007-9044-6
http://www.ncbi.nlm.nih.gov/pubmed/17955153
http://dx.doi.org/10.1186/1745-6150-3-11
http://www.ncbi.nlm.nih.gov/pubmed/18371199
http://dx.doi.org/10.1371/journal.pcbi.1002024
http://www.ncbi.nlm.nih.gov/pubmed/21455287
http://dx.doi.org/10.1089/ast.2009.0385
http://www.ncbi.nlm.nih.gov/pubmed/20528198
http://www.ncbi.nlm.nih.gov/pubmed/3478699
http://dx.doi.org/10.1007/s11084-005-9006-1
http://www.ncbi.nlm.nih.gov/pubmed/16909330
http://dx.doi.org/10.1261/rna.658507
http://www.ncbi.nlm.nih.gov/pubmed/17878321
http://dx.doi.org/10.1016/j.biosystems.2009.11.003
http://dx.doi.org/10.1016/j.biosystems.2009.11.003
http://www.ncbi.nlm.nih.gov/pubmed/19961895
http://dx.doi.org/10.1371/journal.pone.0035454
http://www.ncbi.nlm.nih.gov/pubmed/22514745
http://dx.doi.org/10.1186/1745-6150-8-21
http://www.ncbi.nlm.nih.gov/pubmed/23971788
http://dx.doi.org/10.1186/s12862-015-0548-1
http://www.ncbi.nlm.nih.gov/pubmed/26643199
http://www.ncbi.nlm.nih.gov/pubmed/8293969


36. Viguera E, Canceill D, Ehrlich SD. Replication slippage involves DNA polymerase pausing and dissocia-

tion. The EMBO J. 2001; 20:2587–2595. doi: 10.1093/emboj/20.10.2587 PMID: 11350948

37. Boerlijst MC, Hogeweg P. Spiral wave structure in prebiotic evolution: Hypercycles stable against para-

sites. Physica D. 1991; 48:17–28.

38. McCaskill JS, Fuchslin RM, Altmeyer S. The stochastic evolution of catalysts in spatially resolved

molecular systems. Biol Chem. 2001; 382:1343–1363. doi: 10.1515/BC.2001.167 PMID: 11688718

39. Scheuring I, Czaran T, Szabo P, Karolyi G, Toroczkai Z. Spatial models of prebiotic evolution: Soup

before pizza? Orig Life Evol Biosph. 2003; 33: 319–355. PMID: 14604181

40. Hogeweg P, Takeuchi N. Multilevel selection in models of prebiotic evolution: Compartments and spa-

tial self-organization. Orig Life Evol Biosph. 2003; 33:375–403. PMID: 14604183

41. Takeuchi N, Hogeweg P. Multilevel selection in models of prebiotic evolution II: A direct comparison of

compartmentalization and spatial self-organization. PLoS Comput Biol. 2009; 5:e1000542. doi: 10.

1371/journal.pcbi.1000542 PMID: 19834556

42. Takeuchi N, Hogeweg P. Evolutionary Dynamics of RNA-like Replicator Systems: A bioinformatic

approach to the origin of life. Phys Life Rev. 2012; 9:219–263. doi: 10.1016/j.plrev.2012.06.001 PMID:

22727399

43. Szilagyi A, Zachar I, Szathmary E. Gause’s principle and the effect of resource partitioning on the

dynamical coexistence of replicating templates. PLoS Comput Biol. 2013; 9:e1003193. doi: 10.1371/

journal.pcbi.1003193 PMID: 23990769

44. Ma WT. The essence of life. Biol Direct. 2016; 11:49. doi: 10.1186/s13062-016-0150-5 PMID:

27671203

45. Colizzi ES, Hogeweg P. Evolution of functional diversification within quasispecies. Genome Biol Evol.

2014; 6:1990–2007. doi: 10.1093/gbe/evu150 PMID: 25056399

Tags emerging in the very beginning

PLOS ONE | DOI:10.1371/journal.pone.0172702 March 2, 2017 20 / 20

http://dx.doi.org/10.1093/emboj/20.10.2587
http://www.ncbi.nlm.nih.gov/pubmed/11350948
http://dx.doi.org/10.1515/BC.2001.167
http://www.ncbi.nlm.nih.gov/pubmed/11688718
http://www.ncbi.nlm.nih.gov/pubmed/14604181
http://www.ncbi.nlm.nih.gov/pubmed/14604183
http://dx.doi.org/10.1371/journal.pcbi.1000542
http://dx.doi.org/10.1371/journal.pcbi.1000542
http://www.ncbi.nlm.nih.gov/pubmed/19834556
http://dx.doi.org/10.1016/j.plrev.2012.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22727399
http://dx.doi.org/10.1371/journal.pcbi.1003193
http://dx.doi.org/10.1371/journal.pcbi.1003193
http://www.ncbi.nlm.nih.gov/pubmed/23990769
http://dx.doi.org/10.1186/s13062-016-0150-5
http://www.ncbi.nlm.nih.gov/pubmed/27671203
http://dx.doi.org/10.1093/gbe/evu150
http://www.ncbi.nlm.nih.gov/pubmed/25056399

