
Adrenomedullin has a cytoprotective role
against endoplasmic reticulum stress for
pancreatic b-cells in autocrine and paracrine
manners
Risa Suetomi1, Yasuharu Ohta1,2* , Masaru Akiyama1, Takuro Matsumura1, Akihiko Taguchi1, Kaoru Yamamoto1,
Takashi Kamatani1, Yukio Tanizawa1
1Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Graduate School of Medicine, Yamaguchi University, Ube,
Japan, and 2Department of Diabetes Research, School of Medicine, Yamaguchi University, Ube, Japan

Keywords
Adrenomedullin, Apoptosis, Pancreatic
islet

*Correspondence
Yasuharu Ohta
Tel.: +81-836-22-2251
Fax: +81-836-22-2342
E-mail address:
yohta@yamaguchi-u.ac.jp

J Diabetes Investig 2020; 11: 823–833

doi: 10.1111/jdi.13218

ABSTRACT
Aims/Introduction: Pancreatic b-cells are sensitive to endoplasmic reticulum (ER) stress,
which has a major role in the context of b-cell death. Adrenomedullin (ADM) has been
shown to exert a cytoprotective effect under various pathophysiological conditions. Several
studies have suggested that thiazolidinediones have protective effects on b-cells. During
the course to elucidate the molecular mechanisms by which pioglitazone prevents b-cell
death, ADM emerged as a candidate. Here, we studied the regulation of ADM expression,
including the effects of pioglitazone, and its role in pancreatic islets.
Materials and Methods: We analyzed ADM expression in islet cell lines treated with
pioglitazone. The effects of ER stress on ADM and ADM receptor expressions were investi-
gated by analyzing thapsigargin-treated MIN6 cells and islets isolated from Wfs1-/- and
db/db mice. To study the anti-apoptotic effect of ADM, ER stress-exposed MIN6 cells were
treated with ADM peptides or transfected with ADM expression plasmid.
Results: Pioglitazone increased the production and secretion of ADM in islets through
peroxisome-proliferator activated receptor-c-dependent mechanisms. Thapsigargin treat-
ment increased expressions of both ADM and ADM receptor, composed of Ramp2, Ram-
p3 and Crlr, in MIN6 cells. ADM and ADM receptor expressions were also increased in
isolated islets from Wfs1-/- and db/db mice. ADM peptides and ADM overexpression pro-
tected MIN6 cells from thapsigargin-induced apoptosis.
Conclusions: ER stress stimulates ADM production and secretion in islets. ADM signal-
ing might protect b-cells from ER stress-induced apoptosis, and might be one of the self-
protective mechanisms. b-Cell protection by pioglitazone is partly through induction of
ADM. ADM-based therapy could be a novel strategy for treating diabetes.

INTRODUCTION
Pancreatic b-cell failure and death are the critical pathogenesis
of most forms of type 2 diabetes mellitus. Uncovering the
molecular mechanisms leading to b-cell failure and death is
therefore essential to develop type 2 diabetes mellitus treat-
ments based on b-cell protection. Although monogenic forms
of diabetes are uncommon, they sometimes provide meaningful

insights into common molecular pathways underlying type 2
diabetes mellitus.
Wolfram syndrome (WFS) is a rare genetic disorder repre-

sented by young-onset, insulin-deficient diabetes, optic atrophy,
deafness and neurological problems1. Most WFS patients har-
bor mutations in the WFS1 gene2. WFS1 protein (wolframin)
is a 100 kDa transmembrane glycoprotein localized in the
endoplasmic reticulum (ER)3. WFS1 protein is involved in ER
stress responses, and loss of WFS1 protein causes ER stress in
the b-cells, resulting in the ER stress-induced dysfunction and
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apoptosis4–6. Importantly, common polymorphisms in the
WFS1 gene are associated with type 2 diabetes mellitus, show-
ing that b-cell failure in WFS might be an extreme example of
that of type 2 diabetes5,7–11. In fact, there is abundant evidence
showing that b-cell ER stress is involved in the development of
type 2 diabetes11. During the attempts to investigate the mecha-
nism whereby loss of WFS1 protein causes b-cell failure, we
found that pioglitazone (PIO) remarkably prevented diabetes
development in the Wfs1-/-Ay/a mouse, a mouse model of
WFS5. By microarray gene expression analysis of the islets from
PIO-treated Ay/a mice, upregulation of adrenomedullin (ADM)
was shown.
Adrenomedullin is a vasodilator peptide composed of 52

amino acid residues, identified from human pheochromocy-
toma12. ADM belongs to the calcitonin/calcitonin gene-related
peptide family, and the ADM signal is conveyed by the calci-
tonin receptor-like receptor (CRLR). CRLR communicates with
receptor activity-modifying protein (RAMP). RAMP2 and
RAMP3 transport CRLR to the cellular membrane to produce
ADM receptors 1 and 2, respectively13. ADM is secreted from
a variety of cell types, functioning in both an autocrine and
paracrine fashion, and is considered to act as an anti-oxidant,
anti-inflammatory, anti-fibrotic and anti-apoptotic mediator14–16.
Numerous studies have shown ADM to have a broad distri-

bution in many tissues and organs, which is reflected by its
diverse physiological functions under both healthy and disease
conditions. ADM exerts potent protective effects under various
pathological conditions, playing its anti-inflammatory and anti-
apoptotic roles. We hypothesized that ADM has protective
effects on the stressed pancreatic b-cells and night mediate, at
least in part, the protective effects of PIO. The present study
aimed to investigate the regulation of ADM expression and its
anti-apoptotic effects under ER stress conditions in pancreatic
islets.

METHODS
Animal experiments
We carried out all mouse experiments under the approval of
the Ethics of Animal Experimentation Committee at Yam-
aguchi University School of Medicine. The mouse facility was
temperature-controlled under a 12-h light/12-h dark cycle. The
starting time of the light period was Zeitgeber time 0, and that
of the dark period was Zeitgeber time 12. PIO, supplied by
Takeda Pharmaceutical (Osaka, Japan), was given within nor-
mal mouse chow with 0.01% PIO (wt/wt) from 4 weeks-of-age.
The yellow agouti (Ay/a) mice used for these experiments

were a kind gift from Professor M Nishimura (Nagoya Univer-
sity Graduate School of Medicine, Nagoya, Japan). WFS1-defi-
cient Ay/a mice were generated by breeding Wfs1-/- mice with
Ay/a mice to make the compound heterozygote (Wfs1+/- Ay/a).
Then, the heterozygote was mated with Wfs1+/- a/a. Male db/
db mice and non-diabetic controls were obtained from CLEA
Japan (Tokyo, Japan). All mice are on the C57BL/6J back-
ground, and experiments were carried out with male mice.

Microarray experiment
Total ribonucleic acid (RNA) was extracted from mouse islets
using ISOGEN (Nippon Gene, Tokyo, Japan) and the RNeasy
Kit (Qiagen, Hilden, Germany). Labeling, hybridization (Affy-
metrix Mouse Genome 430 2.0 Array; Santa Clara, CA, USA)
and scanning were carried out at KURABO (Osaka, Japan), fol-
lowing standard Affymetrix procedures.

Cell and islet culture
The mouse pancreatic b-cell line (MIN6 cells17) was a kind gift
from Dr J Miyazaki. The pancreatic a-cell line, alpha-TC1, was
obtained from American Type Culture Collection (ATCC,
Manassas, VA, USA). We cultured MIN6 cells and alpha-TC1
cells, at passages 23–30, in 25 mmol/L glucose Dulbecco’s mod-
ified Eagle’s medium containing 15% fetal calf serum,
71.5 µmol/L beta-mercaptoethanol, 50 mg/L streptomycin and
75 mg/L penicillin sulfate under 5% CO2 at 37°C. Pancreatic
islets were isolated from C57BL/6 mice by ductal perfusion
with collagenase. The islets were hand-picked and kept in
RPMI medium with 10% fetal calf serum.

RNA extraction and quantitative reverse transcription
polymerase chain reaction
MIN6 RNAwas extracted by using the RNeasyMini Kit (Qiagen).
Mouse islet RNA was extracted with Isogen (Nippon Gene) and
the RNeasy Kit. Complementary deoxyribonucleic acid (DNA)
synthesized with Superscript II Reverse Transcriptase (Life Tech-
nologies, Carlsbat, CA, USA) was subjected to real-time poly-
merase chain reaction (PCR) on the Step one Plus real-time PCR
system (Applied Biosystems, Foster City, CA, USA) with Power
SYBR Green PCR Master Mix (Life Technologies). Each comple-
mentary DNA was quantitated using the DCt method and nor-
malized to the amount ofGapdh.
Primer sequences, designed for mouse genes, are listed

below.
mGapdh forward: 50-AGTATGACTCCACTCACGGCAA-30

mGapdh reverse: 50-TCTCGCTCCTGGAAGATGGT-30

mDdit3 forward: 50-GGAGGTCTTCCTCAGATG-30

mDdit3 reverse: 50-GGACGCAGGGTCAAGAGTAG-30

mAdm forward: 50-CCCAGACTCTTGATCCATTCC -30
mAdm reverse: 50-GTAGCGTTTGACACGAATGTG -30
mRamp2 forward: 50-CTCATCCCACTGAGGACAGC-30

mRamp2 reverse: 50-TGCACCAGTCCTTGACAGAG-30

mRamp3 forward: 50-CTGTCTGGAAGTGGTGCAAC-30

mRamp3 reverse: 50-CTCGGTGCAGTTAGTGAAGC-30

mCrlr forward: 50-CAGAAGGCCTTTACTGCAATAGG-30

mCrlr reverse: 50-TCCCTGCTGCAACGTCATT-30

Reporter gene assay
Transfection of the Adm promoter luciferase reporter, con-
structed in the pGL plasmid (Promega, Madison, WI, USA), to
MIN6 cells was carried out after a 15-h culture in six-well
plates using Lipofectamine 2000 (Thermofisher, Waltham, CA,
USA). Then, 24 h after the transfection, cells were treated with

824 J Diabetes Investig Vol. 11 No. 4 July 2020 ª 2020 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

O R I G I N A L A R T I C L E

Suetomi et al. http://wileyonlinelibrary.com/journal/jdi



or without 10 lmol/L PIO. At 48 h post-transfection, cells were
analyzed for luciferase activity using a PicaGene LUC assay kit
(Toyo Ink, Tokyo, Japan). Luciferase activities were normalized
to protein content.

Chromatin immunoprecipitation
MIN6 cells were cultured with or without 10 lmol/L PIO for
48 h in a 10-cm dish. We carried out the chromatin immuno-
precipitation (ChIP) assay using an EZ-ChIP chromatin
immunoprecipitation kit (Merck Millipore, Billerica, MA, USA).
After fixing with 1% formaldehyde, cells were lysed, briefly son-
icated and immunoprecipitated at 4°C overnight. The following
antibodies were used in the ChIP reactions: normal rabbit
immunoglobulin G (Santa Cruz Biotechnology, Dallas,
TX, USA), anti-acetyl histone H3 (Merck Millipore) and anti-
peroxisome-proliferator activated receptor (PPAR; Santa Cruz
Biotechnology). We washed the ChIP reactions, and eluted
chromatin based on the manufacturer’s protocol. Chromatin
was purified with PCR clean up columns (Qiagen), and PCRs
were carried out with AmpliTaq Gold PCR Master Mix (Ther-
mofisher).
The following primers, designed for mouse genes, were used.
ADM-P1 forward: 50- CAAACTTGGCAAGCACTCAG-30

ADM-P1 reverse: 50- AATGGGCTAGGACACACTCC-30

ADM-P2 forward: 50- CAAACTTGGCAAGCACTCAG-30

ADM-P2 reverse: 50- ACGGGTACTCCAAATGAAGG-30

ADM-P3 forward: 50- AAACCCCAATTTCCAATTCAG-30

ADM-P3 reverse: 50- GAAGGGGAACCAGAACAACTC-30

Immunofluorescence
Adult mouse pancreatic tissues were harvested and processed,
as previously described18. After antigen retrieval on tissue sec-
tions, overnight incubation was carried out with each of the
primary antibodies: guinea pig anti-insulin (1:4,000; Sigma, St.
Louis, MD, USA), mouse anti-glucagon (1:4,000; Abcam, Cam-
bridge, MA, USA) and rabbit anti-ADM (1:200; Santa Cruz
Biotechnology). Coverslips were placed in antifade solution con-
taining 40,6-diamidino-2-phenylindole (Vectashield; Vecta Labo-
ratories, Burlingame, CA, USA). To visualize the antigens,
fluorescein FITC and cyanine Cy3-conjugated appropriate sec-
ondary antibodies (1:200; Jackson ImmunoResearch Laborato-
ries, West Grove, PA, USA) were used. Digital images acquired
were compiled using a BZ Analyzer (Keyence, Osaka, Japan).

Measurement of ADM peptide
The serum and secreted ADM levels were measured using an
enzyme immunoassay (Phoenix Pharmaceuticals, Inc., Burlin-
game, CA, USA), following the manufacturer’s instructions.

Treatments with ADM peptide
Rat ADM (1–50) and human ADM (22–52) were purchased
from Peptide Institute (Osaka, Japan). MIN6 cells were cultured
for 24 h with ADM peptide at 0.1 or 100 nmol/L in the pres-
ence or absence of 1 µmol/L thapsigargin (TG).

Western blot analysis
MIN6 cells, alpha-TC1 cells and isolated islets were lysed in
lysis buffer (Cell Signaling Technology, Danvers, MA, USA),
and the lysates were separated by 4–20% gradient sodium
dodecyl sulfate–polyacrylamide gel electrophoresis and trans-
ferred to a Hybond ECL nitrocellulose membrane (GE Health-
care, Chicago, IL, USA). Western blot analyses were carried out
with anti-cleaved caspase 3 (1:1,000; Cell Signaling Technology)
and a-tubulin (1:1,000; Sigma-Aldrich) antibodies.

Quantification of DNA fragmentation
MIN6 cells were incubated in 12-well plates overnight before
transfection of pCDNA-ADM or pCDNA-LacZ using Lipofec-
tamine 2000 (Thermofisher). Then, 24 h post-transfection,
these cells were cultured in the presence or absence of 1 µmol/
L TG. At 48 h post-transfection, floating and detached cells
were lysed, and chromosomal DNA was arranged using the
Quick Apoptotic DNA Ladder Detection Kit (BioVision Inc.,
Milpitas, CA, USA), according to the manufacturer’s instruc-
tions. A total of 20 lL of each sample were then elec-
trophoresed on a 1.2% agarose/EtBr gel.

Measurement of intracellular cyclic adenosine
monophosphate level
MIN6 cells were incubated in 12-well plates overnight before
transfection of pCDNA-ADM or pCDNA-LacZ using Lipofec-
tamine 2000 (Thermofisher). Then, 24 h post-transfection, cells
were cultured with or without 1 µmol/L TG. At 48 h post-
transfection, cells were lysed with 0.1 mol/L HCl. Intracellular
cyclic adenosine monophosphate (cAMP) levels were analyzed
with a Cyclic AMP EIA kit (Cayman Chemical, Ann Arbor,
MI, USA), referring to the manufacturer’s instructions.

Statistical analysis
Student’s t-test or Welch’s t-test were used to compare the
study groups with the control group. Data are shown as the
mean – standard error of the mean, and differences were con-
sidered to be significant at P < 0.05.

RESULTS
In vivo and in vitro assessments of direct effects of PIO on
Adm messenger RNA expression in pancreatic islet cells
The original aim of the present study was to determine the
molecular mechanisms by which PIO prevents cell apoptosis by
exerting a direct action on pancreatic b-cells. We previously
analyzed gene expression profiles of islets using microarray in
Ay/a mice fed standard chow with or without PIO for 4 weeks
(Table S1). We noticed D7Wsu130e, an expressed sequence tag,
that was mapped very close to the Adm gene was among the
genes upregulated by PIO feeding. Therefore, we took the Adm
as a functional candidate, and analyzed further. Real-time PCR
confirmed significant upregulation, of approximately 1.3-fold
(Figure 1a). Basal messenger RNA (mRNA) expression of Adm
was significantly higher in alpha-TC1 cells than in MIN6 cells
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(Figure 1b). It was found that 48 h of 10 µmol/L PIO treat-
ment significantly increased Adm mRNA expression in both
alpha-TC1 (1.3-fold) and MIN6 (2.3-fold) cells (Figure 1b). The
reporter construct was constituted from a ~1.5 kb fragment of
the Adm promoter containing three PPAR responsive element-
like regions. Luciferase activity was analyzed based on the value
of LacZ normalized by protein content. It was found that 24 h
of treatment with 10 µmol/L PIO increased Adm promoter
activity by 1.2-fold (Figure 1c). By ChIP assay, we confirmed
PPARc-mediated Adm induction by PIO. MIN6 cells were cul-
tured with or without PIO, and chromatin extracts from
respective cells were immunoprecipitated. PCR was carried out
with the primers designed to encompass PPAR responsive
element-like regions (ADM-P1-3). PIO activated PPARc
binding to the specific region (P3) within the Adm promoter
(Figure 1d).

Adm and ADM receptor expressions in Wfs1-/- islets
ER stress was assessed by measuring the relative expression of
the ER stress-associated protein CHOP (Ddit3) mRNA in islets

from Wfs1+/+ a/a, Wfs1+/+ Ay/a, Wfs1-/- a/a and Wfs1-/- Ay/a
mice. Ddit3 expression was significantly elevated in islets from
Wfs1-/- a/a and Wfs1-/- Ay/a mice, as compared with Wfs1+/+

a/a mice (Figure 2a). Adm mRNA expression was significantly
elevated in islets from Wfs1-/- a/a and Wfs1-/- Ay/a mice, as
compared with those from Wfs1+/+ a/a mice, in association
with the increase in Ddit3 expression (Figure 2a,b), whereas
serum ADM was not elevated in either Wfs1-/- a/a or Wfs1-/-

Ay/a mice, as compared with Wfs1+/+ a/a mice (Figure 2c).
Immunofluorescence analysis for endogenous ADM in islets
from Wfs1-/- Ay/a mice showed that increased ADM was
mainly expressed in non- b-cells (Figure 2d). ADM fluores-
cence appeared to be higher in insulin-positive cells in Wfs1-/-

Ay/a mice than that in wildtype (WT) mice (Figures 2d,S1).
This suggests that ER stress enhances ADM expression in
b-cells in vivo. ADM receptors are composed of heterodimer-
ization of the CRLR and a RAMP2 or RAMP3. Alterations in
ADM receptor expression in islets from Wfs1-/- a/a mice were
evaluated at the mRNA level using real-time PCR. Ramp2,
Ramp3 and Crlr mRNA levels were significantly increased in
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Figure 1 | Effects of pioglitazone (PIO) on adrenomedullin (Adm) messenger ribonucleic acid (mRNA) expression in pancreatic islet cells. (a) Adm
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islets from Wfs1-/- a/a mice, as compared with Wfs1+/+ a/a
mice (Figure 2e). These findings raise the possibility of the
paracrine and autocrine actions of ADM being enhanced in
pancreatic islets subjected to ER stress.

Adm and ADM receptor expressions in db/db mouse islets
Blood glucose levels were markedly higher in db/db mice than
those in WT mice (Figure 3a). Serum ADM levels in db/db
(3.5 – 0.7 ng/mL [mean – SEM]) mice were also obviously
higher than those in WT mice (1.9 – 0.2 ng/mL
[mean – SEM]; Figure 3b). Ddit3 expression was significantly
increased in islets from db/db mice, as compared with WT
mice (Figure 3c). Adm, Ramp2, Ramp3 and Crlr mRNA levels
were also increased significantly in islets from db/db mice, as
compared with the WT control mice (Figure 3d–g). Serum
ADM elevations in db/db mice appeared to be associated with
hyperglycemia, which in turn could induce systemic Adm

mRNA expression and ADM secretion mainly in the vascula-
ture. In contrast, blood glucose levels in Wfs1-/- a/a mice were
normal (11.3 – 0.51 mmol/L in Wfs1+/+ a/a and
10.1 – 0.38 mmol/L in Wfs1-/- a/a [mean – SEM]), whereas
Adm mRNA expression was significantly elevated in Wfs1-/- a/a
islets (Figure 2b). These findings suggest that ER stress, without
hyperglycemia, might enhance Adm expression, particularly in
pancreatic islets.

Adm and ADM receptor expressions in MIN6 cells treated
with TG
Adm and ADM receptor expressions were increased in Wfs1-/-

and db/db islets in association with ER stress. These data show
an interesting association between upregulations of Adm and
the ADM receptor and increased ER stress in vivo. To confirm
this association in vitro, we next examined the expression levels
of Adm and the ADM receptor in the pancreatic b-cell line,
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MIN6, treated with TG. Ddit3 mRNA was increased 20-fold
(Figure 4a). Treatment with 1 µmol/L TG for 24 h significantly
increased MIN6 Adm (9.3-fold), Ramp2 (1.47-fold), Ramp3
(3.55-fold) and Crlr (2.97-fold) mRNA (Figure 4b–e). Much
more ADM was secreted from TG-treated MIN6 cells than
from control MIN6 cells in accordance with the transcriptional
levels (Figure 4f).

ADM-mediated protection from apoptosis induced by TG
We studied the effect of ADM peptide on MIN6 cells exposed
to TG. MIN6 cell death was assayed by measuring the level of
cleaved caspase 3 expression. Both rat ADM 1–50 (full length)
peptide and human ADM 22–52 (partial) peptide at 100 nmol/
L significantly reduced the cleaved caspase 3 by 24 and 36%,
respectively, but neither peptide exerted this effect at 0.1 nmol/L
(Figure 5a). We also studied the anti-apoptotic effect of ADM
overexpression on MIN6 cells treated with TG. The transcrip-
tional levels of Adm increased markedly in MIN6 cells

transfected with the Adm construct (pCDNA3-ADM), as com-
pared with those transfected with the LacZ construct
(pCDNA3-LacZ; Figure 5b). Much more ADM was secreted
from pCDNA3-ADM transfected MIN6 cells than from MIN6
cells transfected with pCDNA3-LacZ, as reflected by the tran-
scriptional levels, suggesting that MIN6 cells secrete ADM
(Figure 5c). ADM overexpression significantly reduced the TG-
evoked caspase 3 cleavage, by 49% (Figure 5d), and also signifi-
cantly suppressed DNA fragmentation, by 56% (Figure 5e).

Effects of ADM on cAMP levels in MIN6 cells treated with TG
Previous studies have shown ADM to increase cAMP levels in
both myocytes and oligodendroglial cells35,48. We investigated
the possibility that ADM protects MIN6 cells from TG-induced
apoptosis through elevation of intracellular cAMP levels. MIN6
cells transfected with the adm construct (pCDNA3-ADM) or
the LacZ construct (pCDNA3-LacZ) were cultured for 24 h in
the presence or absence of 1 µmol/L TG. After incubation, we
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measured intracellular cAMP levels in these MIN6 cells. TG
treatment decreased intracellular cAMP levels in MIN6 cells
transfected pCDNA3-LacZ, from 37.2 – 4.8 pmol/mg protein
to 19.6 – 2.8 pmol/mg protein, and ADM partially blunted the
decrease in intracellular cAMP levels, to 30.5 – 2.5 pmol/mg
protein (Figure 6). These results suggest that the anti-apoptotic
effects of ADM involve intercellular cAMP elevation in pancre-
atic b-cells exposed to ER stress.

DISCUSSION
Herein, we showed that the ADM and ADM receptor expres-
sion levels are upregulated under ER stress conditions in

pancreatic islets and in b-cell-derived cell lines. ADM, resulting
from both autocrine and paracrine secretion, shows anti-
apoptotic effects in pancreatic b-cells through upregulated
ADM signaling and prevention of ER stress-induced reduction
of intracellular cAMP.
We previously showed that PIO treatment ameliorates hyper-

glycemia and b-cell loss in Wfs1-/- Ay/a mice5. WFS1 defi-
ciency and mild obesity as a result of hyperphagia in these
mice led to ER stress-induced b-cell dysfunction and apoptosis,
and PIO appeared to reduce ER stress in Wfs1-/- Ay/a islets
and prevent diabetes5. In general, PIO reduces ER stress by
improving peripheral insulin sensitivity. As an investigation of
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possible direct effects of PIO on the amelioration of ER stress-
induced apoptosis in pancreatic islets, we hypothesized that
ADM could be a candidate. We studied the effects of PIO on
ADM mRNA expression both in vivo and in vitro. In vivo,
PIO moderately, though significantly, increased ADM expres-
sion. In pancreatic a- and b-cell lines PIO strikingly increased
ADM. Furthermore, we clearly showed PIO to increase ADM
expression through PPARc-dependent mechanisms in MIN6
cells. These results show that PPARc agonists might protect
b-cells against ER stress-induced apoptosis, at least in part
through induction of ADM in islet cells.
Upregulations of ADM expressions have been detected in

various tissues under diverse circumstances in both health and
disease states19,20. The present study showed that ADM gene
expression and production of the ADM protein in pancreatic
islet cells were markedly augmented by ER stress. In fact, we
found three ER stress response elements (-605, -264
and -649 bp to Adm transcription start site) in the Adm gene.
Adm mRNA expression in islets, but not serum ADM concen-
trations, was significantly elevated in Wfs1-/- a/a and Wfs1-/-

Ay/a mice in association with increased Ddit3 expression (Fig-
ure 2a–d). ADM receptor expression was also significantly
increased in islets from Wfs1-/- a/a mice (Figure 2e). These
results suggest that under ER stress conditions, ADM paracrine
and/or autocrine actions are exerted locally in pancreatic islets.
In contrast, serum ADM levels in db/db mice were markedly

elevated in association with the increased blood glucose levels
(Figure 3a,b), an observation consistent with the results of
human studies21,22. Hyperglycemia reportedly induced ADM
expression through protein kinase C in vascular smooth muscle
cells21. The elevated ADM expression in aortic tissues implies
that plasma ADM is derived from the vasculature in diabetic
animals, including human with diabetes21. Therefore, ADM
expression in the vasculature is a potential source of the serum
ADM in db/db mice. In contrast, Adm and ADM receptor
mRNA expressions were elevated in islets from db/db mice in
proportion to the increase in Ddit3 expression, suggesting the
ADM signal to possibly be locally enhanced in states of ER
stress, independently of the elevated serum ADM concentra-
tions in db/db mouse islets.
We further examined the role of endogenous ADM on the

regulation of b-cell function. The present results showed an

anti-apoptotic action of ADM in pancreatic islets, which is ben-
eficial in diabetes (Figure 5). In b-cells, an increased need for
secreted insulin places a high demand on the ER for insulin
synthesis, which leads to cellular stress23. In states of severe and
chronic ER stress, b-cell apoptosis might be triggered.
Long-term hyperglycemia enhances the metabolic flux into
mitochondria and induces excessive production of reactive oxy-
gen species, thereby leading to sustained oxidative stress24.
Many kinds of inflammatory cytokines, elevated in diabetic
pancreatic islets, also increase oxidative and ER stress25,26. In
general, it is accepted that plasma ADM levels are positively
associated with oxidative stress27. The present study clearly
showed that, in pancreatic islets where oxidative stress and ER
stress possibly coexisted, ER stress enhances the ADM signal,
playing a critical role in b-cell homeostasis aimed at alleviating
ER stress-induced apoptosis.
ADM can act as a potent vasodilator, and the vasodilatory

effects are mediated by cAMP in vascular smooth muscle cells
and the generation of nitric oxide in the epithelium28,29. TG
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Figure 5 | Adrenomedullin (ADM) protects MIN6 cells from thapsigargin (TG)-induced apoptosis. (a) MIN6 cells were cultured for 24 h with rat full-
length ADM peptide or human partial ADM peptide (hum 22–52) at 0.1 or 100 nmol/L in the presence or absence of 1 μmol/L TG. After the
culturing, cleaved caspase 3 levels were determined. a-Tubulin was used as the protein loading control. All data are presented as the
mean – standard error of the mean of four or five independent experiments. Welch’s t-test: *P < 0.05; **P < 0.01. (b,c) pCDNA3-LacZ or pCDNA3-
ADM was transfected into MIN6 cells. (b) Total messenger ribonucleic acid (mRNA) was extracted from the cells and subjected to real-time
polymerase chain reaction analysis of Adm. ADM secreted in 24 h, under the relevant conditions, into the cell culture media was quantified by
enzyme-linked immunosorbent assay. (c) ADM concentrations were normalized to the amount of protein in the cell lysate. Data are the
mean – standard error of the mean (n = 4–8). Welch’s t-test: **P < 0.01. (d) TG-induced (1 μmol/L) cleaved caspase 3 levels were determined in
pCDNA3-LacZ (control condition) or pCDNA3-ADM transfected MIN6 cells. Data are means – standard error of the mean (n = 4). Welch’s t-test:
*P < 0.05. (e) Deoxyribonucleic acid fragmentation was assessed in pCDNA3-LacZ (control condition) and pCDNA3-ADM transfected MIN6 cells
cultured for 24 h in the presence of 1 μmol/L TG. Welch’s t-test: *P < 0.05.
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treatment decreased intracellular cAMP levels in MIN6 cells,
and ADM partially restored intracellular cAMP (Figure 6), sug-
gesting that the anti-apoptotic effects of ADM are brought
about by intracellular cAMP elevation. The anti-apoptotic func-
tion of glucagon-like peptide-1 has been shown in animal mod-
els30,31, wherein cAMP elevation activated EPAC2 (exchange
protein directly activated by cAMP), thereby inhibiting cas-
pase 3 activation and subsequent apoptosis32. It is thus possible
that ADM and glucagon-like peptide-1 share a common anti-
apoptotic signal pathway in pancreatic b-cells.
ADM plays a major role in blood flow regulation, and ADM

functions as a potent vasodilator in the systemic circulation as
well as in the vasculature of organs33. In addition, ADM was
reported to be a cardioprotective peptide because of its anti-
apoptotic effects on the vasculature and regulatory roles in car-
diac endothelium cell proliferation 34. ADM administration
decreases vascular resistance and increases blood flow through
coronary vasodilation, contributing to an elevation in cardiac
output35. A clinical trial showed that intravenous ADM admin-
istration to patients suffering from acute myocardial infarction
improved wall motion and infarct size36. ADM-based therapy
might represent a novel therapeutic strategy for diabetes, in
particular because of its cytoprotective effects against ER stress
in pancreatic b-cells, which are independent of its cardioprotec-
tive benefits.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 | The microarray list of significantly upregulated genes in islets from Ay/a mice with pioglitazone compared with islets
from Ay/a mice without pioglitazone.

Table S1 | Immunofluorescence analysis for endogenous adrenomedullin in islets from wild-type mice.
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