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Abstract: Multi-robot formation control makes prerequisites for a team of robots to execute complex
tasks cooperatively, which has been widely applied in both civilian and military scenarios. However,
the limited precision of sensors and controllers may inevitably cause position errors in the finally
achieved formation, which will affect the tasks undertaken. In this paper, the formation error is
analyzed from the viewpoint of information theory. The desired position and the actually achieved
position are viewed as two random variables. By calculating the mutual information between them,
a lower bound of the formation error is derived. The results provide insights for the estimation of
possible formation errors in the multi-robot system, which can assist designers to choose sensors and
controllers with proper precision.

Keywords: formation error; Bayes risk; mutual information; lower bound

1. Introduction

In recent years, robots working in teams have been replacing complex single robots in both civilian
and military applications. Such multi-robot systems can bring extraordinary benefits. When some
robots do not work well, the problem may be fixed by simply replacing them with new ones. In this way,
complex tasks are decomposed into multiple subtasks with relatively low complexity [1]. Therefore,
the tasks can be accomplished with a lower cost. In military scenarios, autonomous robots are designed
to cooperatively accomplish surveillance tasks [2] or spy on targets in adversarial regions. In civilian
fields, automatic driving techniques may be helpful in intelligent transportation systems.

Formation control is a crucial technique for multi-robot systems. When executing a designated
task, robots typically coordinate by maintaining sequential formations. For instance, when robots are
required to move a large object, it is necessary for them to work in a certain formation [3]. In these
situations, errors in the achieved formations may affect the tasks undertaken, which should be
constrained in a reasonable range. Therefore, it is essential to estimate the formation error in system
design. On the other hand, information theory has gained great success in estimation, which is a
suitable choice to solve this problem.

There has been much work on multi-robot formation control. According to [4], existing results
can mainly be categorized into position-, displacement- and distance-based control.

In position-based control, the absolute positions are measured by sensors with respect to a
global coordinate system. According to the measurements, robots adjust their own positions to stand
in a formation. To enhance the system robustness, interactions among robots were introduced to
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the controller. Furthermore, the strategy of feedback coordination was proposed in [5] to improve
the stability.

In displacement-based control, robots sense neighboring companions and estimate their relative
positions with respect to the global coordinate system. In this way, robots need to find their own
orientation with respect to the desired formation. The global coordinate system itself and the absolute
positions in it do not need to be explicitly known. Regarding this type of controller, the single-integrator
modeled scenarios [6,7], the double-integrator modeled scenarios, the general linear agent scenarios [8]
and the nonholonomic agent scenarios [9] were discussed recently in existing works.

In distance-based control, robots adjust distances between them to achieve the desired formation.
In this process, each robot needs to sense neighboring companions and measure its relative positions
with respect to its own coordinate system. The orientations of these local coordinate systems do not
have to be unified. The distance-based control includes directed and undirected control. For undirected
control, where the robot interaction graph is undirected, rigidity [10] was proposed as a requirement for
the interaction graph. For directed control with directed interaction graphs, the notion of persistence
was introduced to characterize the interaction graph [11]. Based on the basic feasibility requirements,
problems of stabilization [12] and n-dimensional control [13] were further investigated.

The attitude control of robots is a supplement to position control in multi-robot systems.
In [14], a general framework was presented to analyze the attitude tracking control for a rigid
body. Furthermore, the attitude control for spacecraft [15,16] and leader-follower cooperative attitude
control [17] were also investigated.

However, formation error analysis is still an open problem in theory. In multi-robot systems,
formation error has to be constrained so that the tasks undertaken are not affected. Therefore,
in system design, the error needs to be estimated for the adjustment of the system parameters. In the
communication field, information theory has gained great success in error control. In multi-robot
systems, it is also an appropriate choice to solve the estimation problem. In this paper, the formation
error is defined in the form of distance. The Bayes risk representing formation error is estimated by
calculating the mutual information between the measured value and the desired value. The results are
further developed, and a lower bound of formation error is derived.

In this paper, our main focus is on leader-follower control scenarios, where each robot has a
reference and follows it until the robot arrives at its desired position. Note that the leader traditionally
refers to a leading robot followed by all other ones. However, in this paper, each robot is allowed to have
a different reference as its leader. If the reference is chosen as other robots, it is a displacement-based
control. If the reference is a fixed place, it is regarded as a position-based control. Each robot measures
its reference with sensors and reaches the desired position by controllers. In this process, the sensors
and controllers both result in errors. By introducing the notions of information theory, we derive a lower
bound of formation error with respect to the precision of sensors and controllers. This newly-developed
theoretical result can assist the design of a multi-robot formation system according to the application
requirements. Finally, simulations are carried out to check our theoretical results.

For simplicity, the contributions in this paper are summarized as follows: (1) setting up a model to
describe the errors of sensors and controllers in formation control; (2) applying information theory to
estimate the formation error and deriving a lower bound with respect to system parameters; (3) testing
the estimation results with a quasi-static control model in multi-robot systems.

The rest of the paper is organized as follows: In Section 2, the problem statement is provided.
In Section 3, a problem model is set up. In Section 4, the issue is fit into a distributed estimation
problem in information theory. The estimated error lower bound and its proof are provided in
Section 5. Afterwards, the simulations are displayed to check the theoretical results in Section 6. Finally,
the conclusion is given in Section 7.
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2. Problem Statement

2.1. Basic Notations

Supposing there are n robots, each robot is denoted by a serial number i ∈ {1, 2, . . . , n}.
Their positions at time t are represented by X(t) = {xi(t)|i = 1, 2, . . . , n}. Their initial positions
X(0) = {xi(0)|i = 1, 2, . . . , n} are randomly distributed.

The formation is represented by F = { f1, f2, . . . , fn}, where fi is the position of node i relative
to the formation center. The origin of the coordinate system involving F is the formation center,
which means ∑n

i=1 fi = 0.
In the multi-robot system, each robot is arranged according to a node in the formation.

The arrangement is denoted by D = {d1, d2, . . . , dn}, where di ∈ {1, 2, . . . , n} and di = j means
that robot i is designated to stand in position f j. The optimal choice of D was investigated in [18,19].

According to arrangement D, each robot has a desired target denoted as DS = {ds1, ds2, . . . , dsn}.
The true targets of robots typically deviate from those in DS for errors from sensors. They are
represented by D̂S =

{
d̂s1, d̂s2, . . . , d̂sn

}
. The position error of robot i is Er(i). The overall formation

error is denoted as Er.

2.2. Problem Definition

Considering n robots with random initial position X(0), they are supposed to achieve a formation
F. A quasi-static model is taken, where the time is discretized. In each time slot, robots get the
destination DS according to D, F and the positions of other robots. D̂S is the measurement of DS.
With D̂S, robots move towards their targets by controllers. After a certain amount of steps in such a way,
the desired formation can finally be approached within a reasonable error range. The leader-follower
mode is shown in Figure 1.

Figure 1. Leader follower control mode with a reference for each robot.

In the process, the measurement of DS may have errors brought by sensors. The controller may
also bring errors to the final position. We mainly consider the combined error resulting from the
elements mentioned above. Let Er(i) denote the position error of robot i. The formation error at time
slot t is defined by:

Er(i) = ||xi(t)− dsi||2 (1)
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From Er(i), the overall formation error is defined by (2).

Er =
1
n

n

∑
i=1

Er(i) (2)

From (2), it is obvious that the formation error is E[Er(i)]. That is to say, the overall formation
error is the expectation of the position error on a single robot if every single robot plays the same role
in the multi-robot formation system. Therefore, the objective of the problem is to estimate the error
expectation E[Er(i)] for an arbitrary i with respect to the measuring error and controller precision.

3. Problem Model

The estimation of E[Er(i)] can be accomplished by information theory. In this section, the position
is viewed as a random variable and modeled by a probability distribution. The factors bringing errors
to positions are modeled mathematically. The model makes prerequisites for formation error analysis
by the notions of information theory.

3.1. Dimensionality Reduction

The distance error of the position is the main concern, which is actually a one-dimensional variable.
Then, for the analysis of two-dimensional formations, the dimensionality reduction is used by polar
coordinates so that the distance model can be followed without lose of generality.

As shown in Figure 2, in the polar coordinate system, the measured target has an angular deviation
and a radius deviation. As the angular deviation is typically small, σθ is used to approximate sin(σθ).
The radius is assumed to be within [0, l0], where l0 is related to the formation size. By conservative
estimation, the radius is considered to be l0. The radius deviation is supposed to be σr. Then, as shown
in Figure 2, the variance of the distance between DS and D̂S is

√
σ2

r + (l0σθ)2. Their corresponding
measuring variance in polar coordinates is σ by using the project operation.

Figure 2. The dimensionality reduction performed on a two-dimensional formation.

3.2. The Probability Distribution of Position

Supposing random variable W is the desired value of the distance relative to the reference,
its corresponding probability distribution is PW . To calculate the final mutual information, PW must
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first be modeled. In this system, supposing W ∈ [0, l0], an intuitive way is to consider PW as a uniform
distribution. Note that it is more reasonable to consider the point uniformly distributed in an area of a
disk. In this distance-based model, robot i is supposed to have an equal possibility to be located at
each point in the disk with radius l0. Therefore, the probability distribution is:

P(W < r) =
Sr

Sl0
=

πr2

πl2
0
=

r2

l2
0

(r <= l0) (3)

where P(W < r) represents the cumulative distribution function of PW . Sr and Sl0 respectively
represent the acreage of the disk with radius r and l0.

The probability density function is given by:

pW(r) =
dP(W < r)

dr
=

2r
l2
0

(r <= l0) (4)

3.3. Model of Sensor Error

As mentioned above, each robot needs to sense its reference and find the desired relative position
as its target. The commonly-used sensors include monocular cameras, lasers or GPS. The distance
between the measured target and the reference is the measured value of W, which is denoted by X.
W and X are projected on a one-dimensional line. PX|W represents the distribution of measurement X
conditioned on W. Typically in information theory, errors of the sensors are modeled by a conditional
distribution. Here, we assume it to be a Gaussian distribution.

PX|W=w =
1√

2πσ2
× e

(X−w)2

−2σ2 (5)

where w is the value of W representing the mean value of the Gaussian distribution. σ is the measuring
variance. Note that the target and the desired position may not be on the same line as the reference.
Then, σ represents the combined error of the distance and angle, so that |X −W| is the distance
between the target and desired position.

In the considered system, it is assumed that each robot measures the distance n times
independently, following the same distribution. Xn represents the results of all measurements. In this
case, their joint distribution is PXn |W .

PXn |W=w =
1

(
√

2πσ2)n
× e

∑n
1 (xi−w)2

−2σ2 (6)

3.4. Model of Controller Error

Apart from measuring errors, the operation of controllers may also result in errors. Given a certain
precision of the controller, the deviation from the target is typically within a constant range. Therefore,
each robot is supposed to be controlled to reach a near region around its designated position. That is
to say, the controller only ensures precision in a discrete grid around the target. The leader-follower
control model is based on a polar coordinate system. Then, as shown in Figure 3, it is assumed that the
discrete grids are formed by equally dividing the angle and radius of a disk region. The radius of the
disk is a constant set to be Rm, where Rm ≥ l0. Corresponding to the model, the measured value X
is quantized to derive the final achieved value. Therefore, the operation precision of the controller is
modeled by the quantization rate denoted by b. In quantization, the range [0, Rm] is divided into nr

regions, where nr satisfies:
nr = 2b (7)

The distance error resulting from the operation of the controller is within the size Rm
2b .
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Figure 3. A partitioned disk with the reference as its center. The controller ensures precision in the
discrete grids.

4. Lower Bound Estimation

4.1. Notions of Information Theory

A model of decentralized estimation in information theory is considered to analyze the formation
error. In this model, the estimator has no direct access to the parameter of interest. However, it receives
samples from a local sensor observing the parameter. After the samples are obtained, they are quantized
and sent for analysis. Finally, an estimation of the parameter is obtained.

The quality of estimation is evaluated by distortion, which is defined by a function representing
the deviation between two values. Bayes risk represents the minimum possible distortion derived
from the best estimator. In [20], it gave lower bounds of the Bayes risk for the estimation problem.

Figure 4 shows a decentralized estimation system. W is the parameter of interest, which is
measured by local sensors. Let W be a random variable, the prior distribution is PW . Given W = w,
the sensor gets sample X generated from W by distribution PX|W=w. Typically, the sensor gets n
samples generated by distribution PXn |W=w. The samples are denoted as Xn = {X1, X2, . . . , Xn}.
The samples Xn are quantized by function ϕQ into a b-bit message.

Y = ϕQ(Xn) (8)

Y is transformed into a codeword by ϕE.

U = ϕE(Y) (9)

U is transmitted through a noisy channel and received as V. Finally, the estimator calculates:

Ŵ = ψ(V) (10)

as the estimation of W.

Figure 4. The model of decentralized estimation in information theory.

In multi-robot formation systems, the finally achieved position is actually an estimation of the
exactly desired position. Therefore, the distributed estimation model in information theory is applied
to analyze formation error. Before the estimation, the problem is fit into this model as follows:
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1. W discussed above is the parameter of interest. It is the desired value of the distance.
2. Xn are n independently drawn samples of W. The sensor on each robot measures the position n

times. The n independent measurements are denoted as {x1, x2, . . . , xn}.
3. The error resulting from the operation of the controller is modeled by the quantization of

measurement Xn. The quantization rate is denoted as b.
4. The position achieved by control operation is the final result of multi-robot formation. Therefore,

V = U = Y.

In this way, the distributed estimation model of information theory fits the estimation of formation
error. Theories of information theory are applied to derive a lower bound on the Bayes risk of
estimation. The results will guide the design of system parameters.

4.2. Lower Bound Estimation

As shown in Figure 4, the parameter of interest is W, which is derived from a prior distribution PW .
After sampling and quantization, the parameter is estimated as Ŵ = ψ(V). By using a non-negative
distortion function l : W ×W → R+, the Bayes risk of estimation Ŵ is:

RB = inf
ψ

E(l(W, ψ(V))) (11)

where the distortion function l is of the form l(w, ŵ) = ||w− ŵ||q. q ≥ 1 and ||.|| is a norm. They can
be specified according to the specific problem. In this paper, W represents the desired distance and Ŵ
is the distance achieved by the operation of the controller. As mentioned above, the measured distance
is projected on the same line with W, which makes it a one-dimensional problem. Therefore, function l
is defined on R1 with q = 1, and RB represents the average error. In [20], it provided lower bounds on
the Bayes risk. Based on the above model, an estimated lower bound of RB is obtained. This is also a
lower bound of the final formation error.

Theorem 1. In multi-robot formation system, each robot measures its target n times. The measuring variance
is σ. The error of the control operation represented by the quantization rate is b. If the desired distance satisfies
W ∈ [0, l0], the lower bound of Bayes risk RB is:

RB ≥
l0
2e

max

2−(log nl0
2σ + 1

2−
1
2 log(2πe)), 2

−

1−e
−

nl20
2σ2

b

 (12)

where l(w, ŵ) = |w− ŵ|.

Remark 1. RB represents the Bayes risk of the average position error of an arbitrary robot. The lower bound of
RB is an estimated lower bound of E[Er(i)]. It is supposed that each robot plays the same role in the multi-robot
formation system. Then, the expectation E[Er(i)] for an arbitrary i is the expectation on the overall formation
error Er. Therefore, (12) is a lower bound of E[Er].

5. Proof of Lower Bound

In this section, a proof of the lower bound in Theorem 1 is provided. In [20], the authors proposed
theorems to estimate the lower bound of Bayes risk by information theory. The theorems are introduced
as lemmas to analyze the formation error.

Lemma 1 ([20] (Theorem 3)). For any arbitrary norm ‖·‖ and any q ≥ 1, the parameter of interest W ∈ Rd

and W is distributed in [0, 1] on each dimension. X are samples of parameter W. The Bayes risk on estimation of
W with respect to the distortion function l(w, ŵ) = ‖w− ŵ‖r satisfies:
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RB ≥ sup
PU|W,X

d
qe

(
VdΓ(1 +

d
q
)

)− q
d

2−(I(W;X|U)−h(W|U))
q
d (13)

where Vd is the volume of the unit ball in (Rd, ||.||) and Γ(.) is the gamma function. When a real-valued W is
estimated with respect to l(w, ŵ) = ‖w− ŵ‖, (13) is simplified as:

RB ≥ sup
PU|W,X

1
2e

2−(I(W;X|U)−h(W|U)) (14)

Considering the unconditional version, there is a simpler form:

RB ≥
1
2e

2−I(W;X) (15)

In fact, (15) is an unconditional version of Lemma 1, which gives a lower bound of RB. This is
for the case W ∈ [0, 1]. If the range of the distribution is [0, l0], (15) is supposed to be multiplied by l0.
Besides, W and X are unconditional on U. Therefore, the unconditional version is taken for estimation.

Lemma 2 ([20] (Theorem 4)). In decentralized estimation with a single processor, for any choice of φQ and φE,

I(W, V) ≤ min{I(W, Xn)ηT , η(PXn , PW|Xn)(H(Xn) ∧ b)ηT ,

η(PXn , PW|Xn)CT}
(16)

where C is the Shannon capacity of the noisy channel PV|U and ηT represents the properties of the channel.

In this problem, there is no process across the noisy channel. Then:

ηT = 1 (17)

η(PXn , PW|Xn) is defined as follows. Given a channel with conditional distribution K whose input
alphabet is X and output alphabet is Y, the reference input distribution on X is µ. D(.|.) is the K-L
divergence. For a constant c ∈ [0, 1) and any other input distribution ν on X, if D(νK||µK) ≤ cD(ν||µ),
K satisfies strong data processing inequalities (SDPI) at µ.

The SDPI constant of K at input distribution µ is defined as:

η (µ, K) = sup
ν:ν 6=µ

D (νK||µK)
D (ν||µ) (18)

The SDPI constant of K is defined as:

η (K) = sup
µ

η (µ, K) (19)

With Lemma 2, an upper bound of I(W, V) is derived with respect to the system parameters.
Lemma 1 gives a lower bound of Bayes risk with respect to I(W, V). Therefore, the combination of
Lemmas 1 and 2 leads to a final estimation of the lower bound.

In this problem, the channel loss in information theory is not considered, for there is no process
across the channel. That is, the channel capacity C is infinite. In (16), the upper bound of I(W, V) is
the minimum value of three elements. Among them, η(PXn , PW|Xn)CT is related to C. Therefore, it is
supposed to be ignored. Then, the upper bound (16) is simplified as:

I(W, V) ≤ min{I(W, Xn), η(Pxn , PW|Xn)(H(Xn) ∧ b)} (20)
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In formation error analysis, Xn denotes n measurements of parameter W. Each of its element Xi
satisfies Xi ∈ [0, l0]. Xi is a continuous random variable. After the quantization with rate b, there will
be loss of information. Therefore, H(Xn) is larger than b. That is,

H(Xn) ∧ b = b (21)

Then, the upper bound (20) is further simplified as (22).

I(W, V) ≤ min{I(W, Xn), η(PXn , PW|Xn)b} (22)

Then, the following step is to estimate I(W, Xn) and η(Pxn , PW|Xn)b separately.
Clarke [21] showed that:

I (W, Xn) =
d
2

log
( n

2πe

)
+ h (W) +

1
2

E
[
log det JX|W (W)

]
+o (1)

(23)

where h(W) represents the differential entropy of W. JX|W (W) is the Fisher information matrix.
From (4), the probability distribution density of W is pW(r) = 2r

l2
0

.

Then, the differential entropy of W is:

h(W) = E(−log(pW(r)))

=
∫ l0

0
−2r

l2
0

log(
2r
l2
0
)dr

=
1
2
− log

2
l0

(24)

The Fisher information is:

det JX|W (W) = −E[
∂2

∂W2 log
(

PX|W

)
] (25)

From (6), P(X|W) is a joint Gaussian distribution of n independent samples. Then:

log
(

PX|W

)
= −n

2
log
(

2πσ2
)
− 1

2σ2

n

∑
i=1

(xi −W)2 (26)

Substituting (26) into (25),

det JX|W (W) = −E[
∂2

∂W2 (−
1

2σ2

n

∑
i=1

(xi −W)2)]

=
1

2σ2 E[
∂

∂W
(−2

n

∑
i=1

(xi −W))]

=
1

2σ2 E[2n]

=
n
σ2

(27)

In this system, since W ∈ R1, d = 1. By (23) and (24), the estimation of I(W, Xn) is:

I (W, Xn) =
1
2

log
( n

2πe

)
+

1
2
− log

(
2
R

)
+

1
2

log
( n

σ2

)
+ o(1)

= log
nR
2σ

+
1
2
− log 2πe + o(1)

(28)
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As for the estimation of η(Pxn , PW|Xn)b, the critical step is to estimate η(PXn , PW|Xn). Here, a lemma
in [20] is introduced to achieve it.

Lemma 3 ([20] (Lemma 5)). For a joint distribution PW,X , suppose there is a constant α ∈ (0, 1] such that the
forward channel PX|W satisfies:

dPX|W=w

dPX|W=w′
(x) ≥ α (29)

for all x ∈ X and w, w′ ∈W.
Then, the SDPI constants of the forward channel PX|W and the backward channel PW|X satisfy:

η
(

PX|W

)
≤ 1− α (30)

and:
η
(

PW|X

)
≤ 1− α (31)

The measurement of parameter W is Xn. Then, η
(

PW|X

)
is replaced with η

(
PW|Xn

)
. From (19),

η
(

PW|Xn

)
≥ η(PXn , PW|Xn) (32)

Then, together with (31),
η(PXn , PW|Xn) ≤ η

(
PW|Xn

)
≤ 1− α

(33)

Therefore, the critical step is to estimate α.
From (6), PX|W=w is a joint Gaussian distribution, with w as its mean. Then:

dPX|W=w

dPX|W=w′
(x) =

1
(
√

2πσ2)n e∑n
i=1 −

(xi−w)2

2σ2

1
(
√

2πσ2)n e∑n
i=1 −

(xi−w′)2

2σ2

= e∑n
i=1

(xi−w′)2

2σ2 −∑n
i=1

(xi−w)2

2σ2

= e
∑n

i=1(w−w′)(2xi−w−w′)
2σ2

(34)

From (29), α is the minimum value of (34). As each element in Xn is independent of each other,
the problem is equivalent to minimizing (w− w′) (2xi − w− w′). Let:

h = min
{(

w− w′
) (

2x− w− w′
)}

(35)

where x ∈ [0, l0] and w, w′ ∈ [0, l0]. (35) is transformed as:(
w− w′

) (
2x− w− w′

)
= 2(w− w′)x− (w2 − w′2) (36)

When w > w′, (36) increases with x. Therefore, (36) is minimized at x = 0. Then:

h = min{−(w2 − w′2)} (w > w′) (37)

As w, w′ ∈ [0, l0],
h = −l2

0 (w = 0, w′ = l0) (38)
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Similarly, when w < w′, (36) decreases as x increases. Therefore, (36) is minimized at x = l0. Then:

h = min{2(w− w′)l0 − (w2 − w′2)} (39)

To derive the minimum point, (36) is transformed as follows:

h = min{w′2 − 2w′l0 − w2 + 2wl0} (40)

Equation (40) is a quadratic function of w′ and w < w′. Then, the minimum value is reached at w′ = l0.
That is:

h = min{−l2
0 − w2 + 2wl0} (w′ = l0) (41)

Equation (41) is a quadratic function of w. The minimum point of (41) is w = 0. Therefore:

h = −l2
0 (w = 0) (42)

Together with (38) and (42),

min
{(

w− w′
) (

2x− w− w′
)}

= −l2
0 (43)

Then:
∑n

i=1 (w− w′) (2xi − w− w′)
2σ2 ≥ −

nl2
0

2σ2 (44)

Together with (34),
dPX|W=w

dPX|W=w′
(x) ≥ e−

nl20
2σ2 (45)

That is (see (29)):

α = e−
nl20
2σ2 (46)

Finally, from Lemma 3 and (33),

η(PXn , PW|Xn) ≤ 1− e−
nl20
2σ2 (47)

With the estimated value of I(W, Xn) and η(Pxn , PW|Xn)b, the conclusion is:

I (W, V) ≤ min

{
log

nl0
2σ

+
1
2
− 1

2
log (2πe) ,

(
1− e−

nl20
2σ2

)
b

}
(48)

In (15), I(W, X) is supposed to be replaced with I(W, V), for W is estimated by V here. The lower
bound in (15) is multiplied by parameter l0. According to the upper bound given in (48), the final
lower bound of the Bayes risk is derived as:

RB ≥
l0
2e

max

2−(log nl0
2σ + 1

2−
1
2 log(2πe)), 2

−

1−e
−

nl20
2σ2

b

 (49)

Therefore, the proof of Theorem 1 is accomplished.

6. Simulations

To test the formation error analysis result, the leader-follower mode to achieve a formation is first
realized in MATLAB.
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In leader-follower mode, there are plenty of controllers with different operation precisions.
The controllers may use operations with complex techniques to control the acceleration of movements.
In fact, the moving speed can be viewed as a constant during a short time interval. Therefore,
the single-integrator controller in (50) is applied to represent other controllers in a quasi-static model.
Note that in this control model, each movement represents the average movements in a time slot.
In this way, the controller is simplified, and the simulation concentrates on testing the formation error
analysis with respect to system parameters.

ẋi = ui (ui ≤ umax) (50)

In (50), ui is the control input and xi is the position. ui is the differential derivative of xi. umax is
the maximum speed of robots. The direction of ui is not restricted. That is, robots are supposed to be
omnidirectional. In simulations, the continuous control operation is replaced by the discrete control
model. Time is discrete, and the refreshment of speed input is also discrete. In the quasi-static model,
robots are supposed to update the speed instantaneously. In each time slot, each robot will move a
grid towards its target. Then, after several time slots, each robot will reach its target grid, and the
system will reach a stable state, which ends the whole process. The grids mentioned above are shown
in Figure 3. The controllers are set to ensure precision in discrete grids. If the robot discovers that there
are any other robot in its target grid or heading towards the grid, it will wait a time slot until the grid
is clear to move in it. In this way, collisions are avoided in the process.

6.1. Formation Illustration

In simulations, the working space is a square area with size 1100× 1100. There are 15 robots,
and the initial positions are generated randomly. The controlling range Rm is set as 300, and the
quantification rate is b = 7. That is, the operation error of the controller is within Rm

2b . The maximum
speed umax is five, and the measuring variance is σ = 1. As shown in Figure 5, robots in random initial
positions are required to reach a square formation under the quasi-static control mode.

(a) (b)

(c) (d)

Figure 5. (a) shows the robots with randomly deployed initial positions. (b,c) show that the robots are
moving in leader-follower mode. (d) shows that the robots reach a square formation.
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6.2. Formation Error Analysis

To investigate the offsets of the theoretical lower bound on formation error, we carry out
simulations to check the errors of achieved formations with respect to the system parameters.
The experimental data are fit with the least squares method. The calculated lower bound is also
shown for comparison.

In each simulation, the conditioning parameter is adjusted in a previously set range. For each
parameter value, 20 experiments are carried out. Robots are in random initial positions. They achieve
the circle formation shown in Figure 6. The formation error for each experiment is recorded.

Figure 6. The circle formation in the simulation test. Each node represents a position.

6.2.1. Measuring Times n

As discussed above, each robot measures the desired position n times to get its final target.
There are 15 robots. The one-dimensional measuring variance σ is set to be two, and σθ = 10−5.
The controlling range Rm is 200. The distance is partitioned into 200 sections within which the
precision of control operation is ensured. Converting it into the quantization rate, it is b = 7.64.
The maximum speed umax is five. n ranges from 1–60. In the theoretical analysis, the distance empirical
ranging threshold is l0 = 120.

Figure 7a shows the formation error with respect to n. All curves decrease as n increases. As a
matter of common sense, when n is small, increasing n apparently reduces the formation error. When n
is large enough, increasing n does not obtain obvious evolution. The tendency of curves is consistent
with common sense. The curve marked by “*” represents the experimental data, and the curve
marked by “o” is the fitting result with the least squares method. The curve marked by “+” is the
calculated lower bound by Theorem 1. At the beginning, the theoretical result is a little larger than the
experimental data. This is due to less statistics performed. Note that in the remaining majority part,
the lower bound is below the experimental data, and the tendency is the same.

6.2.2. Measuring Variance σ

There are 15 robots each of which measures the distance 10 times. The controlling range Rm

is 200. The distance is partitioned into 200 sections within which the precision of control operation
is ensured. Converting it into the quantization rate, it is b = 7.64. The maximum speed umax is
five. The one-dimensional variance σ ranges from 0.1–1.3, and σθ = 10−5. In the theoretical analysis,
the distance empirical ranging threshold is l0 = 120.

Figure 7b shows the tendency of formation error with respect to measuring variance σ. In general,
all curves increase with σ. As a matter of common sense, when the measuring variance increases,
the measuring error increases and therefore results in the increase of formation errors. The tendency of
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curves is consistent with the common intuition. The theoretical lower bound is below the experimental
data, and their tendencies are the same.

6.2.3. Quantification Rate b

There are 15 robots each of which measures the distance 10 times. The controlling range Rm is
200, and the maximum speed umax is five. The one-dimensional measuring variance of each robot is
σ = 0.1 and σθ = 10−5. The whole range is partitioned into 2b grids within which the precision of
control operation is ensured. The quantization rate b satisfies b ∈ [5.64, 7.64]. In the theoretical analysis,
the distance empirical ranging threshold is l0 = 120.

Figure 7c shows the tendency of formation error with respect to the quantization rate b. All curves
decrease as b increases. As a matter of common sense, when b increases, the operation precision
of the controller increases, resulting in the decrease of formation errors. When b is large enough,
the decreasing tendency slows down. The tendency of curves is consistent with the common intuition.
The lower bound is below the experimental data. Though there is a gap between them, their tendencies
are similar.

(a)

(b)

Figure 7. Cont.
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(c)

Figure 7. (a) shows the tendency of formation errors with respect to n. It depicts the experimental
data, the fitted curve and the calculated lower bound. (b) shows the tendency of formation errors
with respect to measuring variance σ. (c) shows the tendency of formation errors with respect to the
quantization rate b.

7. Conclusions

In this paper, the problem of formation error analysis was figured out with information theory.
The formation error was defined by distance and the error analysis issue was transformed into an
estimation problem. Then, by models in information theory, a lower bound was derived, which could
assist in choosing proper sensors and controllers in system design. In the simulations, the formation
error was recorded and compared with the estimated lower bound.
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