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Quantifying the extent and evolution of cerebral edema developing after stroke is an

important but challenging goal. Lesional net water uptake (NWU) is a promising CT-based

biomarker of edema, but its measurement requires manually delineating infarcted tissue

and mirrored regions in the contralateral hemisphere. We implement an imaging pipeline

capable of automatically segmenting the infarct region and calculating NWU from both

baseline and follow-up CTs of large-vessel occlusion (LVO) patients. Infarct core is

extracted from CT perfusion images using a deconvolution algorithm while infarcts on

follow-up CTs were segmented from non-contrast CT (NCCT) using a deep-learning

algorithm. These infarct masks were flipped along the brain midline to generate mirrored

regions in the contralateral hemisphere of NCCT; NWU was calculated as one minus

the ratio of densities between regions, removing voxels segmented as CSF and with

HU outside thresholds of 20–80 (normal hemisphere and baseline CT) and 0–40 (infarct

region on follow-up). Automated results were compared with those obtained using

manually-drawn infarcts and an ASPECTS region-of-interest based method that samples

densities within the infarct and normal hemisphere, using intraclass correlation coefficient

(ρ). This was tested on serial CTs from 55 patients with anterior circulation LVO (including

66 follow-up CTs). Baseline NWU using automated core was 4.3% (IQR 2.6–7.3) and

correlated with manual measurement (ρ = 0.80, p < 0.0001) and ASPECTS (r = −0.60,

p = 0.0001). Automatically segmented infarct volumes (median 110-ml) correlated to

manually-drawn volumes (ρ = 0.96, p < 0.0001) with median Dice similarity coefficient

of 0.83 (IQR 0.72–0.90). Automated NWU was 24.6% (IQR 20–27) and highly correlated

to NWU from manually-drawn infarcts (ρ = 0.98) and the sampling-based method (ρ =

0.68, both p < 0.0001). We conclude that this automated imaging pipeline is able to

accurately quantify region of infarction and NWU from serial CTs and could be leveraged

to study the evolution and impact of edema in large cohorts of stroke patients.
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INTRODUCTION

A major consequence of brain ischemia is the development of
cerebral edema. This water accumulation within and around
the injured tissue leads to brain swelling, raising compartmental
pressure and eventually leading to midline shift and herniation.
The development of malignant cerebral edema represents the
greatest source of mortality in the acute period after ischemic
stroke, especially for strokes due to large vessel occlusion (LVO)
(1). As key mediators remain incompletely understood, few
interventions currently exist to mitigate cerebral edema (2). One
of the major limitations in studying edema is the need for an
accurate means of quantifying its formation in the early stages
after stroke (3, 4). Midline shift is a crude measure that does not
adequately capture edema as it develops over the first 24–48 h
after stroke, but only captures its delayed and decompensated
phenotype. Furthermore, labeling edema only when it leads
to deterioration (i.e., malignant edema) obscures a continuum
of injury severity that is seen across almost all LVO stroke
patients (5).

One of the hallmarks of evolving brain edema is tissue
hypoattenuation (6). This can be captured by the progressively
decreasing density (measured in Hounsfield Units, HU) of
infarcted tissue on non-contrast computed tomography (NCCT)
imaging. NCCT is readily available and routinely performed
in almost all stroke patients, both acutely on presentation
and frequently at follow-up. It affords an accessible means
of serially assessing edema as it develops in the days after
stroke. However, measurement of the total lesional hypodensity
volume encompasses both infarcted tissue and associated edema,
with relative proportions varying across patients (5, 7). A
recent imaging method has been proposed to disentangle the
contribution of edema to subacute lesion volume and quantify
the progression edema after stroke (8). Net water uptake (NWU)
evaluates the relative density of the ischemic tissue compared to a
contralateral homologous region; increasing NWU on admission
NCCT has been associated with longer time from stroke onset
to imaging and poor collateral status (9, 10). NWU has also
exhibited promise in quantifying edema progression, rising more
in those withmalignant outcomes and in those without successful
recanalization (11, 12). Therefore, it has emerged as one of the
most promising biomarkers of edema after stroke, with a wide
array of potential applications across LVO cohorts (13).

However, implementation of NWU measurement from serial
CTs in large stroke cohorts faces several challenges. The
principal challenge is that its assessment is dependent on
identification and delineation of the area of early infarction
on acute and subacute CTs. As this region is not usually
clearly visible on baseline NCCT within a few hours of stroke
onset, most studies measuring early NWU have relied on CT
perfusion (CTP) images to visually guide manual delineation
of core infarct. In some studies where CTP was not available,
NWU was estimated by measuring density within regions-
of-interest (ROIs) placed within ASPECTS regions exhibiting
early hypoattenuation and matched regions in the contralateral
hemisphere (14). Measurement of NWU on follow-up NCCT
requires manually outlining the visible region of infarction and

flipping this manual ROI to create a homologous normal region
for density assessment. This approach is time-consuming, subject
to variability, and makes studying edema in large cohorts with
NWU, although attractive in theory, challenging to perform in
practice. Our objective was to develop an accurate means of
automatically extracting infarct regions and measuring NWU
from both baseline and follow-up CTs of LVO stroke patients.
This imaging algorithm could then be leveraged to accelerate
research into edema using larger cohorts of stroke patients (15).

METHODS

Study Participants
We evaluated patients undergoing stroke assessment at a
single institution between May 2018 and November 2019 who
underwent multimodal CT (NCCT with CT angiography and
CTP) on presentation. We selected those who had evidence of
LVO in the anterior circulation, affecting either the internal
carotid artery (ICA) or proximal segment of the middle cerebral
artery (MCA). We limited our analysis to those with measurable
infarct core on baseline CTP (as assessed using the RAPID
software package, iSchemaView, Redwood City, California).
Approval from the institutional review board was obtained for
a waiver of participant consent given the retrospective, de-
identified nature of this research.

Imaging Analysis
We collected all NCCT and CTP images performed at
baseline as well as all follow-up NCCTs performed within
1 week of stroke onset. The CTP images were processed
using an in-house algorithm that automatically extracts high-
resolution image maps of perfusion parameters, including
cerebral blood flow (CBF) and time to maximum (Tmax),
as described in the Supplementary Methods and outlined in
Supplementary Figure 1. Core infarct regions were defined by
tissue with CBF below 30% of normal, where normal brain was
defined as tissue with Tmax below 4 s (16). To assess consistency
of core extraction, the volume of this core region was compared
to the volume extracted by the RAPID software.

All NCCTs at baseline and follow-up were processed using
an automated analysis workflow that is fully described in the
Supplementary Methods. Key steps include: (i) registration
of an atlas template with midline delineated on all slices
to the target NCCT (17); (ii) segmentation of cerebrospinal
fluid (CSF) regions using our well-established deep learning
model (18, 19); and (iii) segmentation of visible acute infarct
regions using a novel deep learning-based algorithm. This
algorithm employed a deep learning model based on the U-Net
architecture and previously trained for CSF segmentation (full
details of this fully convolutional neural network provided in
Supplementary Methods) (20). This network was further trained
on 335manually outlined infarct regions defined on NCCTs from
a prior three institution stroke cohort as ground-truth labels. This
training set was divided into ∼90% (304 infarcts) for training
and the remainder (21) for internal validation. The infarct region
proposed by this algorithm was further refined by identifying
the largest connected region in three dimensions as the likely
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FIGURE 1 | Outline of manual vs. automated techniques for estimation of net water uptake from baseline (top panels) and follow-up (bottom panel) CT scans of

stroke patients. The RAPID core output (A) from CTP processing is used to determine the ASPECTS regions to be used for manual estimation of NWU from baseline

NCCT (B). Regions-of-interest (ROIs) are placed in these regions within the affected hemisphere (orange) and matched ROIs are placed in the contralateral

hemisphere (purple). Manual NWU is calculated as one minus the ratio of mean densities of the two sets of ROIs. For automated measurement of NWU on baseline

CTs, CBF maps (C) are generated from raw CTP data (as fully detailed in the Supplementary Methods and shown in Supplementary Figure 1). The core mask

(defined by thresholding at CBF < 30% of normal) is then registered and overlaid onto the NCCT (blue region in D). This infarct region is then flipped across the midline

(purple region; method fully outlined in the Supplementary Methods and shown in Supplementary Figure 2) to create a matching mirror region (E). Automated

NWU is calculated as one minus the mean densities of these two regions, after removing voxels of CSF (from separate CSF segmentation) or with HU density below

20 or above 80 from both regions (removed voxels shown in white). Lower panels show similar workflow for follow-up CTs (or baseline CTs with visible hypodensity).

ROIs are placed within ASPECTS regions within the visible infarct and matching ROIs are placed in the contralateral hemisphere to calculate manual ROI-based NWU

(F). The infarct region is also manually segmented (yellow, G). A deep learning-algorithm is applied to automatically segment regions of hypodensity and generate an

infarct mask (blue, H). Infarct regions are then flipped to create matching mirror ROIs (purple, I). Regions of CSF are then removed, as are voxels outside the

thresholds (HU 0–40 for infarct, 20–80 for normal brain). Automated NWU is then calculated. In this example, manual NWU on baseline CT was 16.0 and automated

NWU was 12.3. For follow-up CT, the manual infarct volume was 135ml and the automated volume was 143ml. The manual NWU was 29.8 using ASPECTS

ROI-method, 25.4 using the whole manual infarct, compared with 25.0 for the fully automated NWU.

primary infarct territory and excluding smaller disconnected
voxels. The algorithm was then applied to all NCCTs in this
cohort, including a test cohort of 28 subjects where the infarct
region was manually segmented on all slices. The Dice Similarity
Coefficient (DSC), a stringent metric of spatial overlap of voxels
between the automated infarct region and the manually outlined
ground-truth was calculated as twice the union of the two regions
divided by the sum of their volumes.

This infarct region was utilized as the infarct mask
for evaluating NWU on follow-up NCCTs, as well as
for any baseline NCCTs on which infarct was already
clearly visible. For the remainder of baseline CTs, the core
regions from CTP analysis were utilized in place of infarct
masks. These CTP-defined core masks were registered to

the NCCT using FLIRT from FSL (FMRIB, Oxford, UK)
(22). The brain was divided into hemispheres, using the
registered midline, as previously applied to measure the
hemispheric CSF ratio (23). The infarct region was then
flipped along the brain midline to generate a homologous
region in the contralateral hemisphere (as shown in
Supplementary Figure 2).

For baseline CTs, we also instituted an automated patch-based
approach for estimating NWU (that does not require CTP),
similar to one recently proposed, to allow comparison with our
full-infarct method (24). For this approach, square standard
patches were placed on four separate axial slices within each
MCA territory of a CT atlas and then this atlas was registered to
each patient’s baseline NCCT, allowing estimation of NWU from
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FIGURE 2 | Flow of stroke patients assessed for eligibility for this imaging

analysis.

the density within the ischemicMCA territory compared with the
contralateral side (Supplementary Figure 3).

All regions of CSF were removed from both infarct andmirror
regions and thresholding was applied to remove voxels with HU
outside an established range, initially set at 20–80, per prior
protocols for NWUmeasurement (12). However, on review of the
distribution of densities within regions of infarction on follow-
up CTs [both from the literature (25) and our own data], we
determined that expanding the lower limit to 0 HU would better
capture lower density voxels that would otherwise be excluded if
using a threshold of 20 (leading to an underestimation of NWU).
We also chose to restrict the upper limit of infarct regions to
40 HU rather than 80; we found that most voxels within bland
infarcts had densities below 40 HU while regions of hemorrhagic

TABLE 1 | Characteristics of study cohort of 55 patients with large vessel

occlusion stroke.

Age, years 74 (65–84)

Sex, female 27 (48%)

Race/ethnicity: white, non-Hispanic 45 (82%)

Hispanic 1 (2%)

African-American 9 (16%)

History of atrial fibrillation 24 (44%)

History of diabetes mellitus 14 (25%)

NIHSS, baseline 17 ± 6

NIHSS, 24-h 16 ± 10

Glucose (mg/dl) 121 (106–154)

Onset to baseline CT, hours 5 (2–10)

ASPECTS < 7 15 (27%)

Treated with tPA 23 (42%)

Treated with Thrombectomy 35 (64%)

Reperfusion outcome: mTICI 0 3

mTICI 2a 4

mTICI 2b/2c 12

mTICI 3 15

Core volume (RAPID), ml 31 (14–65)

Penumbra volume (RAPID), ml 133 (94–175)

Midline shift 19 (35%)

transformation often extended above 40 HU; this is supported
studies of HU within intracerebral hematomas and should also
exclude regions of contrast staining within evolving infarcts,
specifically defined by HU > 40 (26, 27). Therefore, removing
voxels with density above 40 HU from within the infarct would
avoid contamination of NWU calculations by regions of HT and
contrast staining, both issues that has confounded prior studies
of NWU (28). The standard 20–80 threshold was used for the
normal brain region and for the CTP core mask at baseline
where significant low density or hemorrhagic regions would not
be expected; the 0–40 threshold for applied only for region of
visible infarction segmented by the deep learning algorithm. The
mean HU density (D) of all voxels (after CSF and threshold-
based exclusions) within each region (ischemic vs. normal) was
calculated and NWU was defined as:

NWU = 1−
Dischemic

Dnormal
(1)

We also calculated NWU using the standard 20–80 threshold
for the infarct region and compared results to those obtained
using our modified approach. The code for the manipulation of
the infarct region and calculation of NWU is publicly available
at: https://github.com/dharlabwustl/csfratio_nwu.

Automated NWU results were compared to a sampling
based method that places circular regions of ∼10-mm diameter
within the infarct in up to 13 territories across two axial brain
slices, corresponding to the ASPECTS regions as well as three
more subcortical regions (selecting regions with visible infarct,
while avoiding those with hemorrhage or CSF, as outlined in a
prior paper for manual NWU measurement) (14). These same
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regions were then mirrored to the normal hemisphere and mean
density of each set of ROIs were obtained and from this the
manual NWU was calculated. For baseline NCCTs where clear
infarction was not visible, the RAPID core images were used
to guide manual ROI placement within ischemic tissue. If no
acute infarction was visible on follow-up CTs based on the
consensus of two independent raters, then NWU could not be
obtained manually (and hence this scan was excluded). Manual
NWUmeasurements were performed by two independent raters
for all follow-up CTs and for a subset of the baseline CTs.
The manual NWU used for comparison was the mean of
the raters’ measurements. In addition, for those 28 subjects
with manual infarct segmentations performed, comparisons
of manual volumes with automated infarct volumes as well
as NWU values obtained using these manual vs. automated
infarct masks were performed. Figure 1 outlines the major steps
in obtaining manual vs. automated NWU measurements on
baseline and follow-up CTs. Supplementary Figure 2 provides
a more detailed, step-by-step outline of the automated image
analysis workflow.

Statistical Analysis
All analyses were performed in R (version 4.0.3, Foundation
for Statistical Computing, Vienna, Austria). All measurements
were first assessed for normality using inspection of their
distributions and with Shapiro-Wilk’s tests. We present means
(with standard deviations) for normally distributed and medians
(with interquartile ranges) for all non-normally distributed
variables. We compared automated to manual measurements of
NWU and infarct volume using intraclass correlation coefficients
(ρ) with a two-way random effects model evaluating absolute
agreement of raters, with the manual NWU as the ground-truth
(ICC 2,1), using the package psych (29, 30). We constructed
Bland-Altman plots of the difference between the two measures
using the package BlantAltmanLeh. This allowed us to calculate
the bias (mean difference) and limits of agreement (range within
which 95% of differences in measurement lie).

RESULTS

We evaluated 160 patients who underwent acute stroke
evaluation at our institution during the study period for
eligibility. Of these 89 had LVO affecting the ICA or M1
segments and 55 had infarct core present on baseline imaging
(see Figure 2). A description of this cohort is provided inTable 1.
Mean NIHSS on presentation was 17 and 35 (64%) underwent
thrombectomy (27 achieving mTICI 2b/3 reperfusion). Median
time to baseline CT was 5 h (IQR 2–10). Median ASPECTS was
8 (IQR 6–10). Over one-third developed cerebral edema with
midline shift (median of 3.7mm, IQR 2.8–5.7) (time to scans).

NWU on Baseline CTs
Baseline CTP images (median time from stroke onset of 4.3 h,
IQR 2–10) were analyzed for core volume. Median core volume
provided by RAPID software was 31ml (IQR 14–65). Automated
CTP processing allowed core masks to be extracted in 49
(89%) cases with a median volume of 36ml (IQR 23–77).

There was a strong intraclass correlation between the RAPID
core volumes and our algorithm’s volumes (ρ = 0.81, Table 2;
Supplementary Figure 4). One case (with RAPID core of 4-ml)
had no identifiable core on our processing and so no mask
could be extracted. Two NCCTs had too much artifact to allow
calculation of either manual or automated NWU. Baseline NWU
using the manual ASPECTS ROI method was a median of
6.9 (IQR 4.2–10.0). The agreement of two manual raters for
baseline NWU, tested in 22 cases, was good (ρ = 0.73, p = 1
× 10−10). In five cases with visible infarct on baseline CT, we
used the automated infarct mask to define the infarct region;
the automated CTP core masks were used to measure NWU
in the remainder. There was strong agreement between manual
and automated baseline NWU measurements (ρ = 0.80, p =

1 × 10−16) with minimal bias (Table 2; Figures 3A,B). The
patch-based approach for NWU estimation exhibited modest
concordance with manual methods (ρ = 0.63, p = 2 ×

10−8) but with wider limits of agreement (−9.0 to 12.8, see
Supplementary Figure 5).

The automated NWU on baseline CT was negatively
correlated with ASPECTS score (r = −0.60, p < 0.0001,
Supplementary Figure 6), comparable with that observed for
manual NWU (r = −0.59) but higher than for the patch-based
NWU (r = −0.45). Automated NWU was higher in those who
subsequently developed edema with midline shift (median 6.1 vs.
3.6, p < 0.0001). The automated NWU increased with longer
time from stroke onset (beta = 0.12 per h, p = 0.0003), but
the slope was significantly higher in those who subsequently
developed edema with midline shift (p = 0.017 for interaction
of edema with time, Supplementary Figure 7).

NWU on Follow-Up CTs
There were a total of 85 follow-up CTs performed in 42
subjects. Of these, two were performed after hemicraniectomy
and four scans were from more than 1 week after stroke. Of the
remaining 79 scans, 69 exhibited visible regions of infarction.
Three were too poor quality for NWU estimation, leaving 66
CTs for evaluation of NWU. Median time to follow-up CT
was 60 h (IQR 35–116) with 27 (41%) being within 48 h of
stroke onset. Hemorrhagic transformation was present in 48,
including HI-1 in 18, HI-2 in 22, and PH-1 hematomas in 9
scans. The automated infarct segmentation algorithm correctly
identified the region of infarction in all but two cases (97%).
Manual delineation of infarct regions was performed in 28 scans
with excellent correlation to the automated volumes (ρ = 0.96,
see Supplementary Figure 8). The DSC for overlap of infarct
segmentation (automated vs. manual) was a median of 0.83 (IQR
0.72–0.90) with a median automated infarct volume of 110-
ml (IQR 39–194). There was no significant correlation between
infarct volume and DSC (r = 0.26, p = 0.18) or time to scan and
DSC (r = 0.32, p= 0.10).

NWUwas manually estimated on these 66 scans by two raters,
using the ASPECTS ROI-based approach, with strong intraclass
correlation between raters (ρ = 0.88, p = 3 × 10−54). Fully
automated NWUwas obtained by applying the automated infarct
segmentation in 63 cases (two excluded for failure of infarct
segmentation, one due to lack of voxel information in file header).
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TABLE 2 | Comparison of manual and automated measures of core/infarct volume and net water uptake (NWU).

Comparison Manual value

Median (IQR)

Automated value

Median (IQR)

Mean difference

Limits of agreement

Intraclass correlation

(95% CI)

Core volume:

RAPID vs. automated CTP

31 (14–65)

N = 55

36 (23–77)

N = 49

−2.0 (−61.7 to 57.7) 0.81

(0.71–0.87)

Baseline NWU

ASPECTS ROI vs.

automated
†

6.9 (4.2–9.9)

N = 53

4.3 (2.6–7.3)

N = 49

2.3 (−5.0 to 9.7) 0.80

(0.61–0.89)

Baseline NWU

ASPECTS ROI vs.

automated patch

7.0 (4.0–8.6)

N = 50

5.5 (2.5–8.0)

N = 50

1.9 (−9.0 to 12.8) 0.63

(0.47–0.75)

Follow-up infarct volume

Manual vs. automated
†

105 (39–140)

N = 28

110 (39–194)

N = 63

−12.1 (−60.9 to 36.7) 0.96

(0.92–0.97)

Follow-up NWU:

Manual mask vs.

automated
†

25.3 (19.7–27.8)

N = 28

24.6 (19.8–26.9)

N = 63

0.6 (−2.4 to 3.6) 0.98

(0.96–0.98)

Follow-up NWU

ASPECTS ROI vs.

automated
†

27.1 (21.9–31.7)

N = 66

24.6 (19.8–26.9)

N = 63

2.7 (−9.2 to 14.6) 0.68

(0.52–0.79)

All NWU values

ASPECTS ROI vs.

automated
†

19.0 (7.3–28.1)

N = 126

17.5 (5.5–25.3)

N = 117

2.4 (−8.1 to 12.7) 0.88

(0.81–0.92)

†
Automated measurement using full-infarct mask (i.e., automated infarct segmentation or automated CTP core).

The automated NWU (median 24.6, IQR 19.8–26.9) exhibited
excellent agreement with NWU obtained from the manually
drawn infarct masks (ρ = 0.98, Supplementary Figure 9). These
values also correlated well with the manual ROI-based method
(ρ = 0.68, Figure 3C). There was minimal bias (mean difference
of 2.7) in NWU measurement, with no greater discrepancy in
those with increasing severities of hemorrhagic transformation
(Figure 3D). For example, in one case with focal hematoma,
the manual NWU was 21.0 and the automated value was 21.6
(Figure 4).

NWU results using our modified thresholding (0–40 for the
infarct region) were compared with the standard thresholding
of 20–80. NWU was significantly lower with the original
method (median 16 vs. 24.6) and underestimated the manually
ascertained NWU (median 25.3). This was due to higher
mean HU measured within the infarct region as a result
of both exclusion of infarct voxels with density below 20
HU (i.e., regions of more severe edema) and inclusion of
regions of hemorrhagic transformation within the infarct
region. A review of voxels densities within infarct regions
is shown in Supplementary Figure 10, highlighting the fact
that 14% had densities below 20 HU and would have been
excluded using the 20–80 thresholds. A comparison of the
two thresholding methods for one representative example is
shown in Supplementary Figure 1, where themodified approach
yielded NWU of 24.7 while the standard threshold of 20–80
provided an estimate of 13.7 for NWU. The manual ROI-
based method calculated by two raters was an average of 27.2.
The overall correlation with manual NWU was lower (ρ =

0.43) compared with that obtained using the modified 0–40
approach (ρ = 0.66). Furthermore, the automated 20–80 method
under-estimated the manual measurement (mean difference

of −11.3), with wider limits of agreement, ranging from +3
to−26.

We then combined all automated NWU measurements
together (total of 117 baseline and follow-up measurements):
there was a strong correlation of automated to manual
NWU across time points (ρ = 0.88, p < 0.0001) with
minimal bias (Supplementary Figure 11). There was no
difference in the accuracy of NWU (automated vs. manual
discrepancy) based on time to scan, infarct volume, or degree of
hemorrhagic transformation.

DISCUSSION

Quantifying the evolution and severity of cerebral edema,
using routine CT imaging, presents the promise of accelerating
research into clinical and biologic factors mediating this critical
source of secondary injury (21). The application of NWU in small
LVO cohorts has already led to several interesting observations:
for example, those with worse collateral scores exhibited greater
early edema progression (9). Hyperglycemia was also associated
with enhanced edema formation (31). Estimation of NWU,
which represents the proportion of stroke lesion that constituted
of excess water, allows the separation of primary infarct from
secondary edema within an infarct-related hypodensity on
subacute CT (32). Not only does this allow delineation of edema
severity but this adjusted infarct volume correlates well with
final infarct volume, an important stroke outcome measure.
Furthermore, it is likely that the product of infarct volume
and NWU provides a meaningful volumetric measure of water
accumulation, termed total edema volume (33). However, despite
this promise, measurement of NWU in these previous studies was
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FIGURE 3 | Comparing manual vs. fully automated measurements of NWU. Baseline CT: (A) intraclass correlation, ρ = 0.80; (B) Bland-Altman plot. Follow-up CT: (C)

intraclass correlation, ρ = 0.68; (D) Bland-Altman plot with points colored by hemorrhage transformation (HT) type. The dashed line in the scatter plot represents the

line of identify between measurements. The dashed lines in the Bland-Altman plots represent the limits of agreement. The solid line represents the mean difference in

measurement (bias).

performed manually and hence was time-consuming, requiring
investigators to outline the region of infarction across multiple
CT slices, mirror this region to the normal hemisphere, and
then measure the density in both, applying pixel-based intensity
thresholds to try to exclude CSF regions that might contaminate
the measurement.

We now present a substantial advance to facilitate scalable
NWU measurement: that is, an automated approach that
accurately quantifies NWU from both baseline and follow-up
CTs. This was built upon two new algorithms to extract regions
of infarction: one a deep learning model that was able to segment
the region of infarct-related hypodensity from follow-up CTs and
a second that extracted CBF-based core masks from baseline CTP
images. While the latter is qualitatively similar to the automated

processing of core volumes provided by several commercial
software packages (34), it is performed at native resolution
and provides voxel-by-voxel maps for research applications. In
comparison, output from RAPID software is not provided in
native resolution and cannot be easily incorporated on a voxel-
by-voxel level for analysis.

Segmentation of infarct regions from follow-up CTs in the
first days after stroke is not a trivial task, as early hypodensity
can be subtle and challenging to delineate even for experienced
human raters. Simple thresholding of CT images for infarct is
not accurate as infarcts overlap in density with CSF and other
brain structures. An approach utilized in the MR CLEAN cohort
applied an intensity-based region-growing approach that begins
with a manual seed and also excludes neighboring ventricular
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FIGURE 4 | Example of follow-up CT in a patient who developed a focal parenchymal hematoma within the region of infarction. (A) Original non-contrast CT with

regions-of-interest manually placed within the infarct (avoiding hemorrhage) and in contralateral matching regions (avoiding CSF); (B) Blue region indicates automated

segmentation of infarct lesion; (C) Processing of follow-up CT to measure NWU using automated infarct mask, with removal of voxels representing CSF (white regions

within purple normal mask) and voxels outside the range of 0-40 HU (removing most regions of hemorrhage). The manual NWU was 21.0 and the fully automated

NWU was 21.6.

CSF regions that would be misinterpreted as infarction. This
multi-stage process exhibited similar accuracy to that achieved
with our algorithm (i.e., both had correlation of automated
to manual infarct volumes of 0.98) (35). Two recent deep
learning-based approaches have been proposed for this task:
one employed a combination of three patch-based convolutional
neural networks to identify infarct regions from follow-up scans
in the HERMES collaborative (25). This method (trained on
630 scans, tested on 396) resulted in a lower DSC for infarct
segmentation (0.57 vs. 0.83) and lower ICC (0.88 vs. 0.96) for
infarct volumes measurement than seen with our algorithm,
although we cannot directly compare without head-to-head
testing on a single cohort, given differences in infarct types (for
example, the median infarct volume in our series was 110 vs.
48-ml in the other study). The performance for larger, more
hypodense infarcts was higher, with DSC of 0.78 and ICC of
0.98, comparable to our findings. The second study employed
a generative adversarial network (GAN) to enhance the U-Net
architecture (36). This was trained on 60 scans and tested on 60
others, with DSC of 0.71 and correlation to manual volumes of
0.93. The advantage of this automated method is that it does not
require human input and so can segment large numbers of scans
within the context of the broader automated NWU algorithm.
Given a few outliers where segmentation failed (<5% of cases),
we still recommend manual review of the infarct/NWU results.
However, there is likely some leeway as long as the segmented
infarct region overlaps broadly with the infarct for estimation of
the mean infarct density.

These advances allowed us to measure NWU on both baseline
and follow-up CTs, while most studies have focused on a single
time point. We applied these infarct masks, along with technical
developments to flip the region along the registered midline,
to obtain the ratio of densities between these two regions (i.e.,
NWU). In doing so, we modified the prior thresholds used for
NWU calculation. As in prior studies (25), we noted that a

significant portion of infarcted tissue had HU below 20 and so
excluding voxels with HU < 20 would lead to under-estimation
of the actual infarct density and therefore NWU (as shown in
comparing the results obtained from the two thresholds) (25).
One reason for thresholding at 20 HU is to avoid contamination
of the regions by low-density CSF, an issue in prior studies;
we applied our well-established CSF segmentation algorithm to
subtract these non-brain regions and avoid such contamination.

Presence of hemorrhagic transformation within the infarct
has also confounded measurements of NWU, as voxels with
hemorrhage would have high HU and would lead to significant
underestimation of the actual difference in densities between
infarct and normal brain. This bias has often led to those
scans with significant HT being excluded from NWU studies.
This is a major drawback, as HT occurs in 20–40% of LVO
patients (37), limiting the number of patients who can be
analyzed and generalizability of findings. A recent study of
edema measurement after thrombectomy found that presence
of hemorrhage and/or contrast staining often contaminated
measurement of NWU, leading to under-estimation and even
some negative NWU values; this issue compromised the value
of NWU in comparison to volumetric edema biomarkers (28).
We did not exclude those with HT but applied an upper
threshold of 40H; this removed regions of significant HT (as
shown in Figure 4) and allowed us to measure NWU from all
scans (including those with variable degrees of hemorrhage)
without any noticeable increase in error. However, our cohort
did not include any patients with very large PH-2 hemorrhages;
in such cases where the hemorrhage encompasses the entire
region of infarction, NWU could not be calculated by any
method. We demonstrate that the NWU obtained from our
automated algorithm accurately reflected those obtained using
manually-drawn infarct regions and those using an established
ASPECTS ROI-based method for both baseline and follow-
up CTs (14). There was only a small bias, with automated
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NWU providing lower values (by ∼2%) than manual NWU;
this might actually be because the manual method involves
sampling select regions within the infarct (or core) and
thereby focuses on more obvious hypodense regions where
NWU is higher (compared with our full-infarct method, which
measures edema using the full range of densities within the
infarct) (8).

There have been other recent attempts to operationalize
and simplify measurement of NWU. Notably, all have focused
on estimation of NWU from baseline CTs only and most
require manual region selection or other input/review. One
approach applied an automated core region (similar to our
CTP-based method) but derived from commercial software
(38); it was unclear how this region was transferred to the
NCCT as alignment of CTP source images with NCCT is not
trivial, but likely involved manual inspection and alignment.
Another study manually placed a standard large ROI within the
MCA territory (on a single slice) to estimate where ischemia
might be seen and avoid the need to use CTP to locate
the exact core region (39). Baseline NWU was estimated
from the density of this region vs. a manually translated
contralateral mirror region, but was not compared to a gold-
standard measurement. Only one automated method has been
proposed: using commercial software (syngo.via from Siemens)
to measure the density within affected ASPECTS regions on
baseline CT (40). This technique approximates our manual
ASPECTS-based sampling method but has the advantage of
not requiring CTP for NWU measurement and being relatively
automated (manual inspection of regions was required to
check accuracy). We were not able to compare our automated
method to this automated ASPECTS-NWU approach as we
did not have access to the commercial software, but did use
a comparable manual ASPECTS approach as our ground-truth
for NWU.

Finally, a fourth study applied standardized regions (patches)
within the MCA territory to obtain relative density and estimate
NWU without requiring CTP to generate core masks (41).
However, these regions had to be manually selected to avoid
regions of CSF and old infarcts and would tend to under-
estimate NWU as it inevitably includes non-ischemic regions.
In that study, this patch-based method was compared to a
full-infarct approach (based on region of infarction on follow-
up CT, manually outlined) and found limits of agreement
from −9 to +10, similar to what we found (−5 to +9.7).
For comparison within our own dataset, we implemented a
fully automated version of this patch-based sampling method
to measure NWU from the baseline CTs and showed that it
exhibited moderate agreement with manual ASPECTS region-
based measurements and with our automated approach. This
is likely because this method places regions within the MCA
territory, presuming that these will capture the ischemic tissue
with early edema. As might be expected from a sampling
method that estimates early edema, this approach exhibited wider
limits of agreement compared to our full-infarct/core based
method. Nonetheless, it is an attractive complementary or back-
up option if CTP is not available to define core and the infarct is
not visible.

These studies also confirmed, as we did, that baseline
NWU was higher in those who subsequently developed midline
shift and/or malignant edema. However, none of these studies
incorporated automated assessment of NWU from follow-
up CTs. Our method is therefore more comprehensive in
allowing measurement of NWU from serial CTs at various
time points in a fully automated manner (without manual
inspection, flipping of masks, etc.). We believe that this approach
will empower large cohort studies and clinical trials that
seek to understand the dynamic evolution of edema after
stroke (14).

There remains limitations to applying NWU to study edema,
regardless of measurement approach. As stated above, NWU
cannot be used to estimate edema in the presence of extensive
parenchymal hematoma. In these cases, water accumulation is
unlikely the main contributor to midline shift and deterioration
(37). Instead, efforts at measuring hematoma volume may
allow quantification of secondary injury better than NWU (42).
Concomitant CTP with measurable core volume is generally
required to facilitate measurement of NWU from baseline
CTs unless infarct is clearly visible (as it was in only five
of our 55 cases); this limits its applicability to studies of
early edema. Application of ASPECTS-based approaches may
obviate the need for CTP but rely on presence of early
ischemic changes and would not be possible in those with
“normal” appearing baseline CTs (i.e., ASPECTS= 10). Similarly,
NWU cannot be assessed from early follow-up CTs before
infarct hypodensity is clearly visible. There were several CTs
in our cohort where either no infarct was visible or it was
too subtle for segmentation. We have recently demonstrated
how volumetric CSF-based biomarkers of evolving edema
can be measured and reflect edema formation within the
first 12–24 h after stroke (23). It is possible that these two
biomarkers capture different aspects of edema formation, one
densitometric and other volumetric. The current study provides
technical validation of our approach but was performed in
a pilot cohort too small to analyze clinical outcomes. It also
requires external validation in an independent cohort to ensure
generalizability. We now plan on evaluating both density and
volume ratios (i.e., NWU and CSF ratio) in larger cohorts
using these automated algorithms so that we can understand
the relation of these biomarkers to one another and to relevant
edema outcomes.
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