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Abstract
Skin melanoma remains a highly prevalent and yet deadly form of cancer, with the exact degree of melanoma-associated mortality
being strongly dependent upon the local tumor microenvironment. The exact composition of stromal and immune cells within this
microenvironmental region has the potential to profoundly impact melanoma progression and prognosis. As such, the present study
was designed with the goal of clarifying the predictive relevance of stromal and immune cell-related genes in melanoma patients
through comprehensive bioinformatics analyses. We therefore analyzed melanoma sample gene expression within The Cancer
Genome Atlas database and employed the ESTIMATE algorithm as a means of calculating both stromal and immune scores that
were in turn used for identifying differentially expressed genes (DEGs). Subsequently, univariate analyses were used to detect DEGs
associated with melanoma patient survival, and through additional functional enrichment analyses, we determined that these
survival-related DEGs are largely related to inflammatory and immune responses. A prognostic signature comprised of 10 genes
(IL15, CCL8, CLIC2, SAMD9L, TLR2, HLA.DQB1, IGHV1–18, RARRES3, GBP4, APOBEC3G) was generated. This 10-gene
signature effectively separated melanoma patients into low- and high-risk groups based upon their survival. These low- and high-risk
groups also exhibited distinct immune statuses and differing degrees of immune cell infiltration. In conclusion, our results offer novel
insights into a number of microenvironment-associated genes that impact survival outcomes in melanoma patients, potentially
highlighting these genes as viable therapeutic targets.

Abbreviations: AJCC = American Joint Committee on Cancer, AUC = area under the curve, DEGs = differentially expressed
genes, ESTIMATE = estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data, FDR = false
discovery rate, GSEA = gene set enrichment analysis, HR = hazard ratio, IFN = interferon, IL = interleukin, KEGG = Kyoto
Encyclopedia of Genes and Genomes, LASSO = least absolute shrinkage and selection operator, OS = overall survival, PCA =
principal component analysis, TCGA = The Cancer Genome Atlas, TME = tumor microenvironment.
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1. Introduction

Skin melanoma remains a highly malignant melanoma subtype,
and it is also highly prevalent, accounting for approximately
4.6% of all malignant tumor types and 1.7% of cancer-related
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death.[1] Melanoma incidence has been rising in recent years, and
although early state melanoma can readily undergo curative
resection, the disease is often not detected until a later stage at
which point the prognosis is poor. Indeed, advanced melanomas
are often not responsive to chemotherapy or radiotherapy.
However, as these tumors are often responsive to immunothera-
peutic intervention, it is essential that novel immunomodulatory
approaches to treating melanoma be developed.[2]

Although tumor cells are often examined as individual entities,
there is increasingly clear evidence that the local tumor
microenvironment is essential for shaping tumor develop-
ment.[3,4] Microenvironmental cells and proteins can shape
diverse tumor cell activities including survival and chemotaxis.
This tumor microenvironment is also dynamic and is composed
of stromal, immune, and endothelial progenitor cells, as well as a
complex extracellular matrix and a diverse array of cytokines and
growth factors.[5] Immunological and stromal cells are the
primary cells that drive melanoma growth and progression.[6,7]

Indeed, numerous immunomodulatory therapeutic approaches
to treating melanoma have been designed in recent years.[8,9] The
ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data) algorithm is a
tool that is designed to gauge stromal and immune cell infiltration
into a given tumor sample according to gene expression
datasets.[10] This algorithm has previously been used to evaluate
microenvironmental composition associated with colon can-

https://orcid.org/0000-0001-7038-7915
https://orcid.org/0000-0001-7038-7915
mailto:wangxiaoyuansur@163.com
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
http://dx.doi.org/10.1097/MD.0000000000026017


Yingjuan et al. Medicine (2021) 100:21 Medicine
cer,[11] prostate cancer,[10] and glioblastoma.[12,13] However, no
comparable studies regarding stromal and immune cell infiltra-
tion in melanoma have been conducted to date.
In the present analysis, we therefore evaluated melanoma

patient The Cancer Genome Atlas (TCGA) genome expression
profiles and the ESTIMATE algorithm to define the immune/
stromal scores for these patients, leading us to identify a subset of
microenvironment-associated genes related to melanoma patient
overall survival (OS), then used these genes to construct a gene
signature related to patient survival outcomes, and to explore the
significance of this signature in relative to the immune response
and immune cell infiltration. Together, our results offer novel
insight into the melanoma tumor microenvironment while
highlighting potential prognostically and/or therapeutically
relevant gene targets in these tumors.
Table 1

Clinical characteristics of combined, training, and validation
cohort.

Characteristics Combined cohort Training cohort Validation cohort

n=470 n=235 n=235
Age, y 58.09±12.93 56.16±13.52 59.71±10.8
Sex
Female 180 (38.29%) 93 (39.57%) 87 (37.02%)
Male 290 (61.71%) 142 (60.43%) 148 (62.98)

T stage (8th AJCC)
T1 50 (10.64%) 25 (10.64%) 25 (10.64%)
T2 78 (16.59%) 30 (12.77%) 48 (20.43%)
T3 90 (19.15%) 44 (18.72%) 46 (19.57%)
T4 153 (32.55%) 78 (33.19%) 75 (31.91%)
Tx 99 (21.06%) 58 (24.68%) 41 (17.45%)

N stage (8th AJCC)
N0 235 (50%) 113 (48.09%) 122 (51.91%)
N1 74 (15.74%) 38 (16.17%) 36 (15.32%)
N2 49 (10.43%) 27 (11.49%) 22 (9.36%)
N3 55 (11.7%) 27 (11.49%) 28 (11.91%)
Nx 57 (12.13%) 30 (12.77%) 27 (11.49%)

M stage (8th AJCC)
M0 418 (88.94%) 198 (84.26%) 220 (93.62%)
M1 24 (5.11%) 18 (7.66%) 6 (2.55%)
Mx 28 (5.95%) 19 (8.08%) 9 (3.83%)
2. Materials and methods

2.1. Sample datasets

The raw mRNA expression data and clinical data of skin
melanoma were downloaded from TCGA database (https://gdc.
nci.nih.gov/). Extracted data were from patients with skin
melanoma. In total, 470 skin melanoma samples (combined set)
were divided into equally sized training and validation sets at
random. The validation set was utilized when validating training
set findings. As all data included herein were isolated from public
sources, no ethical oversight was required.

2.2. DEG identification based on immune/stromal scores

ESTIMATE algorithm was applied to estimate the sample
stromal and immune scores. Stromal and immune scores were
calculated by the ESTIMATE package in R. ESTIMATE outputs
stromal, immune and ESTIMATE scores by performing single-
sample gene set enrichment analysis (GSEA). Based on immune/
stromal score values, patients were divided into low- and high-
score groups by median split. The expression profiles of
melanoma patients with a high immune (or stromal) score were
compared to those with a low score to identify immune (or
stromal) score-related DEGs. The edge R package was then used
for data analysis, with differentially expressed genes being
defined as genes meeting the following criteria: false discovery
rate (FDR) <0.05 and jlog2 fold changej >1.

2.3. Identification and functional enrichment analysis of
survival-related DEGs

Univariate Cox regression analyses were used for identifying
DEGs linked with melanoma patient survival using the ‘survival’
R package (bioconductor.org/ packages/survivalr/). Prognostic
DEGs were those with a log-rank P< .05. Functional enrichment
analyses were used to identify potential pathways in which these
survival-related DEGs were enriched. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment was assessed
at a P< .05 significance threshold.
TNM stage (8th AJCC)
Stage I 89 (18.94%) 37 (15.74%) 52 (22.13%)
Stage II 140 (29.79%) 70 (29.79%) 70 (22.79%)
Stage III 171 (36.38%) 85 (36.17%) 86 (36.59%)
Stage IV 23 (4.89%) 17 (7.23%) 6 (2.55%)
Other 47 (10%) 26 (11.06%) 21 (8.94%)

AJCC = American Joint Committee on Cancer.
2.4. Development and validation of a survival-related DEG
prognostic signature

A risk signature was constructed using these survival-related
DEGs, with a least absolute shrinkage and selection operator
(LASSO) regression strategy being employed to further screen
2

these genes and to optimize the risk signature. Prognostic risk
score values were ultimately calculated as follows: Risk score =
Gene 1 � b1 + Gene 2 � b2 + . . . Gene n � bn. The b symbol
corresponds to a regression coefficient which had been defined for
each gene of interest based upon the training dataset. Median
prognostic risk score values were then employed for separating
melanoma patients into low- and high-risk groups. This formula
was them employed for assessing validation cohort patient
samples. Signature prognostic relevance was gauged through
univariate analyses of patients in both cohorts, after which the
independent prognostic relevance of this signature risk score in
these 2 cohorts was evaluated via multivariate analysis.
2.5. Bioinformatics analysis

We carried out a principal component analysis (PCA) to assess
expression patterns for groups of patients, and GSEA was
performed as a means of assessing whether there were significant
differences between groups with respect to identified gene sets.
We examined 2 gene sets (immune system process, M13664 and
immune response, M19817) that were extracted from the
Molecular Signatures Database v4.0 (http://www.broadinsti
tute.org/gsea/msigdb/index.jsp). We also examined KEGG gene
sets from MSigDB. A normalized enrichment score <0.05 and
FDR<0.05 were used to establish significance.
2.6. Immune infiltration analysis

The CIBERSORT algorithm[14] was employed to transformed
skin melanoma gene expression profiles into the proportion of
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Figure 1. Association of stromal and immune scores with skin melanoma pathology and prognosis. (A) Distributions and comparisons of stromal and immune
scores among different T stages, N stages, M stages, and TNM stages. (B) Violin plot of the stromal, immune and ESTIMATES scores. (C) Kaplan-Meier plot of
overall survival for patients with low vs. high stromal scores. (D) Kaplan-Meier plot of overall survival for patients with low versus high immune scores. (E) Kaplan-
Meier plot of overall survival for patients with simultaneously low ESTIMATES scores versus patients with high ESTIMATES scores.
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22 tumor-infiltrating immune cells. The proportions of the 22
tumor-infiltrating immune cells in each sample were determined
by using the “CIBERSORT” (R package). Features were
compared between groups via 1-tailed t tests.
2.7. Statistical analysis

R (v3.6.3; http://www.Rproject.org) was employed for all analyses,
with LASSO regression analyses being conducted using the
“glmnet" package. The final gene signature was defined according
to the sum of individual gene expression levels following weighting
based upon gene-specific regression coefficients (b) values. Kaplan-
Meier curves and log-rank tests were employed when conducting
prognostic assessments, and figures were prepared with GraphPad
Prism 8 (GraphPad Software Inc., CA). Univariate and multivariate
Cox regression analyses were performed to identify predictors of
patient prognosis.Weutilized the“survivalROC"package for time-
dependent receiver-operating characteristic curve curve analyses.
P< .05 was the threshold of significance.
3. Results

3.1. Association of clinical characteristics with stromal/
immune scores

We began by downloading TCGA gene expression data from 470
patients with skin melanoma (Table 1), including 290 males and
Figure 2. Volcano plot of differentially expressed genes (DEGs) from the low vs. hig
red (log2 fold change>1.0) and blue (log2 fold change<�1.0). Black plots represen
ratios for the top 20 stromal score(C)- and immune score(D)-related prognostic DE
by using the Cox proportional hazard regression model).
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180 females (61.71% and 38.29%). The median age was 58.09
years (range: 15–90). Patients presented with AJCC 8th stage I, II,
III, and IV tumors in 18.94%, 29.79%, 36.38%, and 4.89%
of cases.
The ESTIMATE algorithm was then employed as a means of

calculating stromal scores (range: �1800.51 to 1901.99),
immune scores (range: �1476.28 to 3780.29) and ESTIMATE
scores (range: �2618.28 to 5098.14) (Fig. 1 and Supplemental
Table 1, http://links.lww.com/MD/G120). The link between
stromal/immune scores and the pathologic properties of
melanoma patients was evaluated by assessing score distributions
among different T stages, N stages, M stages, and TNM stages.
We found that these stromal/immune scores were significantly
linked to T stage and TNM stage. Interestingly, stromal scores
increased with increasing T stage (P< .001) and TNM stage
(P< .001), whereas immune scores decreased with increasing T
stage (P< .001) and TNM stage (P< .001). However, both
stromal and immune scores were not significantly linked with N
or M stage (all P> .05) (Fig. 1).
To explore the prognostic relevance of these immune and

stromal scores, we separated patients into low- and high-score
groups by median split (median stromal score=�330.28; median
immune score=862.96; median ESTIMATE score=563.81).
Subsequent Kaplan-Meier analyses revealed that patients with
high immune and ESTIMATE scores exhibited an increase in OS
relative to those for whom these scores were low (P< .0001)
(Fig. 1).
h stromal score (A) /immune score (B) groups. Genes with P< .05 are shown in
t the remaining genes (those with no significant difference). Forest plot of hazard
Gs (hazard ratios and corresponding 95% confidence intervals were estimated
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Figure 3. Expression profiles of stromal and immune score-related differentially expressed genes (DEGs). Heatmaps showing expression profiles for stromal score
(A)- and immune score (B)-related DEGs with unsupervised hierarchical clustering analyses. Rows represent the DEGs expression profiles, and columns indicate
corresponding tumor samples.

Yingjuan et al. Medicine (2021) 100:21 www.md-journal.com
3.2. Identification of DEGs based upon immune/stromal
scores

We assessed RNA-seq data from these 470 melanoma patients in
the TCGA database in an effort to explore how gene expression
levels and the immune/stromal scores generated above were
related. The expression profiles of melanoma patients with a high
immune (or stromal) score were compared to those with a low
5

score to identify immune (or stromal) score-related DEGs. In
total, we identified 2054 stromal score-related DEGs (upregu-
lated, n=1956; downregulated, n=98) and 1837 immune score-
related DEGs (upregulated, n=1687; downregulated, n=150).
(FDR<0.05 and jlog2 fold changej>1) (Fig. 2 and Supplemental
Table 2, http://links.lww.com/MD/G121). The expression pro-
files of stromal and immune score-related DEGs are visualized,
respectively, on the heatmaps (Fig. 3).
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3.3. Identification of the prognostic DEGs-based on OS

To determine the prognostic significance of these stromal/immune
score-relatedDEGs in predictingmelanoma patientOS, univariate
Cox regression analyses were conducted to detect OS-associated
DEGs. Among the 1837 immune score-related DEGs, 153 were
significantly linked to melanoma patient OS. Using the same
method, we identified 1006 stromal score-related DEGs that were
significantly linked to melanoma patient OS (Fig. 2).
3.4. Functional enrichment analyses highlight the roles of
survival-related DEGs

We next conducted KEGG functional enrichment analyses to assess
these survival-related DEGs. KEGG analyses revealed that survival-
Figure 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichmen
differentially expressed genes (DEGs). (x axis: the number of prognostic DEGs in eac
by false discovery rate).

6

related DEGs (from immune score-related DEGs) were mainly
enriched in neuroactive ligand-receptor interaction, cytokine-
cytokine receptor interaction, JAK-STAT signaling, chemokine
signaling, TH1 and TH2 cell differentiation, complement and
coagulation cascades, and B cell receptor signaling pathways.
Additionally, the survival-related DEGs (from stromal score-related
DEGs) were primarily associated with antigen processing and
presentation, cell adhesion molecules, the intestinal immune
network for IgA production, and type I diabetes mellitus (Fig. 4).

3.5. Construction of a prognostic signature based on
survival-related DEGs

Based on melanoma patient survival data in the training cohort,
we used above survival-related DEGs as candidates for the
t analysis of stromal score-related (A) and immune score-related (B) prognostic
h pathway; y axis: statistically Enriched KEGG pathway, P values were adjusted



Table 2

10-Gene signature.

Gene symbol Gene ID Description Coefficient

IL15 80328 Interleukin 15 �0.03884
CCL8 6355 Chemokine (C-C motif) ligand 8 �0.00036
CLIC2 1193 Chloride intracellular channel protein 2 �0.00245
SAMD9L 219285 Sterile alpha motif domain containing 9-like �0.00833
TLR2 7097 Toll-like receptor 2 �0.01267
HLA.DQB1 3119 Human leukocyte antigen DQB1 �0.00028
IGHV1-18 9606 Immunoglobulin heavy variable 1-18 �0.00014
GBP4 115361 GTP-binding protein 4 �0.00268
RARRES3 5920 Retinoic acid receptor responder (tazarotene induced) 3 �0.0013
APOBEC3G 60489 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G �0.00163
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construction of a gene risk signature. A LASSO Cox regression
approach was employed to ultimately select 10 genes for
inclusion in this signature (Table 2). We established a risk-
scoring model based on the expression of 10-gene signature to
predict survival. The risk score formula is as follows: risk score
= (�0.03884) � expr IL15 + (�0.00036) � expr CCL8 +
(�0.00245) � expr CLIC2 + (�0.00833) � expr SAMD9L
+ (�0.01267) � expr TLR2 + (�0.00028) � expr HLA.DQB1 +
(�0.00014) � expr IGHV1-18 + (�0.00268) � expr GBP4 +
(�0.0013) � expr RARRES3 + �0.00163) � expr APOBEC3G.
“expr” represents the expression value of the corresponding
gene. To confirm the prognostic significance of the risk score. The
median risk score (0.863) was identified as cutoff value to divide
the patients into high- and low-risk group (Fig. 5).
Consistent with our expectations, low-risk melanoma patients

(risk score�0.863) exhibited markedly increased OS compared
to high-risk melanoma patients (risk score>0.863) (16.39±1.66
vs 6.37±0.71years, P< .0001). We then attempted to validate
our signature-derived risk score by using this same approach to
analyze the validation dataset, wherein we also found that the OS
of low-risk patients was shorter than that of high-risk patients
(11.71±1.18 vs 7.24±1.01 years; P< .0001). To compare the
prognostic values of our 10-gene signature risk model and other
clinicopathologic characteristics, we performed time-dependent
receiver-operating characteristic curve curve analysis and the
area under the curve (AUC) wasmeasured. The 10-gene signature
curve showed the greatest AUC value (training set: AUC=0.83;
validation set: AUC=0.79) compared with other clinicopatho-
logic characteristics curves in the training and the validation
cohort. Thus, this 10-gene signature risk score may be more
accurate than other clinical characteristics as a means of
discriminating between melanoma patients (Fig. 6).
Independent risk factors in these to cohorts were assessed via

univariate and multivariate Cox regression analyses. In univari-
ate analyses, our 10-gene signature scores were significantly
related with melanoma patient OS in the training (hazard ratio
[HR]=199.59, 95% confidence interval [CI] 20.87–1908.94,
P< .001) and validation (HR=38.93, 95% CI 6.45–234.94,
P< .001) cohorts. Several clinicopathological factors and the 10-
gene signature scores were included in a multivariate analysis.
These findings showed that 3 factors, including T stage (training
set: HR=1.532, 95% CI 1.223–1.916, P< .001; validation set:
HR=1.636, 95% CI 1.267–2.111, P< .001), N stage (Training
set: HR=1.752, 95% CI 1.383–2.251, P< .001; validation set:
HR=1.496, 95% CI 1.113–2.01, P= .008), and the 10-gene
signature score (training set: HR=42.11, 95% CI 8.243–
7

216.463, P< .001; validation set: HR=13.54, 95% CI 1.91–
96.19, P= .009) were independent prognostic indicators in the
training and validation cohorts (Table 3).
3.6. High- and low-risk melanoma patients exhibit
differences in immune status and infiltration

A PCA approach was employed to evaluate differences in
patterns of distribution in the low- and high-risk groups based
upon 10-gene signature risk scores, and the low- and high-risk
groups were separable into 3 distinct clusters (Fig. 7). A GSEA
functional annotation strategy was also employed, revealing low-
risk samples to be significantly enriched for immune response
pathway-related genes compared to those from high-risk
patients. There were therefore clear differences in the immune
status of tumor samples from low- and high-risk melanoma
patients when these patients were stratified according to their 10-
gene signature risk scores. Furthermore, low-risk group samples
were enriched for immunological pathways such as the JAK-
STAT, RIG-I-like receptor, Toll-like receptor, and T cell receptor
signaling pathways. However, the enriched pathways in the high-
risk group were predominantly associated with oxidative
phosphorylation, glyoxylate metabolism, and dicarboxylate
metabolism (Fig. 7).
We next performed an immune cell-based analysis, revealing

low-risk patients to have increases in numbers of M1 macro-
phages, naïve/memory B cell, plasma cells, regulatory T cells
(Tregs), CD8+ T cells, activated CD4+ memory T cells, follicular
helper T cells, and resting NK cells. In contrast, high-risk patients
had increases in M2 macrophage and M0 macrophage levels.
Our 10-gene signature risk scores were also negatively correlated
with enrichment for B cell, CD4+ T cells, CD8+ T cells, dendritic
cells, neutrophils, and macrophages (Fig. 8).

4. Discussion

Melanomas are not homogenous, but comprise cells with
differing invasive, proliferative and stem-like phenotypes.
Accumulating evidence suggests that the proliferative and
invasive cells in melanoma are characterized by distinct gene
expression profiles. Notably, the tumor microenvironment
(TME) can induce melanoma cells to alternate between these
phenotypes.[15] Previous work suggests that both immune and
stromal cells represent key facets of the TME, and can profoundly
impact tumor proliferation, progression, and therapeutic respon-
siveness.[16] As such, it is essential that further studies evaluate the

http://www.md-journal.com


Figure 5. Construction and validation of 10-gene signature risk score model. (A) LASSO coefficient spectrum of 10 genes in skin melanoma. Generate a coefficient
distribution map for a logarithmic (l) sequence. (B) Selecting the best parameters for skin melanoma in the LASSO model (l). Distribution of risk score, OS, gene
expression, and clinicopathologic features in in the training (C) and validation (D) datasets. Heatmap of the expression of 10 microenvironment-related prognostic
genes in low-risk and high-risk groups (Rows represent corresponding genes, whereas columns indicate corresponding patients). Clinicopathologic features in
low-risk and high-risk groups stratified by the signature. Rows represent corresponding items (T stage, N stage, M stage, TNM stage, age, and sex). Cases in low-
risk group displayed lower age, T and TNM stage in training and validation. (

∗
P< .05,

∗∗
P< .01,

∗∗∗
P< .001).
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genomic profiles associated with extant tumor sequencing
datasets to better evaluate the interplay between melanoma cells
and the TME. Herein, we therefore evaluated the prognostic
relevance of TME-related genes within the TCGA dataset.
Initially, we utilized the ESTIMATE algorithm to establish
stromal and immune cell scores for melanoma patients. We then
determined that melanoma patients with higher immune scores
exhibited significantly improved OS relative to patients with low
immune scores. We identified DEGs associated with the immune/
stromal scores generated for these patient samples, and we then
utilized patient outcome data in order to identify survival-related
DEGs. These genes were incorporated into a prognostic risk
signature that was used to compare differences in OS and
8

immune cell infiltration between low- and high-risk melanoma
patients.
We additionally conducted functional enrichment analyses of

survival-related DEGs suggesting that these genes were associated
with cytokine-cytokine receptor interactions, complement and
coagulation cascades, JAK-STAT signaling, chemokine signaling,
TH1 and TH2 cell differentiation, and B cell receptor signaling
pathways. Together, these results suggest that these survival-
related DEGs are largely associated with immune and inflamma-
tory responses. The immune microenvironment has previously
been shown to profoundly shape melanoma progression and
prognosis, and there have been many efforts to date to develop
novel immunotherapeutic approach.



Figure 6. Kaplan-Meier analysis of patients’OS in the high-risk and low-risk subgroups of the training cohort (A) and validation cohort (B), The x axis represents the
survival time (years), and the y axis represents survival rate; time-dependent ROC analysis performed to compare the ten-gene signature risk model and other
clinicopathologic characteristics in predicting OS of skin melanoma in training cohort (C) and validation cohort (D). OS = overall survival.

Yingjuan et al. Medicine (2021) 100:21 www.md-journal.com
Herein, we incorporated a subset of these survival-relatedDEGs
into a gene signature risk model. Risk scores derived from this
model were then employed as a means of separating patients into
low- and high-risk groups, with subsequent analyses confirming
that there were significant differences in patient OS between these
2 risk cohorts that corresponded to a high AUC value. We
Table 3

Univariate and multivariate independent prognostic analysis of 10
melanoma patients.

Univariate analysis

Characteristic HR (95% CI)

Training cohort
Age 1.024 (1.004–1.037)
Gender 0.958 (0.665–1.368)
T stage 1.575 (1.321–1.978)
N stage 1.589 (1.352–1.905)
M stage 1.557 (0.576–4.173)
TNM stage 1.568 (1.287–1.912)
Signature risk score 199.59 (20.87–1908.94)

Validation cohort
Age 1.025 (1.010–1.039)
Sex 1.182 (0.766–1.822)
T stage 1.776 (1.437–2.195)
N stage 1.425 (1.164–1.746)
M stage 3.466 (0.84–14.295)
TNM stage 1.607 (1.255–2.058)
Signature risk score 38.93 (6.45–234.94)

HR = hazard ratio.

9

additionally confirmed the independent prognostic relevance of
this risk score inmelanomapatient samples throughunivariate and
multivariate analyses. Together, these results offer novel insight
into the roleof theTMEasa regulatorofmelanoma.A subset of the
10 genes included in our risk signature has previously been studied
in the context of melanoma, including interleukin (IL)-15 which is
-gene signature risk score and other clinical characteristics in

Multivariate analysis

P HR (95% CI) P

<.001 1.011 (0.997–1.024) .087
.788 0.892 (0.685–1.423) .891
<.001 1.532 (1.223–1.916) <.001
<.001 1.752 (1.383–2.251) <.001
.387 1.591 (0.521–4.812) .408
<.001 0.767 (0.519–1.129) .177
<.001 42.11 (8.243–216.463) <.001

<.001 1.005 (0.989–1.021) .547
.451 0.879 (0.556–1.391) .583
<.001 1.636 (1.267–2.111) <.001
<.001 1.496 (1.113–2.01) .008
.086 1.253 (0.283–5.555) .767
<.001 0.978 (0.631–1.516) .922
<.001 13.54 (1.91–96.19) .009

http://www.md-journal.com


Figure 7. (A) Principal components analysis between low- and high-risk groups on the basis of the 10-gene signature risk scoremodel. Functional annotation of the
10-gene signature by GSEA analysis: (B) Immune response set and Immune system process set (C) Kyoto Encyclopedia of Genes and Genomes. (D)
Microenvironment of the immune cell population is estimated by CIBERSORT algorithm based on TCGA-skin melanoma data (Row: tumor samples).
Clinicopathologic features in low-risk and high-risk groups (corresponding items: T stage, N stage, M stage, TNM stage, age, and sex.

∗
P< .05,

∗∗
P< .01,

∗∗∗
P< .001). FDR = false discovery rate, NES = normalized enrichment score.
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amultifunctional cytokine related toNK,T, andB cell survival and
activation. The ability of IL-15 to suppress tumor progression and
metastasis in animal melanomamodel systems (including B16 and
B78-H1 tumor models) has previously been demonstrated and
10
linked to its ability to facilitate CD8+ T cell and NK cell activation
and proliferation.[17]

High-and low-risk groups were also significantly different with
respect to observed immune cell infiltration. TME composition is



Figure 8. (A) The violin plot showed the immune cells population in the low- (blue) and high-risk (red) groups. P values are based on the Wilcoxon Test. (B)
Correlation analysis between immune cells population and risk score. P values are based on the paired t test.
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of significant research interest. The immune cells within the
melanoma tumor microenvironment, however, can vary widely
and is associated with patient prognosis. Tumor-infiltrating
lymphocytes —in particular CD8+ T cells—serve as key
mediators of tumor immune surveillance.[18–20] Normally,
effector CD8+ T cells are activated upon antigen and co-
stimulatory molecule exposure, whereupon they can lyse tumor
cells and suppress the growth of tumors. Itay et al[21] confirmed
the distinct exhaustion status of CD8+ T cells in melanoma
11
patients and defined a core exhaustion-gene signature through
the single-cell RNA-seq. The exhaustion of CD8+ T cells have
been shown to be important regulators of melanoma patient
prognosis. In line with these results, we found that high-risk
melanoma patients in our patient sample cohort exhibited
decreased CD8+ T cell infiltration relative to low-risk patients.
Tregs are another cell type of prognostic interest that are
commonly evaluated, although their relevance in the context of
melanoma remains uncertain. Many studies have shown Treg

http://www.md-journal.com
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infiltration to be associated with a poorer melanoma patient
prognosis, although there are some reports suggesting that they
have a neutral or negligible impact on patient outcomes. Shang
et al[22] found that FoxP3+ Tregs were of greater prognostic
relevance in COX-2+ melanoma patients than in those with
COX-2� disease in a meta-analysis. Herein, however, we found
Tregs to be enriched in low-risk patients. B cells, however, are
not known to be as important as T cells in this setting, with
inconsistent prognoses having been identified as a function of B
cell status such that the importance of B cells remains
uncertain. Herein, we demonstrated a significant negative
correlation between B cells and risk score, and naive B/plasma
cells were enriched in low-risk patients. However, the exact
impact of these findings on patient prognosis remains to be
established.
Tumor-associated macrophages are also key regulators of the

interactions between tumor cells and the immune system.
Traditionally, tumor-associated macrophages are classified as
being polarized towards an M1 or an M2 phenotype. M2
macrophage infiltration within tumors has been linked to a
poorer patient prognosis owing to the anti-inflammatory,
angiogenic, and extracellular matrix remodeling activities of
these cells. We found M2 macrophages to be enriched in samples
from high-risk melanoma patients. However, we have limited
knowledge of how to achieve a balance between M1- and M2-
phenotypes. JAK/STAT signaling pathways are among the most
important regulators of polarization. GSEA results revealed that
signaling pathways including JAK/STAT signaling pathways
were enriched in low-risk group. Interferon (IFN)-g can induce
M1 macrophage polarization, and IFN-g can activate STAT1,
with the IFN-g/JAK/STAT1 signaling pathway functioning as a
key mechanism regulating the M1 phenotype. Previous work has
shown that IL-6/JAK/STAT3 signaling pathway activation
primarily mediates macrophage M2 polarization.
There are multiple limitations to the present study. For one,

this analysis was retrospective in nature, and so future
prospective studies will be essential to validate these results. In
addition, functional analyses of the identified prognostic DEGs
are essential before their clinical application to fully explore their
roles in melanoma and their prognostic relevance. In addition, it
is important to note that the immune signature identified in the
present study is based upon an estimate of immune cell
infiltration within tumors as determined from algorithmic
analyses of RNA-seq data. Future in-depth research will be
essential to confirm the validity of these immune infiltration
results, and to assess the cell–cell interactions that may occur
within these tumors and that may impact melanoma progression
or prognosis.

5. Conclusion

Herein, we conducted a comprehensive bioinformatics analysis of
TCGAmelanoma patient gene expression datasets to evaluate the
melanoma tumor microenvironment. Through this approach, we
identified microenvironment-related DEGs and then evaluated
their prognostic relevance in melanoma patients. Future clinical
studies of the functional roles of these genes will be essential to
fully validate their relationship to patient survival outcomes.
Overall, our results offer new insight into the complex interplay
between melanoma stromal cells and immune cells within the
12
tumor microenvironment, potentially highlighting novel thera-
peutic targets for future clinical evaluation.
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