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ABSTRACT 21 

Background: The rapid advancement of single-cell transcriptomic technologies has led to the 22 

curation of millions of cellular profiles, providing unprecedented insights into cellular 23 

heterogeneity across various tissues and developmental stages. This growing wealth of data 24 

presents an opportunity to uncover complex gene-gene relationships, yet also poses significant 25 

computational challenges. 26 

Results: We present scEMB, a transformer-based deep learning model developed to capture 27 

context-aware gene embeddings from large-scale single-cell transcriptomics data. Trained on 28 

over 30 million single-cell transcriptomes, scEMB utilizes an innovative binning strategy that 29 

integrates data across multiple platforms, effectively preserving both gene expression 30 

hierarchies and cell-type specificity. In downstream tasks such as batch integration, clustering, 31 

and cell type annotation, scEMB demonstrates superior performance compared to existing 32 

models like scGPT and Geneformer. Notably, scEMB excels in silico correlation analysis, 33 

accurately predicting gene perturbation effects in CRISPR-edited datasets and microglia state 34 

transition, identifying a few known Alzheimer’s disease (AD) risks genes in top gene list. 35 

Additionally, scEMB offers robust fine-tuning capabilities for domain-specific applications, 36 

making it a versatile tool for tackling diverse biological problems such as therapeutic target 37 

discovery and disease modeling. 38 

Conclusions: scEMB represents a powerful tool for extracting biologically meaningful insights 39 

from complex gene expression data. Its ability to model in silico perturbation effects and conduct 40 

correlation analyses in the embedding space highlights its potential to accelerate discoveries in 41 

precision medicine and therapeutic development. 42 

Keywords: single-cell transcriptomics, Transformer, gene-gene relationship, in silico 43 

perturbation analysis, in silico correlation analysis 44 

  45 
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INTRODUCTION 46 

The rapid advancement of single-cell technologies has enabled international consortia, including 47 

the Human Cell Atlas (HCA)1, Tabula Sapiens2, Human Cell Landscape3, and the more recent 48 

95 million CELLxGENE corpus4, to characterize the cellular heterogeneity in major human 49 

tissues and organ systems in different developmental stages. However, managing and 50 

extracting meaning and value from such large-scale data is highly challenging and this technical 51 

gap creates opportunities for researchers to innovate and develop advanced computational 52 

methods capable of harnessing the full potential of these vast datasets, enabling deeper 53 

biological understanding and practical applications. 54 

Clustered regularly interspaced short palindromic repeats (CRISPR) system is a genetic 55 

engineering tool for gene editing that can activate (CRISPRa), repress (CRISPRi), or modify 56 

gene expressions for specific genes5. This technology allows us to understand the systematic 57 

effects of perturbing one or multiple genes in different cell types, which provides ideal data to 58 

learn the relationship between different perturbations6,7. However, genome-scale gene 59 

perturbations and their potential combinations have been impeded by the cost, emphasizing the 60 

need for novel cost-efficient methods to prioritize their effects. 61 

Recent advances in artificial intelligence (AI), such as variational autoencoder (VAE) models8–10, 62 

which explicitly learn low-dimensional embeddings from single-cell transcriptome to capture the 63 

biological meaning embedding. Moreover, these embedding-based methods11 [Autoencoder12, 64 

VAE13–16, GNN17], has been widely used to along with the cellular perturbation tasks along with 65 

single-cell CRISPR data, to compress the transcriptomics data (mainly single-cell) into the latent 66 

space and compare the effects of different perturbations and possess a more accurate 67 

molecular measurement as well as in silico-induced perturbations18,19.  However, these 68 

methods18,19  were mainly task-specific and the perturbation effect were encoded on different 69 

embedding systems9, hindering the transfer learning performance.  70 
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More recently, large-language models (LLM) such as GPT20,21, have revolutionized various fields 71 

by leveraging deep neural networks trained on vast text datasets. These models generalize 72 

knowledge from pretraining, enabling efficient task transfer with minimal data. The self-attention 73 

mechanism enhances their ability to focus on relevant information, improving predictions across 74 

diverse applications. 75 

In single-cell data analysis, transformer-based models offer a promising approach to 76 

overcoming batch effects through batch-unaware pretraining, which has proven resilient to 77 

some technical artifacts. For instance, models like Universal Cell Embeddings (UCE)22 and 78 

GeneCompass23 have integrated molecular profiles across studies, tissues, and species, 79 

enabling cell type annotations to transfer across previously unseen species. More recent 80 

Geneformer25, scGPT24,, and scFoundation24 trained the foundation model from large-scale 81 

single-cell corpus and offered transfer learning features25 to makes the transformer an ideal 82 

backbone for inferring unseen perturbations17,26,27, showing great promise to mitigate previous 83 

limitations. 84 

Despite significant advances, a key gap remains in applying transformer models specifically to 85 

single-cell data. While transformers have shown promise in handling large-scale transcriptomic 86 

data, optimization for single-cell applications is still needed. To address this, we aim to develop 87 

the scEMB model to explore broader application scenarios in single-cell foundation models and 88 

establish best practices across diverse datasets. Additionally, we will investigate the potential of 89 

in silico perturbation prediction using both zero-shot and fine-tuned models, enabling more 90 

accurate biological insights and expanding applications in disease modeling and therapeutic 91 

discovery. 92 

 93 

RESULT 94 
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Overview of scEMB 95 

scEMB is an attention-based deep learning model pretrained on large-scale transcriptomic data 96 

to capture complex biological networks. It uses self-attention to focus on the most critical genes 97 

expressed in each single cell, optimizing predictive accuracy through various learning objectives. 98 

scEMB is designed to capture complex biologically meaning alteration underlying cell type state 99 

transition and perturbation response (Fig. 1). 100 

scEMB represents each single cell's transcriptome as a rank-binned gene expression encoding, 101 

ranking genes by their expression within individual cells. While this rank-based approach has 102 

limitations, such as not fully utilizing precise gene expression measurements from transcript 103 

counts, it provides a non-parametric representation of each cell's transcriptome. This method 104 

leverages the vast observations of gene expression across the cell-x-gene 30M dataset to 105 

highlight genes that characterize cell states by composing cellular biological networks. 106 

The rank value encoding of each single cell's transcriptome then passes through twelve 107 

transformer encoder units, each consisting of a self-attention layer and a feed-forward neural 108 

network layer. Pretraining utilized a masked learning objective, a technique proven in other 109 

information domains to enhance the generalizability of foundational knowledge acquired during 110 

pretraining, for a broad spectrum of downstream fine-tuning tasks such as batch integration, cell 111 

type annotation, in silico perturbation, and correlation analysis. 112 

 113 

scEMB shows comparable performance in clustering and batch integration 114 

As the standard tasking in single-cell foundation model, we tested the performance in single-cell 115 

clustering using scEMB, scGPT, Geneformer, and unintegrated methods on PBMC 10k 116 

dataset28. Fig. 2 shows the PBMC 10k dataset before and after dimensionality reduction using 117 

UMAP (Uniform Manifold Approximation and Projection), with the legend indicating various cell 118 

types, including B cells, CD4 T cells, CD8 T cells, CD14+ Monocytes, Dendritic Cells, 119 
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FCGR3A+ Monocytes, Megakaryocytes, NK cells, and other. For batch integration and cell type 120 

clustering tasks, we present UMAP plots that illustrate cell clustering across different datasets 121 

using four methods, with distinct colors indicating various cell types. Below the UMAP plots, a 122 

performance comparison table presents various metrics for each method, including isolation 123 

score, kBET score, and batch mixing entropy. The table also includes aggregate scores for 124 

metrics such as batch correction, biological conservation, and overall performance. This 125 

comprehensive visualization enables a direct comparison of how well each method integrates 126 

data across batches while preserving biological information. 127 

 128 

High consistent performance in cell type annotation task 129 

One of the main advantages of foundation models is their ability to leverage pretraining on 130 

large-scale general datasets, enabling fine-tuning for a wide range of downstream tasks, even 131 

when the available task-specific data is sparse to generate meaningful predictions. We 132 

evaluated scEMB's performance on cell-type annotation tasks by training a supervised learning 133 

model on cell-type annotations from a reference dataset, then predicting cell types in an 134 

independent, unseen dataset using two batches of data from MTG brain region dataset29.  135 

After inputting the transcriptome into scEMB Encoder, the cell-level embedding generated by 136 

scEMB, representing a specific cellular state, can be used to infer cell type. The cell type 137 

annotation was trained in one batch of the brain MTG dataset, and test on the other batch (Fig. 138 

3a). To evaluate cell type prediction accuracy, we used confusion matrices for scEMB, scGPT, 139 

and Geneformer (Fig. 3b-3d). While all methods performed well, we observed slight differences, 140 

especially for less common cell types. This visualization offers both qualitative (UMAP) and 141 

quantitative (confusion matrix) insights into scEMB's effectiveness in predicting cell types from 142 

single-cell RNA sequencing data. Overall, all foundation models demonstrated strong potential 143 
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in accurately annotating cell types using well-annotated reference data, a critical step in single-144 

cell data analysis.  145 

 146 

scEMB in silico perturbation analysis identified genes highly consistent with CRISPRi 147 

data  148 

As demonstrated by Geneformer and scGPT, single-cell foundation models show great potential 149 

in predicting cellular gene expression responses to specific gene perturbations. This highlights a 150 

major advantage of transfer learning, which leverages biological knowledge from millions of 151 

human cells to improve accuracy and scalability. To investigate potential deleterious effects in 152 

response to cellular perturbation, we designed an in silico perturbation response prediction task, 153 

which was validated using a single-cell CRISPRi dataset with known perturbation outcomes (Fig. 154 

4a). Specifically, we measured these effects using a cosine similarity score calculated from the 155 

scEMB-encoded embeddings in an iPSC-derived microglia dataset30. Among the 39 perturbed 156 

gene conditions (Fig. 4b), we identified the top 10 most accurately predicted in silico perturbed 157 

genes, which were validated against ground truth CRISPRi data. Among them, we identified a 158 

few well know microglia function genes, such CSF1R (Colony Stimulating Factor 1 Receptor), 159 

which is critical for the survival, differentiation, and function of microglia31. TGFBR1/2 160 

(Transforming Growth Factor Beta Receptor 1/2) TGFBR1/2 are involved in the TGF-β signaling 161 

pathway, which is essential for microglial homeostasis and modulation of their inflammatory 162 

response. TGF-β helps maintain the quiescent state of microglia in the healthy brain but also 163 

plays a role in activating microglia during injury or neurodegenerative processes32. Interestingly, 164 

the housekeeping gene like AARS (Alanyl-tRNA Synthetase)33 demonstrated the highest cosine 165 

similarity in predictions, indicating that scEMB may perform well in predicting housekeeping 166 

genes. However, this result also suggests that the universal expression of housekeeping genes 167 
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across cells could be more complex, as highlighted by findings from the single-cell foundation  168 

model27 . 169 

 170 

scEMB in silico correlation analysis highlighted AD risk genes that might contribute to 171 

the AD pathogenesis 172 

As there is still limited real world perturbation data existing, not to mention most perturbation 173 

response data or conditions is not included in training in current foundation models24,27,34. 174 

Therefore, perturbation response predicted from zero-shot learning still requires careful use. We 175 

designed a finetune task based alternative approach as revealed in Fig. 5. scEMB in silico 176 

corrrelation analysis could be applied to identify potential reversed relationship at cellular 177 

embedding level between cellular state alteration effect and perturbation effect among single-178 

cell transcriptome data. Here, we first project the cellular state alteration embeddings using 179 

scEMB Encode, focusing on microglia from individuals with Alzheimer’s Disease (AD) and 180 

cognitively normal (CN) individuals from the Religious Orders Study/Memory and Aging Project 181 

(ROS/MAP) cohort36.  Then, we followed our previously perturbation strategy10,17 to integrate 182 

pretrained GO Gene GNN node embeddings, allowing us to propagate the impact of 183 

perturbations from drug treatment or iPSC-derived CRISPRi data30. As illustrated in Fig. 5b, the 184 

violin plot presents the top 15 absolute cosine similarity scores, highlighting cellular state 185 

alterations in microglia by comparing cells from individuals with Alzheimer’s Disease (AD) to 186 

those from cognitively normal controls. Additionally, the plot reveals the effects of gene 187 

perturbations on iPSC-derived microglia. Notably, several well-known AD risk genes from 188 

genome-wide association study36, including PLCG2, SORL1, and TREM2, emerged among the 189 

top genes. These findings suggest that the scEMB in silico correlation analysis may offer 190 

valuable insights into genes involved in disease pathogenesis, providing clues about underlying 191 

molecular mechanisms. Furthermore, it points to potential therapeutic targets, as the identified 192 
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genes could play a pivotal role in modulating microglial function and influencing disease 193 

progression in AD. 194 

 195 

 196 

METHODS AND MATERIALS 197 

scEMB architecture 198 

scEMB comprises twelve transformer encoder units, each containing a self-attention layer and a 199 

feed-forward neural network layer. The model's key parameters include an input size of 2,048, 200 

embedding dimensions of 768, 12 attention heads, and a feed-forward network size of 3,072. 201 

The input size was maximized to capture the most context possible through full attention, based 202 

on the typical number of genes detected in each cell in the pretraining dataset. To speed up the 203 

training process for this large dataset, scEMB employed Scaled Dot-Product Attention (SDPA) 204 

across the entire 2,048 input size. The model's depth was determined by the maximum level for 205 

which sufficient pretraining data was available. Other minor parameters include the Gaussian 206 

Error Linear Unit as the activation function, a dropout probability of 0.1 for fully connected layers, 207 

and a dropout ratio of 0.1 for attention probabilities. The weight matrices were initialized with a 208 

standard deviation of 0.02, and an epsilon value of 1 × 10⁻¹² was used for layer normalization. 209 

The model was built in PyTorch and utilized the Huggingface Transformers library for 210 

configuration, data loading, and training. 211 

 212 

scEMB pretraining 213 

The primary pretraining objective of scEMB is masked language modeling. This approach, 214 

proven effective in various fields, enhances the generalizability of foundational knowledge 215 

acquired during pretraining, benefiting a wide range of downstream fine-tuning objectives. 216 
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During pretraining, 15% of the genes within each transcriptome are masked. The model then 217 

learns to predict which gene should occupy each masked position in that specific cell state, 218 

using the context provided by the remaining unmasked genes. This self-supervised approach 219 

can be accomplished on completely unlabeled data, allowing the inclusion of large amounts of 220 

training data without being restricted to samples with accompanying labels. 221 

The pretraining process utilized optimized hyperparameters to enhance model performance. 222 

These included a maximum learning rate of 1 × 10⁻�, a linear learning scheduler with warmup, 223 

and the Adam optimizer with weight decay fix. Additionally, 10,000 warmup steps were 224 

employed, along with a weight decay of 0.001 and a batch size of 8. These carefully selected 225 

parameters contributed to the model's effective training. During model training, we adapted a 226 

custom tokenizer from the Huggingface Transformers library to implement dynamic, length-227 

grouped padding. This approach minimized computation on padding and achieved a 29.4× 228 

speedup in pretraining. The process involves randomly sampling a megabatch, then ordering 229 

minibatches by their length in descending order. These minibatches are dynamically padded, 230 

reducing wasted computation on padding due to their grouped lengths. The distributed training 231 

is implemented by Deepspeed, which partitions parameters, gradients, and optimizer states 232 

across available GPUs. Overall, pretraining was achieved in approximately 10 days, distributed 233 

across one node with 8 Nvidia H100 96GB GPUs. 234 

 235 

scEMB finetuning 236 

Fine-tuning scEMB involves initializing the model with pretrained scEMB weights and adding a 237 

final task-specific transformer layer. This process aims to recalibrate the distribution between 238 

the pre-trained model and the task-specific dataset. The recalibration can be divided into two 239 

types: 1) using a small dataset to adjust the layers within the foundation model, or 2) fine-tuning 240 

external knowledge or embeddings, generated either from a task-specific dataset or expert 241 
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knowledge, to feed into the foundation model. In the first type of fine-tuning, the number of 242 

frozen layers must be carefully considered. Based on our experience and suggestions from 243 

relevant literature, applications more closely related to the pretraining objective benefit from 244 

freezing more layers. This prevents overfitting to limited task-specific data. Conversely, 245 

applications that diverge more from the pretraining objective benefit from fine-tuning more layers, 246 

optimizing performance for the new task. In the second type of fine-tuning, the extraction of 247 

features and appropriate use of expert knowledge still need comprehensive discussion. The 248 

task-specific dataset underwent the same preprocessing pipeline as scEMB. To demonstrate 249 

the effectiveness of the pretrained scEMB model in enhancing the predictive performance of 250 

downstream fine-tuning tasks, we employed consistent fine-tuning hyperparameters across all 251 

applications. Special attention must be given to determining the appropriate number of frozen 252 

layers during the fine-tuning process. 253 

Several applications of scEMB have been demonstrated, including cell type annotations, batch 254 

corrections, and perturbation effects. These applications further test the two types of 255 

recalibration. For cell type annotations and batch corrections, we used the PBMC dataset. In 256 

both subtasks, we tested LoRA (Low-Rank Adaptation) for the first type of fine-tuning and Prefix 257 

Tuning for the second type. The key difference is that LoRA aligns the model with a new dataset, 258 

while Prefix Tuning aligns the external knowledge vector, typically called an embedding, with a 259 

new dataset. Consequently, the cell representation from LoRA fine-tuning uses cell gene 260 

expression, whereas Prefix Tuning combines external knowledge and cell gene expression. The 261 

cell representation is the average of hidden layer outputs for all 12 layers. The benchmarks for 262 

cell type annotation were AUROC, F1 score, and accuracy. For batch corrections, we used the 263 

following metrics: Isolated labels, KMeans NMI, KMeans ARI, Silhouette label, cLISI, Silhouette 264 

batch, iLISI, KBET, Graph connectivity, and PCR comparison. 265 

 266 
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in silico perturbation analysis 267 

To evaluate the model's ability to capture gene perturbation effects, we conducted an in silico 268 

perturbation analysis, focusing on cosine similarity between cell embeddings of in silico 269 

perturbed control cells and CRISPR-edited cells. Cell embeddings, representing each cell as a 270 

768-dimensional vector, were obtained by averaging the encoder output. For control cells, we 271 

masked the CRISPR-targeted gene, then calculated the cosine similarity between control and 272 

perturbed groups. A high cosine similarity suggests a minimal effect on the gene, indicating less 273 

significant perturbation. Conversely, lower similarity highlights more impactful gene changes. 274 

This evaluation method provides insight into the genes most significantly affected by CRISPR 275 

perturbations. The results, as shown in Fig. 4, demonstrate how cosine similarity can effectively 276 

reflect gene impact, where high similarity indicates low gene perturbation impact and vice versa. 277 

This approach showcases the model's precision in detecting subtle yet significant gene 278 

expression changes after perturbations. 279 

 280 

in silico correlation analysis  281 

To further investigate the model’s capability to recognize the similarity between disease state 282 

transitions and gene perturbation effects, we conducted an in silico correlation analysis. Single-283 

cell transcriptomes from non-targeting controls (NTC) in the Alzheimer’s Disease (AD) dataset 284 

were tokenized and processed through the scEMB encoder, producing 768-dimensional cell 285 

embeddings. These embeddings were combined with gene perturbation embeddings (embp), 286 

which were derived from a protein-protein interaction (PPI)-guided gene relationship graph, 287 

informed by gene ontology (GO). The graph utilized a 3-layer graph attention network (GAT) to 288 

conduct self-supervised learning, enabling the extraction of embeddings for each gene10,17. 289 

These combined embeddings were then passed through a two-layer Multilayer Perceptron 290 

(MLP), which linked the cell embeddings to gene features, allowing the model to predict altered 291 

gene expression profiles. Additionally, the in silico correlation analysis was employed to assess 292 
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the relationship between cellular state alterations and gene perturbation effects. This analysis 293 

aimed to identify potential therapeutic targets by capturing the similarity or reversed 294 

relationships between disease-related cellular changes and the impact of specific gene 295 

perturbations. To evaluate these relationships, we performed a cosine similarity analysis, 296 

quantifying the similarity between control and AD cellular states and the effects of gene 297 

perturbations on induced pluripotent stem cell (iPSC)-derived microglia. The results, presented 298 

in Fig. 5, highlight the AD risk genes, allowing for a better understanding of how perturbations 299 

influence the disease state at the cellular level. This approach offers a robust framework for 300 

studying perturbation effects and identifying key genes involved in disease mechanisms. 301 

 302 

Benchmark with other models  303 

To comprehensively evaluate the performance of scEMB, we compared its clustering and batch 304 

integration capabilities against two other single-cell foundation models, Geneformer27 and 305 

scGPT34, as well as the standard single-cell data analysis approach in Scanpy37. These 306 

comparisons were conducted in a zero-shot setting using the PBMC 10k dataset28 with default 307 

configurations. Additionally, we assessed cell type annotation performance in a fine-tuning 308 

scenario by conducting a classification task on a brain microglia dataset36, comparing scEMB to 309 

Geneformer and scGPT. 310 

 311 

Data preprocess 312 

30M single-cell transcriptome corpus curation 313 

For pretraining the whole-human foundation model, we sourced data through the Census API 314 

from the CELLxGENE portal38 (https://cellxgene.cziscience.com/), which provides regularly 315 

updated datasets (accessed on May 9, 2024). We included both scRNA-seq and snRNA-seq 316 

sequencing protocols, focusing on samples from healthy conditions. To ensure data quality, we 317 
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filtered out cells expressing fewer than 200 genes or mitochondria gene expression percent > 318 

10 using python library Scanpy37. After applying these filters, the final dataset comprised 319 

sequencing data from 30 million cells.  320 

 321 

PBMC 10k dataset 322 

The PBMC 10k dataset consists of two single-cell RNA sequencing batches of peripheral blood 323 

mononuclear cells (PBMCs) obtained from a healthy donor. This dataset was reanalyzed by 324 

Gayoso et al.28, identifying 3,346 differentially expressed genes. The first batch consists of 325 

7,982 cells, and the second batch contains 4,008 cells. Cell type annotations were conducted 326 

using the R package Seurat39 , categorized the cells into nine distinct groups. The preprocessed 327 

data was adopted from scGPT34 (https://github.com/bowang-lab/scGPT, accessed on June 16, 328 

2024).  329 

 330 

MTG Brain dataset 331 

We incorporated two brain samples from the middle temporal gyrus (MTG) region, provided by 332 

the Seattle Alzheimer's Disease Brain Cell Atlas (SEA-AD) consortium via Amazon AWS Bucket 333 

(accessed on August 9, 2024). These two samples (H19.33.004 and H19.30.001) were profiled 334 

from two different batches. Cell type annotations were derived from the original study29.  335 

 336 

Microglia from ROS/MAP snRNA-seq and polygenic risk score process 337 
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We used snRNA-seq data from the Synapse portal (syn2580853, accessed on April 15, 2023), 338 

which includes 454 participants from the Religious Orders Study/Memory and Aging Project 339 

(ROS/MAP) cohort36. Matched whole-genome sequencing (WGS) data were obtained from 340 

Synapse (syn11724057, accessed on November 10, 2022). Individual genetic risk was 341 

estimated using LDPred240, based on variant effect sizes from Wightman et al.'s GWAS 342 

summary statistics41. This provided a dataset of 407 individuals with both snRNA-seq and WGS 343 

data. To focus on individuals with high polygenic risk scores (PRS) for Alzheimer's disease, we 344 

selected the top 20% PRS, yielding 53 high-risk AD cases and 15 high-risk cognitively normal 345 

individuals42. Data was processed using R package Seurat39 with filters applied for “percent.mt 346 

<= 50” and “nFeature_RNA > 200,” and cell type annotations were adopted from the original 347 

study.  348 

 349 

CRISPRi iPSC-derived microglia dataset 350 

The CRISPR iPSC-derived microglia dataset was downloaded from GSE17831730 (accessed on 351 

March 10, 2023) and processed using the CROP-seq pipeline43. The gene feature matrix was 352 

obtained by alignment and gene expression quantification for scRNA-seq libraries and sgRNA-353 

enriched libraries using Cell Ranger and STAR44. 2) The sgRNA matrix was assigned based on 354 

the demuxEM algorithm45 and a modified z-score cut-off method46. We categorized the cells into 355 

two groups: those with a single sgRNA and those with two sgRNAs. In total, we identified 39 356 

single sgRNA-targeted genes, each captured by at least 200 cells.  357 

 358 

DISCUSSION 359 

In this study, we introduce scEMB, a novel single-cell transcriptome foundation model 360 

developed to extract complex gene-gene interaction information from a large corpus of 30 361 
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million human single-cell transcriptomes. A key feature of scEMB is its specially designed 362 

tokenization mechanism, which was engineered to generate gene embeddings that are both 363 

stable and sensitive. This design allows scEMB to be highly effective across a broad spectrum 364 

of downstream tasks, from gene interaction analysis to large-scale biological modeling. 365 

scEMB’s performance has been rigorously evaluated in tasks such as clustering and batch 366 

integration, and it demonstrated competitive zero-shot performance across multiple datasets. 367 

Remarkably, its performance was on par with leading foundation models like Geneformer and 368 

scGPT, reinforcing scEMB’s utility as a powerful tool for a variety of biological applications. 369 

One of the novel contributions of this work is the exploration of scEMB's potential in perturbation 370 

response prediction, using an Alzheimer's Disease (AD) dataset as a case study. We estimated 371 

the cosine similarity between perturbation effects and cellular state transitions, demonstrating 372 

how scEMB can model complex cellular responses to external stimuli or genetic modifications. 373 

This ability to predict perturbation effects holds significant promise for the study of disease 374 

mechanisms and therapeutic interventions. 375 

In our evaluation of fine-tuning approaches, we identified a critical gap in current practices: the 376 

lack of a standardized method for fine-tuning large models in biological contexts, particularly in 377 

classification tasks. Existing classification tasks often fail to capture the complexity of biological 378 

research needs, limiting the practical utility of these models. To address this challenge, we 379 

introduced alternative fine-tuning strategies, including Prefix-tuning and LoRA (Low-Rank 380 

Adaptation), which are specifically tailored for downstream applications such as cell-type 381 

annotation and in silico perturbation analysis. These methods offer greater flexibility and more 382 

accurate biological insights, especially in tasks that involve nuanced gene expression changes 383 

across different conditions. 384 
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Furthermore, based on observations from models like Geneformer and scGPT, we confirmed 385 

that scEMB's performance adheres to the scaling law principle. This principle suggests that 386 

pretraining on larger and more diverse corpora consistently enhances predictive power. As 387 

scEMB was pretrained on hundreds of experimental datasets, it encountered various batch 388 

effects, technical artifacts, and individual variability during training, which ultimately improved its 389 

robustness and generalization across datasets. Larger pretraining corpora allowed scEMB to 390 

develop deeper, more predictive models capable of addressing the complexity of real-world 391 

biological data. 392 

Finally, the introduction of in silico perturbation analysis opens new avenues for using scEMB in 393 

drug response prediction and cellular behavior modeling. scEMB’s ability to predict how cells 394 

will respond to various perturbations positions it as a powerful tool for future therapeutic 395 

discovery and precision medicine applications. 396 

Moving forward, we plan to expand scEMB’s capabilities further. Leveraging generative 397 

modeling, scEMB can implicitly capture gene-gene interactions through its embeddings and 398 

attention maps, enabling the exploration of Gene Regulatory Networks (GRNs). We propose 399 

GRN inference workflows that utilize both pretrained and fine-tuned versions of scEMB, where 400 

the gene embeddings reflect dataset-level interactions, and attention maps reveal specific gene 401 

activation patterns across diverse cell states. By validating these inferred networks against 402 

established biological data, we demonstrated scEMB’s potential for gene program discovery 403 

and its ability to uncover previously unknown regulatory pathways. 404 

 405 
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 514 

Fig. 1 Framework of scEMB. The 30M single-cell transcriptome dataset, curated by CZ 515 

CELLxGENE Discover, was processed by normalizing gene expression to counts per million 516 

and applying a log1p transformation. We employed a binned expression strategy adapted from 517 

scGPT, binning genes into 100 intervals and ranking them based on their real expression values. 518 

Leveraging a BERT model as the backbone, we engineered the positional embeddings to 519 

preserve the order of real expression values. The resulting concatenated embeddings were fed 520 

into 12 transformer blocks, training the model to capture gene order and generate a gene-521 

attention map to represent cells. During inference, the gene expression data for new cells were 522 

tokenized and inputted into the pretrained model to obtain both gene and cell embeddings. 523 

These embeddings were then used in various downstream tasks to streamline conventional 524 

single-cell analyses. This figure was created using materials adapted from Biorender.com. 525 

 526 

Fig. 2 Clustering performance of PBMC10k data. a-d, UMAP plots illustrating clustering 527 

performance for scEMB, Geneformer, scGPT, and conventional dimensionality reduction 528 

methods on the PBMC10k dataset. e-h, UMAP plots illustrating batch integration performance 529 

for scEMB, Geneformer, scGPT, and conventional dimensionality reduction methods on the 530 

PBMC10k dataset. i, Five clustering metrics are compared across the four benchmark methods, 531 

with scores ranging from 0 to 1, where higher values indicate better performance. 532 
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 533 

 534 

Fig.3 Cell type annotation performance after fine-tuning on brain MTG datasets. We 535 

adapted two samples from SEA-AD cohort. a. One sample was used for training the cell type 536 

classifier, while the other sample was reserved for testing the classification performance. b-d. 537 

We benchmarked the cell type annotation performance of scEMB against scGPT and 538 

Geneformer, and presented the results using confusion matrix. Darker blue along the diagonal 539 

indicates higher accuracy. 540 
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 541 

 542 

 543 

 544 

 545 

 546 

Fig.4 scEMB in silico perturbation analysis. a. Diagram of the scEMB in silico perturbation 547 

analysis framework, from input data processing to the comparison of cellular embedding 548 

similarities. To evaluate the performance of the in silico perturbation, we used a CRISPRi 549 

dataset as the ground truth and measured prediction accuracy by calculating the cosine 550 

similarity of the cell embeddings. b. Bar plot showing the cosine similarity of cell embeddings for 551 
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10 CRISPR-edited genes, comparing their in silico perturbations on controls with the 552 

corresponding CRISPRi gene perturbated cells.  553 

 554 

Fig. 5  scEMB perturbation response and in silico correlation analysis. a. All the single-cell 555 

transcriptome were first tokenized and went through scEMB Encoder. The 786-dimensional 556 

cellular embedding will be concatenated with gene perturbation embeddings (embp), which are 557 

derived from a PPI-guided gene relationship graph (step 1) following our previous method10. 558 

This graph is built using genetic perturbation data and propagates the impact of perturbations (� 559 
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on gene ��) across gene-gene relationships informed by gene ontology (GO). scEMB provides 560 

two downstream tasks to analyze perturbation effects at both the gene and cellular levels, 561 

respectively. For gene-level analysis in step 2, the concatenated embeddings are processed 562 

through a two-layer Multilayer Perceptron (MLP), designed to link cell embeddings to gene 563 

features. The model outputs altered gene expression profiles, representing the predicted overall 564 

impact of perturbations on other genes. For cellular level in silico correlation analysis, we 565 

designed to test the correlation analysis between celllular state alteration effect and Perturbation 566 

effect, and therefore capture to a potenial reversing effect might provide the insight of theraputic 567 

targets (step 3). b. The violin plot shows the top 15 absolute cosine similarity scores for cellular 568 

state alterations in microglia, comparing cells from Alzheimer’s Disease (AD) with cells from 569 

controls, as well as the effects of gene perturbations on iPSC-derived microglia. The absolute 570 

cosine similarity measures the similarity between these two effects in 768 dimensions. The x-571 

axis represents the perturbed genes, with AD risk genes highlighted in bold. This figure was 572 

created using materials adapted from Biorender.com. 573 
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