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Parkinson’s disease is a progressive neurodegenerative disease with complex,

heterogeneous motor and non-motor symptoms. The current evidence shows that

there is still a marked heterogeneity in the subtyping of Parkinson’s disease using both

clinical and data-driven approaches. Another challenge posed in PD subtyping is the

reproducibility of previously identified PD subtypes. These issues require additional results

to confirm previous findings and help reconcile discrepancies, as well as establish a

standardized application of cluster analysis to facilitate comparison and reproducibility of

identified PD subtypes. Our study aimed to address this gap by investigating subtypes

of Parkinson’s disease using comprehensive clinical (motor and non-motor features)

data retrieved from 408 de novo Parkinson’s disease patients with the complete clinical

data in the Parkinson’s Progressive Marker Initiative database. A standardized k-means

cluster analysis approach was developed by taking into consideration of common

practice and recommendations from previous studies. All data analysis codes were

made available online to promote data comparison and validation of reproducibility

across research groups. We identified two distinct PD subtypes, termed the severe

motor-non-motor subtype (SMNS) and the mild motor- non-motor subtype (MMNS).

SMNS experienced symptom onset at an older age and manifested more intense motor

and non-motor symptoms than MMNS, who experienced symptom onset at a younger

age and manifested milder forms of Parkinson’s symptoms. The SPECT imaging makers

supported clinical findings such that the severe motor-non-motor subtype showed lower

binding values than the mild motor- non-motor subtype, indicating more significant

neural damage at the nigral pathway. In addition, SMNS and MMNS show distinct

motor (ANCOVA test: F = 47.35, p < 0.001) and cognitive functioning (F = 33.93, p <

0.001) progression trends. Such contrast between SMNS and MMNS in both motor and

cognitive functioning can be consistently observed up to 3 years following the baseline

visit, demonstrating the potential prognostic value of identified PD subtypes.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disease with a wide range of motor and non-motor
manifestations (1). Motor features such as tremor, bradykinesia,
rigidity, and postural instability are hallmarks for clinical
assessment and diagnosis of PD (2). However, a growing body
of evidence shows that PD is highly heterogeneous, including
complex motor and non-motor features (3); and changes in
brain imaging and cerebrospinal fluid (CSF) biomarkers (4–6).
The detection, management, and assessment of PD can be
incomplete and erroneous when non-motor features, imaging,
and biospecimen changes are not considered. Both missed
diagnosis and false diagnosis can severely affect the quality
of life since misdiagnosis can result in undertreatment; thus,
increasing the chance of rapid disease progression. Similarly,
inaccurate diagnosis and treatment can expose individuals
to serious side effects due to potent therapeutic medications
(7). Given the heterogeneous nature of PD, it marks great
clinical significance and benefits to identify underlying PD
subtypes, which can be transformational in designing prevention
and treatment strategies (8). Identifying subtypes of PD with
shared characteristics can promote the discovery of PD etiology
through the understanding of the underlying pathophysiological
mechanism (1). In addition, the identification of subtypes opens
the door for early detection and management of PD and the
development of tailored management strategies, which help
address the specific needs of an individual patient and prevent
over/under treatment mishaps (8, 9).

Traditionally, motor symptoms are used for PD subtyping,
with tremor-dominant (TD) and postural instability and gait
difficulty (PIGD) as the most consistently identified motor
subtypes (10, 11). These seminal studies provide crucial evidence
on the existence of distinct subtypes of PD. However, non-motor
features are grossly overlooked in the subtyping process. The
fact that the choice of variables is driven by a priori hypothesis
with the empirical section of cut-offs also introduces substantial
ambiguity in the subtyping results (12). Since the first adoption
of data-driven cluster analysis in PD subtyping (13), it has
become a more popular approach in later studies in identifying
PD subtypes. Cluster analysis can take a wide collection of
variables into consideration for PD subtypes bypassing the a
priori selection process, and determine the optimal subtypes
based on statistical methods.

A body of literature exists utilizing cluster analysis with both
motor and non-motor variables aiming to achieve an objective
PD subtyping (13–18). Graham et al. identify three distinct
PD subtypes, including “motor only,” “motor and cognition,”
and “rapid progression” (13). Erro et al. also identify three PD
subtypes but with different characteristics, with the first group
bearing the lowest motor and non-motor burden, and the other
two groups with a similar motor burden but different non-motor
involvement (18). In another study, three distinct subtypes are
defined as “mild motor-predominant,” “diffuse malignant,” and
“intermediate” (17). Despite the positive findings, there are still
wide inconsistencies in proposed subtypes of PD. One review
paper compared subtyping results from two studies using the

same database (17, 18) and found only 56% agreement on cluster
memberships (4). A possible reason for these inconsistencies may
be due to inherent limitations of data-driven subtyping of PD
using hierarchical and non-hierarchical cluster analysis (6). The
inconsistent subtypes can also stem from heterogeneity in data
sources, study designs, patient populations (19), motor and non-
motor data, and cluster analysis techniques used for identifying
subtypes. The inclusion of PD patients on and off medications
could be another source for inconsistencies in proposed PD
subtypes (18); inclusion of PD patients on and off medications
can also lead to erroneous PD subtyping. On top of inconsistent
results, the poor reproducibility of reported PD subtypes poses
another challenge in the field. Mestre et al. validated PD
subtyping results from eight studies using the same database
over a 10-year span by a panel of clinical experts following a
modified Delphi consensus process (19). It was found that 7 out
of 8 studies were “not very well” or “not at all” reproduced.
Considering these issues in PD subtyping, multiple review papers
outlined the need for standardized application of cluster analysis
and additional results to reconcile the inconsistencies in PD
subtyping (4, 12, 19).

This study aims to mitigate these issues by identifying PD
subtypes in de novo PD patients using the comprehensive
motor and non-motor data from the Parkinson’s Progressive
Markers Initiative (PPMI) (20). Following a common study
pathway as summarized in (12), the present study starts off
implementing data-driven k-means cluster analysis with a
standardized approach using recommended practice in (6) to
obtain objective PD subtyping. Next, the study conducts post-
hoc analyses to describe motor, non-motor, CSF biomarkers
and neuroimaging characteristics of PD subtypes. Lastly, the
study evaluates the longitudinal progression of motor and
global cognitive functioning of identified PD subtypes and
the stability of these subtypes up to 3 years following the
baseline visits. Our results are compared to previous studies to
confirm past findings and to investigate discrepancies. Given
that the data used in the study is publicly accessible, we also
make our data analysis codes publicly available (https://github.
com/ranxiao/PDSubtyping) to share the standardized cluster
analysis approach, and maximally facilitate result comparison
and reproducibility by other research groups.

MATERIALS AND METHODS

Study Data and Population
Data used in this study were obtained from the PPMI database
(20). PPMI is an ongoing longitudinal observational study
involving participants from multiple clinical sites (21) situated
in 11 countries. PMMI contains a wide range of information
on demographics, motor, and non-motor features; Single-photon
emission computed tomography (SPECT-DaT) brain imaging,
cerebrospinal fluid (CSF) biomarker, and genetic biomarkers
from three groups, namely (a) untreated de novo PD, (b)
healthy control, and (c) SWEDD (scans without evidence
of dopaminergic deficit) participants (20). We only included
untreated de novo PD patients at the baseline to identify PD
subtypes for this study. Clinical motor assessments were collected
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every 3 months during the first year and every 6-month interval
after that. Assessments on cognitive and behavioral features were
collected at every 12-month interval. Imaging data were collected
from PD patients at visits in 12, 24, and 36 months (20). The
details of the PPMI dataset and cohorts are available on the
PPMI website www.ppmi-info.org. This study has received an
exemption from the Institutional Review Board (IRB) of Duke
University as it is using publicly available deidentified data from
the PPMI.

The PPMI includes comprehensive information onmotor and
non-motor features from PD patients. Following data were used
in our study:

1) Demographic characteristics: age of symptom onset and sex.
2) Motor features: International Parkinson’s disease and

Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale (MDS-UPPRS) Part III total score and subscores:
rigidity (item 3), tremor (sum of items 15–18), bradykinesia
(sum of item 2, 4–9, and 14), and axial scores (sum of items
1 and 9–13) (22). Greater scores in motor features indicate
greater severity of motor symptoms.

3) Non-motor features: Neuropsychiatric features—Montreal
Cognitive Assessment (MoCA), psychological features from
MDS-UPDRS Part I fatigue (item 13), pain (item 9), apathy
(item 5), hallucinations (item 2), Geriatric Depression Scale
(GDS), State of Anxiety Inventory (STAI) score, REM sleep
behavior disorder (RBD); and autonomic features—olfactory
dysfunction using the University of Pennsylvania Smell
Identification Test (UPSIT) score, autonomic dysfunction
using the Scales for Outcomes in Parkinson’s disease
Autonomic (SCOPA-AUT) total score and its sub item
scores: orofacial, gastrointestinal, urinary, cardiovascular,
thermoregulatory, pupilometer, and sexual scores. Greater
scores in non-motor features indicate greater severity except
MoCA and UPSIT scores.

We used the above-mentioned motor, non-motor data, and
age of onset to identify Parkinson’s disease subtypes and
compared clinical attributes (motor, non-motor, brain imaging,
CSF biomarkers, and symptom progressions) across the
identified subtypes.

Brain Imaging Markers
PPMI collected dopaminergic imaging—single-photon emission
computed tomography (SPECT) from the PPMI participants.
SPECT with CAT tracer I-ioflupane uses tracers that bind with
dopamine cells, and SPECT imaging is a gold standard test to
assess dopaminergic denervation in several neurodegenerative
diseases, including Parkinson’s disease (23, 24). A summary of
imaging markers (right caudate, left caudate, right putamen,
left putamen, right striatum, left striatum, mean caudate
measure, mean putamen measure, mean striatum measure,
lowest caudate measure, highest caudate measure, lowest
putamen measure, highest putamen measure, lowest striatum
measure, highest striatum measure, asymmetry index-caudate,
putamen, striatum, left count density ratio, right count density
ratio, contralateral striatum, contralateral caudate, contralateral
putamen, contralateral count density ratio, ipsilateral striatum,

ipsilateral caudate, ipsilateral putamen, ipsilateral count density
ratio) was used to compare neurodegenerative imaging changes
between subtypes at the baseline.

CSF Biomarkers
PPMI includes comprehensive CSF biomarkers. Strong
evidence underscores that CSF biomarkers can be sensitive
indicators of cognitive decline (25), dopaminergic deficit (26),
neurodegenerative changes (27), motor features (28), disease
progression and neurofibrillary changes in PD (29). CSF
biomarkers are found to be associated with motor progression,
neuropsychiatric features, and cognitive decline in Parkinson’s
disease patients (30). We used a summary of CSF biomarkers
(CSF Aβ1-42, α-synuclein, t tau, p-tau, t-tau/Aβ 1-42 ratio,
p-tau/Aβ 1-42 ratio, p-tau/t-tau ratio, t-tau/α-synuclein ratio,
p-tau/α-synuclein ratio) to compare CSF biomarkers across
subtypes. Correlational analyses were also conducted to find
the association of identified significant factors with motor and
non-motor scores, respectively.

Longitudinal Assessments
We compared the rate of motor and cognitive progression across
the identified PD subtypes using Hoehn and Yahr’s and MoCA
scores. Patients included in the cluster analysis but without any
of these symptom data in follow-up visits are identified and
removed from the longitudinal assessments. Hoehn and Yahr’s
scale is demonstrated to have greater clinicometric properties and
is highly correlated with the motor function of MDS-UPDRS
(31). Hoehn and Yahr’s scale has been used as a successful
indicator of Parkinson’s disease progression in clinical and
clinical trial studies (32). The scores were assessed at the baseline
(Y0), 12 months (Y1), 24 months (Y2), and 36 months (Y3) as
described below in post-hoc analyses. A larger Hoehn and Yahr’s
score is an indication of severe motor dysfunction, whereas a
lower MoCA score is reflective of greater cognitive impairment.

K-Means Cluster Analysis
A total of 683 participants were in PPMI datasets, including
Parkinson’s disease, healthy control, and SWEDD (Scans without
evidence of dopaminergic deficit). Among them, 423 untreated
de novo participants with PD diagnosis at the baseline met the
eligibility criteria for this study. After eliminating participants
with missing values, 408 participants (males: 269, females: 139)
with complete data were included for k-means cluster analysis.
The average age of participants was 59.6 years (age range: 25–83
years). Twenty-two variables representing motor and non-motor
features of PD were retrieved from PPMI datasets for cluster
analysis. The corresponding clinical scores were standardized
using min-max normalization. We conducted a k-means cluster
analysis to identify the PD subtypes. A list of cluster numbers
ranging from 2 to 10 was evaluated. The optimal number of
subtypes was identified based on the Calinski-Harabasz (C-H)
pseudo-F value. The cluster analysis was repeated 100 times with
random initialization to avoid final cluster membership derived
from a local optimum. The maximal number of iterations was set
at 100 to ensure ample iterations to arrive at an optimal clustering
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solution within each cluster analysis. All analyses were carried out
using Matlab (Mathworks Inc., Natick, MA).

Post-hoc Analyses
The descriptive statistics (mean and standard deviation) were
performed to summarize and compare the motor, non-motor
features, SPECT-DaT brain imaging, and CSF biomarker
attributes of two identified subtypes. Three post-hoc analyses were
performed to (a) summarize motor and non-motor attributes,
(b) SPECT-DaT brain imaging and CSF biomarkers, and (c)
characterize motor and global cognitive progression rates, using
Hoehn and Yahr and MoCA scores, respectively. The mean and
standard deviation are calculated for each of the 22 baseline
attributes and statistically compared between the two subtypes.
The Hedges’ g standardized mean difference (SMD) and its 95%
confidence interval (via bootstrapping 3,000 times) are calculated
to reveal the level of differences between subtypes. SMD is
calculated by

SMDi =
m1i −m2i

δi
, i = 1, . . . , 22 (1)

where m1i and m2i are the mean values of ith baseline attribute
in subtypes I and II, respectively. δi is the pooled standard
deviation from both subtypes. The SMD is calculated using the
measures of effect size (MES) toolbox ver.1.5 (33). The mean
and standard deviation are calculated for each of 28 imaging
measures and 10 CSF biomarkers, and statistically compared
between the two subtypes. A non-parametric Wilcoxon rank-
sum test was performed to examine if statistically significant
differences existed between the identified subtypes in baseline
clinical features (motor and non-motor features), imaging, and
CSF biomarkers. The significant level α is set at 0.05, andmultiple
comparisons are adjusted by Bonferroni correction.

Visualizing cluster memberships is an important qualitative
evaluation that can offer additional insights into derived PD
subtypes. Due to the multivariate nature of input features,
it’s challenging to visualize the clusters in a two-dimensional
format. While dimensional reduction techniques, such as
principal component analysis (PCA), can be implemented to
visualize the separation of different clusters (17), the subsequent
interpretation is non-trivial contributed by the highly abstract
nature of principal components. Like the global composite
outcome proposed in (17), the present study establishes two
new composite scores, the motor composite score, and the non-
motor composite score. This is calculated by rescaling all motor
and non-motor features (as described in the above section)
into the range of (0, 1) through the min-max normalization
and averaging the normalized scores of all components in each
category, respectively. Since MoCA and UPSIT have revered
severity scores compared to other non-motor features, they
are adjusted by subtracting the normalized scores from one
before the averaging operation for calculating the non-motor
composite score. For both composite scores, the higher value
indicates a severe condition. A scatter plot is generated to depict
the distribution of cluster memberships of each sample in a
two-dimensional plane representing the motor and non-motor
symptom severity.

The progression is evaluated based on four time points,
baseline visit (Y0), 12-month follow-up (Y1), 24-month follow-
up (Y2), and 36-month follow-up (Y3). Three progression
rates are derived to capture progression at various temporal
resolutions, including early progression (change of scores
between Y1 and Y0), secondary progression (change of scores
between Y3 and Y1) and long-term progression (change of
scores between Y3 and Y0). In addition, a time plot of
motor and non-motor symptom progression is presented to
qualitatively evaluate the stability of PD subtypes. An analysis
of covariance (ANCOVA) test is performed to investigate the
effect of PD subtypes and different visits on the symptom
progression, which is adjusted with age at symptom onset as a
covariate in the statistical analysis. The significant level α is set
at 0.05.

RESULTS

Baseline Description
A total of 408 de novo untreated PD patients comprising
269 (65.93%) males and 139 (34.96%) females with complete
clustering data were included in the k-means cluster analysis.

Statistical Clusters
There are twenty-two variables, including the age of symptom
onset, motor, and non-motor features, used to identify PD
subtypes based on the k-means cluster analysis. The clustering
optimum was attained for the two-cluster solution. As shown
in Figure 1, the largest C-H pseudo-F value obtained was
57 from the two-cluster solution. More samples are assigned
to the PD subtype I (N = 270) than the second subtype
(N = 138). PD subtype I includes participants who manifest
symptoms at a younger age (young at symptoms onset) with
an average age of 58.2 ± 10.2 (age range = 25.4–80.1 years)
than PD subtype II participants (older at symptoms onset)
with an average age of 62.4 ± 8.9 years (range = 35.6–
83 years).

FIGURE 1 | Selection of optimal cluster number based on Calanski-Harabasz

(C-H) values.
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TABLE 1 | Baseline clinical characteristics of PD subtypes.

Characteristics Mild motor and

non-motor

subtype

(MMNS,

N = 270)

Mean (SD)

Severe motor

and non-motor

subtype

(SMNS,

N = 138)

Mean (SD)

p-value

(α = 0.0022)

Male sex (%) 177 (65.56%) 92 (66.67%) -

Age of symptom onset * 58.177

(±10.223)

62.363 (±8.899) <0.001

MDS UPDRS Part III* 17.989 (± 7.278) 26.167 (±8.810) <0.001

• Tremor 0.417 (±0.314) 0.465 (±0.314) 0.124

• Rigidity* 0.640 (±0.460) 0.981 (±0.583) <0.001

• Bradykinesia* 0.708 (±0.372) 1.078 (±0.448) <0.001

• Axial subscore* 0.248 (±0.283) 0.481 (±0.283) <0.001

UPSIT* 23.830 (±7.842) 19.268 (±8.361) <0.001

MoCA* 27.356 (±2.299) 26.696 (±2.316) 0.001

GDS* 1.682 (±1.997) 3.601 (±2.803) <0.001

STAI* 61.226

(±15.289)

73.341

(±21.078)

<0.001

Hallucination 0.025 (±0.159) 0.043 (±0.204) 0.340

Apathy* 0.100 (±0.313) 0.413 (±0.681) <0.001

Fatigue* 0.448 (±0.587) 1.073 (±0.965) <0.001

Pain* 0.581 (±0.755) 1.007 (±0.956) <0.001

RBD* 3.300 (±2.053) 5.739 (±2.960) <0.001

SCOPA-AUT* 6.722 (±3.639) 15.145 (±6.387) <0.001

SCOPA-gastrointestinal* 1.274 (±1.352) 3.840 (±2.169) <0.001

SCOPA-urinary* 3.256 (±2.148) 6.167 (±3.536) <0.001

SCOPA-cardiovascular* 0.300 (±0.554) 0.789 (±1.014) <0.001

SCOPA-thermoregulatory* 0.800 (±1.072) 1.935 (±1.684) <0.001

SCOPA-pupillomotor* 0.285 (±0.575) 0.681 (±0.715) <0.001

SCOPA-sexual* 0.807 (±1.264) 1.732 (±1.878) <0.001

*Indicates statistical significance between the two subtypes (Wilcoxon rank-sum test).

Variation in Baseline Clustering
Characteristics
As shown in Table 1, we observed statistically significant
differences in a majority of motor and non-motor features. There
were statistically significant differences in age of symptom onset
(p < 0.001), MDS UPDRS III score (p < 0.001), rigidity (p <

0.001), bradykinesia (p < 0.001), axial subscore (p < 0.001),
MoCA (p = 0.0014), GDS (p < 0.001), fatigue (p < 0.001), pain
(p < 0.001), RBD (p < 0.001), SCOPA-total (p < 0.001), and
SCOPA-subscores (p < 0.001) between the two PD subtypes. No
statistical significance was observed in their tremor (p = 0.1243)
and hallucination scores (p = 0.3408). Overall, PD subtype II
(older at symptom onset) experienced more severe Parkinson’s
symptoms (motor and non-motor symptoms) than the subtype I
(younger at symptom onset). Subtype II experienced more severe
cognitive impairment marked by a lower MoCA score than the
subtype I. Based on the intensity of Parkinson’s symptom burden,
we termed the subtype I and the subtype II as “mild motor-non-
motor subtype (MMNS)” and “severe motor-non-motor subtype

(SMNS)”, respectively. Such observations are corroborated by
the distribution of samples in the motor-non-motor plane,
as presented in Figure 2. It shows SMNS samples (red dots)
generally scatter on the top-right direction of MMNS samples
(blue dots), with higher motor and non-motor composite scores.
Figure 3 reveals the level of differences between the two subtypes
with SMDs and corresponding 95% CIs. It shows that SMNS
demonstrates more severe symptoms at baseline than the MMNS
regardless of motor and non-motor attributes. The majority of
attributes have a large effect size between the two subtypes, with
most absolute SMD values close to one.

Variation in Imaging Markers
As shown in Table 2, SMNS and MMNS varied significantly
in the brain imaging markers. Generally, the MMNS subtype
demonstrated greater binding values in caudate, putamen,
striatum regions than the SMNS subtype.

Variation in CSF Biomarkers
The SMNS and MMNS subtypes did not vary significantly in
terms of CSF biomarkers except the p-tau/α-synuclein ratio (p
= 0.002), as shown in Table 3.

Longitudinal Progression
There are 17 PD patients with baseline data but without symptom
data in follow-up visits. This results in 391 patient data entering
the longitudinal analysis with 262 in the MMNS group and
129 in the SMNS group, which maintain a similar patient
ratio between two subtypes compared to those used in the
cluster analysis. Figure 4 depicts the time plot of H&Y (blue
lines) and MoCA (red lines) scores from baseline up to 36-
month follow-up. The MMNS subtype is presented in solid lines
and the SMNS subtype in dash lines. For the progression of
the motor symptom as captured in H&Y (blue lines), SMNS
presents a more severe pattern than MMNS consistently across
all four time points. SMNS also presents fewer variations in the
changing rate compared to MMNS. As for non-motor symptoms
(red lines), SMNS presents worse cognitive functions than
MMNS consistently across all four time points. It also shows an
increasing difference in cognitive functions along time between
the two subtypes. The ANCOVA test shows there is a significant
difference between the two subtypes in both motor (F = 47.35,
p < 0.001) and non-motor (F = 27.67, p < 0.001) progressions
after adjusting age at symptom onset as a confounding factor. It
also reveals significant difference among four timepoints in both
motor (F = 33.93, p < 0.001) and non-motor (F = 8.35, p <

0.001) progressions.
Table 4 shows the comparison of the progression rates in three

different time intervals between two subtypes. In terms of motor
functioning, MMNS demonstrated more rapid early and long-
term progression than the SMNS subtype. In terms of global
cognitive function, measured using MoCA scores, patients in
SMNS demonstrated rapid deterioration in early, secondary, and
long-term progression than MMNS patients.
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FIGURE 2 | Distribution of cluster memberships in the motor-non-motor plane.

FIGURE 3 | Level of differences in baseline characteristics between PD subtypes. The * symbol indicates statistically significant differences between the two subtypes.
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TABLE 2 | Brain imaging of PD subtypes.

Brain imaging Mild motor and

non-motor

subtype

(MMNS,

N = 269)

Mean (SD)

Severe motor

and non-motor

subtype

(SMNS,

N = 138)

Mean (SD)

p-value

(α = 0.0017)

Right caudate* 2.083 (±0.561) 1.841 (±0.601) <0.001

Left caudate 2.060 (±0.563) 1.892 (±0.625) 0.001

Right putamen* 0.882 (± 0.350) 0.771 (±0.364) <0.001

Left putamen 0.833 (±0.345) 0.776 (±0.375) 0.033

Right striatum* 2.966 (±0.844) 2.612 (±0.897) <0.001

Left striatum 2.894 (±0.841) 2.668 (±0.954) 0.004

Mean caudate

measure*

2.072 (±0.514) 1.866 (±0.574) <0.001

Mean putamen

measure*

0.858 (±0.279) 0.773 (±0.324) <0.001

Mean striatum

measure*

1.465 (±0.369) 1.319 (±0.425) <0.001

Lowest caudate

measure*

1.883 (±0.517) 1.692 (±0.539) <0.001

Highest caudate

measure*

2.261 (±0.542) 2.040 (±0.634) <0.001

Lowest putamen

measure*

0.691 (±0.247) 0.638 (±0.293) <0.001

Highest putamen

measure*

1.025 (±0.355) 0.909 (±0.387) <0.001

Lowest striatum

measure*

2.588 (±0.699) 2.341 (±0.783) <0.001

Highest striatum

measure*

3.271 (±0.836) 2.938 (±0.960) <0.001

Asymmetry index

(caudate)

19.047

(±13.143)

18.822

(±13.000)

0.854

Asymmetry index

(putamen)

38.674

(±25.199)

34.826

(±24.438)

0.146

Asymmetry index striatum 23.549 (±14.47) 22.644

(±14.256)

0.529

Left count density ratio 2.707 (±1.027) 2.645 (±0.855) 0.854

Right count density ratio 2.547 (± 0.770) 2.619 (±0.890) 0.638

Contralateral striatum* 2.622 (± 0.717) 2.376 (±0.813) <0.001

Contralateral caudate* 1.912 (±0.530) 1.710 (±0.561) < 0.001

Contralateral putamen 0.711 (±0.254) 0.665 (±0.300) 0.002

Contralateral count

density ration

2.885 (±1.082) 2.758 (±0.787) 0.348

Ipsilateral striatum* 3.237 (±0.846) 2.904 (±0.956) <0.001

Ipsilateral caudate* 2.232 (±0.547) 2.022 (±0.624) <0.001

Ipsilateral putamen* 1.005 (±0.367) 0.882 (±0.397) <0.001

Ipsilateral count density

ratio

2.367 (±0.595) 2.507 (±0.805) 0.285

*Indicates statistical significance between the two subtypes (Wilcoxon rank-sum test).

DISCUSSION

In the present study, we aimed to validate the Parkinson’s
disease subtypes using a standardized data-driven approach.
We used k-means cluster analysis to unravel two distinct

TABLE 3 | CSF biomarkers of PD subtypes.

CSF variables Mild motor and

non-motor

subtype

(MMNS,

N = 246–266)

Mean (SD)

Severe motor

and non-motor

subtype

(SMNS,

N = 115–133)

Mean (SD)

p-value

(α = 0.005)

Aβ1-42 920.070

(±384.060)

908.880

(±465.370)

0.529

α-synuclein 1,507.400

(±652.890)

1,519.400

(±713.130)

0.775

T-tau 166.100

(±50.812)

177.710

(±67.664)

0.260

P-tau 14.414 (±4.649) 16.006 (±6.296) 0.043

T-tau/Aβ1-42 ratio 0.1941

(±0.0822)

0.219 (±0.120) 0.080

P-tau/Aβ1-42 ratio 0.017 (±0.008) 0.019 (±0.012) 0.185

P-tau/T-tau ratio 0.085 (±0.006) 0.085 (±0.008) 0.624

Aβ 1-42/α-synuclein ratio 0.645 (±0.214) 0.645 (±0.307) 0.356

T-tau/α-synuclein ratio 0.114 (±0.026) 0.123 (±0.038) 0.058

P-tau/α-synuclein ratio* 0.009 (±0.003) 0.010 (±0.022) 0.002

*Indicates statistically significant difference between two subtypes (Wilcoxon rank-sum

test).

subtypes of Parkinson’s disease patients using extensive motor
and non-motor data from the Parkinson’s Progression Markers
Initiative (PPMI) database, which includes patients between 25
and 83 years, representing patients of broad age range and
varying disease severity. We adopted a rigorous and standardized
process to minimize biases in the cluster analysis, including
data normalization, identifying optimal cluster numbers through
an iterative process, and random initializations to avoid local
optima. The process is fully data-driven without the need for
manual parameter tuning such that objective and reproducible
clustering results can be achieved. Based on the severity of motor
and non-motor symptom burden, two distinct PD subtypes:
severe motor-non-motor subtype (SMNS) and mild motor-
non-motor subtype (MMNS) were identified. Novel motor
and non-motor composite scores were developed to provide
a direct and qualitative assessment of the distribution of
cluster memberships. In addition, we provided a comprehensive
evaluation of their characteristics, including brain imaging, CSF
biomarkers, longitudinal motor and cognitive progression.

Baseline Characteristics
Our post-hoc comparisons demonstrated that two subtypes
varied significantly in terms of the age of symptoms onset,
motor (MDS UPDRS III total score, rigidity, bradykinesia, and
axial subscores) and non-motor (MoCA, SCOPA, RBD, GDS,
pain, fatigue, and apathy) features. Although there is not much
difference in the mean age of the two subtypes, the age range
reflects the younger at symptom onset include patients of
younger age (age range: 25.4–80.1 years) than older at symptom
onset PD participants (age range: 35.6–83 years. These age ranges
reflect the diversity in the age of de novo PD patients. The
subtype with the older onset of symptoms experienced a greater
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FIGURE 4 | Time plot of motor (HandY) and non-motor (MoCA) progressions in PD subtypes.

TABLE 4 | Parkinson’s disease symptom progression rate of PD subtypes.

Characteristics Mild motor and

non-motor

subtype (MMNS,

N = 262)

Mean (SD)

Severe motor

and non-motor

subtype

(SMNS, N = 129)

Mean (SD)

Hoehn and Yahr score

- Early progression (Y1-Y0) 0.228 (±0.535) 0.171 (±0.528)

- Secondary progression (Y3-Y1) 0.169 (±0.587) 0.178 (±0.509)

- Long-term progression (Y3-Y0) 0.418 (±0.675) 0.383 (±0.699)

MoCA score

- Early progression (Y1-Y0) −0.693 (±2.573) −1.031 (±2.783)

- Secondary progression (Y3-Y1) 0.254 (±2.104) −0.274 (±2.571)

- Long-term progression (Y3-Y0) −0.579 (±2.798) −1.210 (±2.882)

Parkinson’s symptoms burden than the subtype with the younger
onset of symptoms. The SMNS subtype experiencedmore intense
motor and non-motor symptoms than the MMNS subtype.

The severity of Parkinson’s symptom in both groups were
complemented by their respective SPECT imaging findings,
which showed a marked reduction in binding values at caudate,
putamen, and striatum regions in the SMNS relative to the
MMNS subtype. These findings are in line with the earlier study
findings, which demonstrated that reduced bindings values were
indicative of Parkinson’s disease (34). The intense Parkinson’s
symptom burden along with the shrinkage of caudate, putamen,
striatum binding values in SMNS are suggestive of a pronounced
dopaminergic neuronal loss in striatum nigral regions than
MMNS groups (35). Earlier studies have indicated that greater
loss of binding sites at caudate, putamen, and striatum regions
were substantially correlated to impaired motor function,
cognitive decline, and depression (21, 36, 37), which align with
the current study findings.

Our findings from the CSF biomarkers comparison
demonstrated that the two subtypes differ significantly regarding

the p-tau/α-synuclein ratio. Our study is first to examine the
correlations between the p-tau/α-synuclein ratio withMoCA and
UPDRS-III scores. The analyses showed that p-tau/α-synuclein
ratio was not significantly correlated with MoCA scores (Pearson
correlation coefficient: ρ = 0.04, p = 0.50) or UPDRS-III
(Pearson correlation coefficient: ρ = 0.06, p = 0.23). Despite
insignificant findings, these findings suggest a critical need to
examine the relationships between p-tau/α-synuclein ratio with
MoCA and UPDRS-III scores in the long run, as the progression
of PD patients might illustrate some meaningful relationships.
Prior studies have shown that a lower p-tau/α-synuclein ratio
is an important biomarker of PD and this ratio helps in
differentiating PD from other neuropathies (30). However, the
exact cut-off points of p-tau/α-synuclein ratios for differentiating
PD patients are unclear because of conflicting findings. Even
though our findings are not directly comparable with previous
findings, prior studies comparing p-tau/α-synuclein ratios
between PD patients and healthy cohorts show inconsistent
findings. A higher p-tau/α-synuclein ratios were observed in
PD patients relative to healthy controls (38), whereas another
study showed that p-tau/α-synuclein ratios were not different
between PD patients and healthy controls (39). It is important
to note that the comparison groups of these studies vary from
our PD subtypes, indicating the need to investigate the variation
in p-tau/α-synuclein ratios across PD subtypes. A study using
PPMI data indicated that the p-tau/α-synuclein ratios were not
different across three identified subtypes of PD patients (17).
Due to these discrepant findings, more studies are needed to
investigate the role of the p-tau/α-synuclein ratio and variation
of the p-tau/α-synuclein ratios across PD subtypes.

Rate of Progression
Our findings on the rate of progression show thatMMNS showed
more rapid early and long-term deterioration of motor decline
than SMNS as measured by Hoehn and Yahr score. In terms of
global cognitive functioning, the SMNS group deteriorated more
rapidly than MMNS patients did. Our findings confirmed the
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degenerative, progressive nature of Parkinson’s disease in terms
of both motor and cognitive domains. As depicted in Figure 4,
clear contrast can be drawn in the progression of motor and non-
motor symptoms between two subtypes. These findings shed light
on unique trajectories of motor and cognitive dysfunctions in
these two subtypes.Moreover, the ranking of severity in identified
subtypes presents a stable pattern for both motor- and non-
motor symptoms up to 3-year following the initial baseline visit,
indicating the temporally consistent property of these subtypes,
and demonstrating their potential prognostic value.

Comparison With Previous Studies
Our findings are consistent with a study by Pagano et al.
(40) using PPMI data with a priori age-based clusters. This
study demonstrated that Parkinson’s disease patients (older at
symptom onset) manifested severe motor symptoms (tremor,
MDS-UPDRS III total score, and bradykinesia), non-motor
symptoms (SCOPA total, UPSIT, and MoCA), and marked
deterioration in imaging makers than the younger at symptom
onset (40). Our findings demonstrating the relationship between
age of symptom onset and disease severity also agrees with
previous studies by Fereshtehnejad et al. (17) and Erro
et al. (18) based on data-driven analyses—without a priori
hypotheses, using PPMI data. Especially, the SMNS subtype—
that experienced more intense Parkinson’s symptoms—bears
some resemblance with their diffuse malignant subtype in respect
of motor (MDS-UPDRS Part III score), non-motor (SCOPA-
total, MoCA), and neuropsychiatric features (apathy, fatigue,
pain, STAI). Our MMNS subtype with milder symptoms shares
similarities with benign groups in terms of motor (MDS-UPDRS
Part III score, tremor), non-motor (SCOPA-total, MoCA), and
neuropsychiatric features (STAI, hallucinations, apathy, pain).
Although the above-mentioned studies obtained their data from
the common source, PPMI, findings reveal some discrepancies
with respect to the motor and non-motor symptoms that might
be due to the use of different clustering analysis techniques.

The past studies have reported that tremor is one of the
key distinguishing features across various subtypes, whereas the
current study showed that two subtypes did not vary in terms
of tremor severity. Thus, our findings do not align with some
past studies that identified unique subtypes with tremor and non-
tremor dominant features (41, 42). There are several plausible
reasons explaining differences in our findings with these studies.
One reason could be that most of these studies utilized motor
data alone, while our study considered both motor and non-
motor symptoms data of the PD. The second plausible reason
might be due to consideration of cross-sectional tremor data in
the cluster analysis that might have prevented tracking of tremor
progression and discrepancies in identified subtypes. Finally,
it might be because of PPMI data as PPMI only includes de
novo PD patients who are off the medications, which might
have excluded the PD who were on medications with greater
tremor severity. The disease progression rates in this current
study were also inconsistent with prior studies, which report
that the old-age onset subtype showed rapid motor decline than
the young-onset subtype having slower progression of motor
decline (41, 42). The likely reasons for these inconsistencies can

be due to differences in variables included in cluster analyses, data
pre-processing, data standardization, and clustering techniques
applied for identifying clusters.

Strengths and Limitations
The present study developed a standardized cluster analysis
procedure that builds upon recommendations and common
practice from previous studies (4, 6, 12, 18), and it is published
online to foster data comparison and reproducibility of results.
We undertook measures to mitigate the inherent limitations
associated with data-driven approach analysis: (a) inclusion of
comprehensive motor and non-motor features from the publicly
available PPMI database, (b) data standardization using min-
max normalization, (c) identification and selection of optimum
clusters using C-H pseudo-F value, (d) identification of global
minima and avoidance of local minima by setting iterations
and repetitions to 100 levels. These measures aid in minimizing
any subjective biases that might have stemmed from a priori
hypothesis-driven analysis, clinical subtyping, and the heuristic
selection of variables and clusters. Our study explored and
compared attributes of two clusters using motor and non-
motor features, brain imaging, CSF-biomarkers, trajectories of
motor, and global cognitive functioning. The novel composite
scores combined with visualization of cluster memberships in
the two-dimensional motor-non-motor plane provide a more
intuitive and clinically meaningful understanding of identified
PD subtypes. In addition, few studies have investigated the
longitudinal stability of subtype characteristics. Our results
show a clear and stable contrast between the two subtypes in
both motor and cognitive progressions. Such stability provides
not only additional validation but also offers great clinical
implications in terms of the prognostic value of the identified
PD subtypes.

The last strength of the study inherits from the advantage
of the data-driven cluster analysis in that once clusters have
been identified, a rule for assigning cluster memberships (i.e., PD
subtypes in this study) is readily constructed and can be used to
classify patient data into one of these two PD subtypes. Our K-
means cluster analysis approach derives rescaling parameters for
normalizing patient data and centroid information for the two
PD subtypes (see Supplementary Table S1). These parameters
collectively form the cluster model, which can classify patients
into one of two PD subtypes based on the following steps, (a)
normalize patient data using rescaling parameters; (b) calculate
squared Euclidean distances between patient data and each
cluster centroid; (c) classify the patient into the PD subtype with
a shorter distance. The simple implementation and explainable
model parameters facilitate the downstream clinical applications
of identified PD subtypes. Compared to traditional clinical
subtyping that is usually based on a priori hypothesis and relies
on motor symptoms and/or the age of onset (10, 11, 43–46),
data-driven PD subtyping addresses some of the limitations.
This includes incorporating important non-motor features in
the subtyping process and bypassing the ambiguity in selecting
the ratio of motor sub-scores for defining the clinical subtypes
(12, 47). However, several challenges still exist, staggering the
broad adoption of data-driven subtypes. First, data-driven PD
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subtyping often requires more data elements to be collected,
which imposes an additional burden in clinical practice. Second,
there is still a substantial variation between subtypes identified
from different data-driven PD subtyping studies. Our study
answers the call for a standardized cluster analysis approach (12)
and facilitates result sharing and comparison. More efforts need
to be directed in this direction to identify the most relevant
variables and consolidate discrepant findings for data-driven PD
subtyping to push their clinical use.

Despite the strengths in the study, our findings should
be interpreted with some degree of caution partially due
to limitations associated with PPMI datasets. PPMI involves
untreated PD patients at the early PD stage without extreme
motor or cognitive complications. This might underrepresent
patients with greater symptoms severity who are on medications.
PPMI has a shorter follow-up duration (<4 years); thus, it
was not possible to examine the long trajectories of disease
severity across subtypes. Furthermore, confounding factors
in longitudinal analyses in observational studies often exist.
Although the issue is mitigated by including the age at
symptom onset as a covariate in the ANCOVA test, other
potential confounding factors have yet to be explored due to
the limitations of existing datasets. For example, procedures
such as deep brain stimulation (DBS) are likely to alter
the symptom progression trajectories. However, among 391
patient data entered the longitudinal analysis, only 48 of them
have information on whether and when DBS procedures are
administrated. Therefore, future study is warranted to investigate
the confounding effects further when more complete datasets
become available.

Although PPMI includes patients of a wider age range
and disease severity, we chose to exclude the participants
with any missing values in variables used for cluster analysis
to prevent potential biases that might be introduced due
to the replacing of missing values. Due to greater missing
values in imaging and CSF biomarkers, several participants
were excluded from analyses that might have compromised
the generalizability of findings. This exclusion of participants
with missing values might have restricted the representativeness
of the PPMI dataset. The inclusion of participants with
complete data for cluster analysis might have reduced the
strength of the data-driven analysis due to the truncation
of the analytic sample size. In addition, we only summarize
clinical, brain imaging, and CSF biomarker characteristics of
two subtypes using descriptive measures; thus, this might
not explain the correlation between clinical, imaging, and
biomarker changes.

As the PPMI dataset is still evolving with the inclusion of
motor and non-motor features and longer follow-up duration,
further confirmatory studies are required to validate PD subtypes.
Identification of subtypes of PD patients using the latest,
complete PPMI data will help in the precise identification of
PD subtypes representing PD patients. Furthermore, subtypes
can be identified using brain imaging, biomarkers, and genetics
data. Moreover, future studies need to examine the correlation
between clinical features, CSF, and imaging markers to elucidate
the complex heterogeneous nature of Parkinson’s disease. Other

clustering approaches, such as network analysis, can be used to
validate PD subtypes.

CONCLUSION

In summary, we identified two distinct subtypes of Parkinson’s
disease: (a) mild motor-non-motor subtype (MMNS) with
milder motor, non-motor, and neuropsychiatric features and
(b) severe motor-non-motor subtype (SMNS) with intense
motor and non-motor features by including motor and non-
motor features in cluster analysis. The SPECT imaging supports
the clinical symptom burden—lower binding values in striatal
pathways were observed in SMNS thanMMNS, reflecting greater
deterioration in nigral pathways in the SMNS subtype. Both
subtypes showed peculiar progression patterns, with SMNS
showing a more rapid decline in global cognitive functioning and
MMNS showing a more rapid decline in motor functioning. The
clear contrast between two subtypes in both motor and cognitive
functioning progressions demonstrates the longitudinal stability
of subtype memberships up to 3 years following the baseline
visit. Such stability provides great clinical implications on the
prognostic value of the identified subtypes at baseline. More
studies are needed to confirm our findings with a larger sample
of longitudinal data for subtyping analysis. Such findings provide
additional evidence to devise tailored treatment planning for
identified PD subtypes to maximize patient outcomes.
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