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Abstract: The growing interest in laver as a food product and as a source of substances beneficial to
health has led to global consumer demand for laver produced in a limited area of northeastern Asia.
Here we review research into the benefits of laver consumption and discuss future perspectives on
the improvement of laver product quality. Variation in nutritional/functional values among product
types (raw and processed (dried, roasted, or seasoned) laver) makes product-specific nutritional
analysis a prerequisite for accurate prediction of health benefits. The effects of drying, roasting, and
seasoning on the contents of both beneficial and harmful substances highlight the importance of
managing laver processing conditions. Most research into health benefits has focused on substances
present at high concentrations in laver (porphyran, Vitamin B12, taurine), with assessment of the
expected effects of laver consumption. Mitigation of chemical/microbiological risks and the adoption
of novel technologies to exploit under-reported biochemical characteristics of lavers are suggested as
key strategies for the further improvement of laver product quality. Comprehensive analysis of the
literature regarding laver as a food product and as a source of biomedical compounds highlights the
possibilities and challenges for application of laver products.

Keywords: raw laver; processed laver product; edible seaweed; nutritional value; functional substance;
health functionality; processing technology; microbial risk; chemical risk; omics-based technology

1. Introduction

Lavers are red seaweed species mainly consumed as processed food products or used as a source
of health-promoting substances. They belong to the genera Porphyra and Pyropia (which contains
many species formerly included in Porphyra) (Phylum: Rhodophyta; Class: Bangiophyceae; Order:
Bangiales; Family: Bangiaceae) [1]. Traditionally, lavers were staple foods in limited regions of Asia,
but increased awareness of their health benefits and the globalization of processed food products
has led to dramatic increases in consumption across the world [2]. The growth of global seaweed
aquaculture as a source of pharmaceuticals and biomaterials (e.g., Alga Technologies, Cyanotech, etc.)
is expected to contribute to the expansion of the laver industry [3,4]. Global laver production has
increased from 517,739 t/US $945.1 billion in 1987 to 841,131 t/US $1285.0 billion in 1997; 1,510,911 t/US
$1403.9 billion in 2007; and 2,563,048 t/US $2319.7 billion in 2017 (Figure 1) [5]. Commercial production
of laver products (e.g., gim snack (seasoned laver), mareun-gim (dried laver), okazu nori (laver for
side dish), yakinori (roasted laver), zicai tang (laver soup), etc.) are concentrated in northeastern Asia,
with South Korea, China, and Japan producing 99.87% of total world production in 2017 (Figure 1) [5].
This reflects the traditional consumption of laver in these countries and also regional environmental
conditions favorable for aquaculture [6].
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Figure 1. Global aquaculture production of the dominant production regions of the laver: (a) production 

quantity, (b) production value. Data (production quantity and value of ‘Laver (Nori)’ for Republic of 

Korea, ‘Nori nei’ for China, ‘Laver (Nori)’ for Japan) was obtained from FAO’s Fisheries and 

Aquaculture statistics (FishStatJ) [5]. 
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substances potentially beneficial to health (e.g. porphyran, taurine, vitamins, etc.). Previous studies on 

laver exploitation focused on the main species produced commercially in the Republic of Korea (Pyropia 

tenera (Kjellman) Kikuchi et al., 2011, P. yezoensis (Ueda) Hwang and Choi, 2011, P. seriata (Kjellman) 

Kikuchi and Miyata, 2011, P. dentata (Kjellman) Kikuchi and Miyata, 2011), China (Pyropia haitanensis 

(Chang and Zheng) Kikuchi and Miyata, 2011, P. yezoensis) and Japan (Pyropia tenera, P. yezoensis, P. 
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Figure 1. Global aquaculture production of the dominant production regions of the laver: (a) production
quantity, (b) production value. Data (production quantity and value of ‘Laver (Nori)’ for Republic
of Korea, ‘Nori nei’ for China, ‘Laver (Nori)’ for Japan) was obtained from FAO’s Fisheries and
Aquaculture statistics (FishStatJ) [5].

Currently, Algaebase [7] lists 188 and 77 species for Porphyra and Pyropia, respectively. As shown
in Table 1, species found mainly in northeastern Asia and suitable for aquaculture have been used as
the target organisms for research studies on the food production (raw and/or processed laver) and/or
substances potentially beneficial to health (e.g., porphyran, taurine, vitamins, etc.). Previous studies on
laver exploitation focused on the main species produced commercially in the Republic of Korea (Pyropia
tenera (Kjellman) Kikuchi et al., 2011, P. yezoensis (Ueda) Hwang and Choi, 2011, P. seriata (Kjellman)
Kikuchi and Miyata, 2011, P. dentata (Kjellman) Kikuchi and Miyata, 2011), China (Pyropia haitanensis
(Chang and Zheng) Kikuchi and Miyata, 2011, P. yezoensis) and Japan (Pyropia tenera, P. yezoensis,
P. pseudolinearis (Ueda) Kikuchi et al., 2011) [8].
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Table 1. Major species of lavers.

Genus Species 1

Porphyra
P. acanthophora, P. columbina, P. dentata, P. dioica, P. fucicola, P. haitanensis,

P. kanakaensis, P. perforata, P. pseudolinearis, P. purpurea, P. sanjuanensis
P. seriata, P. tenera, P. umbilicalis, P. vietnamensis, P. yezoensis

Pyropia 2
P. acanthophora, P. columbina, P. dentata, P. fucicola, P. haitanensis,

P. kanakaensis, P. nitida, P. orbicularis, P. perforata, P. pseudolinearis
P. seriata, P. tenera, P. vietnamensis, P. yezoensis

1 Species used as the target organisms from research studies cited in this review were summarized. 2 This taxonomy
was based on the generic revision of laver (Porphyra and Pyropia) [1].

Laver can be consumed as food, either raw or processed (e.g., dried, roasted, seasoned) or as
a source of substances beneficial to health. In northeastern Asia, laver is consumed mainly as a
side-dish and thus is generally perceived as a foodstuff rather than as a source of health functionality
substances. By contrast, studies of other edible seaweeds (e.g., green or brown algae) focused mainly
on their non-food roles as sources of nutraceuticals, food additives, and biomaterials. Nutritional
values and bioactive components of algal species linked to major health benefits were reported,
highlighting the potential for growth of the laver industry as both an edible seaweed and a source of
useful compounds [4,9–18]. However, although practical studies of the utility of laver as an edible
seaweed reported the distinct characteristics of various product types (i.e., material composition,
effects of manufacturing processes), there is no comprehensive analysis of the literature regarding the
nutritional/functional characteristics of laver and the technological basis for its quality control.

This review evaluates the results of research into the nutritional/functional characteristics of laver
products (consumed as food or for health benefits) and the application of technology to those products,
through the categorization of current issues (Sections 2 and 3) and discussion of future perspectives
(Section 4). To analyze advances over the decade 2009 to 2019, we review literature retrieved from the
following databases: PubMed, EBSCO, Research Information Sharing Service (RISS), National Digital
Science Library (NDSL), SCOPUS, Web of Science, and WIPO IP Portal. The aims of this work are (1)
to comprehensively review recent findings on the utility of edible lavers in both raw and processed
products and (2) to identify priority areas for future research on the exploitation of lavers.

2. Food Products Containing Lavers

Food products may contain either raw or processed lavers. Studies reporting the distinct
nutritional/functional values for each product type are reviewed here, the major factors determining
the expected effects of consumption are identified, and their implications are discussed. Whereas it
should be noted that since overall dietary habit defines total intake of nutritional substances with
potential health functionality, consuming those substances is likely to have no effect on health (if total
intake is already adequate) or even results in negative health consequences (in case of excessive intake).

2.1. Raw Lavers

Published analyses of the nutritional and health benefits of raw laver can be divided into studies
of raw wet laver directly consumed as edible seaweed and studies of raw laver pre-treated for
measurement of dry weight composition. Nutritional values vary widely among product types due to
the high-water content of raw wet laver (Table 2). The water content of raw wet laver was generally
reported as ca. 90% [19] (Table 2). Thus, data on compounds of nutritional and health value available
in raw wet laver can only be estimated by analysis of raw wet laver itself rather than the dehydrated
product used for dry weight-based analysis. However, most previous studies of nutritional values
presented analytical data based on dry weight [20–27], and wet-weight values are rarely reported [19].
Since seasoned raw wet laver is often consumed without dehydration or further processing, data on
nutritional value relative to wet weight are needed to accurately estimate the potential health benefits.
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Table 2. Nutritional values of the raw laver.

Product Type Raw Material
(Species)

Nutritional Values from Proximate Analysis (w/w %) Other Nutritional
Substances

Reference
Carbohydrate Dietary Fiber Protein Lipid Ash Moisture

Raw wet laver
P. yezoensis 1.2–2.7 - 1 3.0–5.0 0.5 3.6–4.3 89.2–90.5 mineral [19]

Porphyra sp. - 43.1, 38.9 25.6, 26.0 - - - - [20]

Raw laver
(dry weight) 2

P. vietnamensis 38.8–60.4 - 12.4–20.5 0.2–2.7 3.9–7.4 13.6–20.7 fatty acids [21]

P. dentata 45.7–45.9 - 36.2–37.7 0.7–1.0 7.1–8.2 8.6–8.8 mineral, amino acids [25]

P. purpurea 21.7 3 22.9 33.2 1.0 21.3 - amino acids, fatty acids,
sterol [24]

P. columbina - 48.0 24.6 0.3 6.5 12.8

mineral, amino acids,
fatty acids,

antioxidants, phenolic
compounds

[22]

P. yezoensis 51.2–57.9 - 36.2–39.2 2.3–3.1 3.8–7.3 - mineral, amino acids [27]

P. acanthophora
var. robusta 35.5–61.0 - 14.1–18.4 1.7–2.6 4.2–6.8 12.5–21.5 mineral, fatty acids,

pigments, vitamin [26]

P. purpurea - - - - - - mineral, vitamin [23]
1 Not analyzed or not indicated. 2 Dry weight of components of raw laver. 3 Non-fibrous.
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With respect to the nutritional composition of raw laver by dry weight (Table 3), most parameter
values are similar to those obtained from other edible seaweeds (carbohydrate, dietary fiber, protein,
lipid, and ash). Other nutritional components analyzed for raw laver are those generally used for
assessing the health benefits of edible seaweeds, namely minerals, fatty acids, amino acids, sterol,
antioxidants, phenolic compounds, pigments, and vitamins.

2.2. Processed Laver Products

The CODEX regional standard for laver products (CXS 323R-2017) categorizes these according
to the processing methods (i.e., dried, roasted, seasoned) and raw materials (i.e., single or multiple
edible seaweed species) [28]. Dried laver is the most common type and can be divided into primary
dried products (i.e., washed, chopped/cut, molded, dehydrated, and dried after harvesting) and
secondary dried products (made by re-drying primary dried products for long-term storage). Roasted
laver is dried laver roasted without seasoning, while seasoned laver is dried material treated with a
variety of ingredients using several processing methods (e.g., roasting, frying, treating with edible
oil) before or after seasoning. The seasoned category also includes laver seasoned for brewing and
broken and roasted/stir-fried dried laver seasoned for consumption after addition of boiling water.
Maximum water contents of primary dried, secondary dried, roasted, and seasoned laver are set as 14%,
7%, 5%, and 5%, respectively. Nutritional values of processed laver products show the expected range
of composition as described for raw laver in Section 2.1 (Table 3). Moreover, as noted for each product
type, this variation in the nutritional/functional content implies a need for further analysis of nutritional
values of specific product types to accurately estimate the potential for health benefits arising from the
consumption of those products. Composition of processed laver products is standardized according to
the CODEX regional standard (CXS 323R-2017) for products based on Pyropia spp. (and containing
other optional ingredients) [28]. Edible seaweed other than Pyropia spp. is one of the major optional
ingredients and can be intentionally or unintentionally included in processed laver products. Multiple
species of edible seaweeds such as Ulva spp. (green laver), Ecklonia cava Kjellman, 1885, or Capsosiphon
fulvescens (C. Agardh) Setchell and Gardner, 1920, can be combined in a single processed laver product
to improve palatability or to create specific organoleptic characteristics. These optional ingredients
have distinct nutritional and potential for health-promoting features [29]. The nutritional value of the
combined product depends on raw material composition and enhancement of product quality with
respect to potential health functionalities and organoleptic properties [30].
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Table 3. Nutritional values of processed laver products.

Category Product Type 1

(Species) 2
Nutritional Values from Proximate Analysis (w/w %) Other Nutritional

Substances
Reference

Carbohydrate Dietary Fiber Protein Lipid Ash Moisture

Processed laver
products

DL (Porphyra
spp.) 36.8 31.6 43.0 0.5 10.3 9.4 mineral, amino acids [8]

DL (P. dentata, P.
seriata) 47.6 40.4 37.3 0.3 7.6 7.3 fatty acids, pigments,

antioxidants [30]

DL 43.8–46.2 - 3 37.8–40.0 1.5–2.3 8.0–9.0 5.7–7.4
mineral, amino acids,

fatty acids, component
sugar

[31]

DL (P. tenera) - - 36.9 2.3 9.1 3.7 mineral, amino acids [32]
DL (P. haitanensis) - - 32.16 1.96 8.78 6.74 -

DL (P. yezoensis) 45.4–50.0 - 29.3–35.0 1.8–2.0 8.1–9.9 8.2–9.8 mineral [19]

DL - - - - - 8.4 phenolic compounds

[33]DL - - - - - 7.6 -

RL - - - - - 8.7 -

DL - - - - - 8.7 -

DL (P. yezoensis) - - - - - - vitamin, organic acid,
free sugar [34]

DL - - - - - - phenolic compounds,
anion, element [35]

DL (P. tenera, P.
yezoensis + P.

dentata, P. seriata)
41.7 33.4 38.4 0.3 8.0 11.6 - [30]

Processed laver
products with other

seaweeds as
optional ingredients

DL combined
with

green laver
(Ulva spp.) 4

43.7 36.6 35.0 0.8 9.1 11.4 - [30]

1 DL: dried laver; RL: roasted laver. 2 Species as the raw material of the product was indicated. 3 Not analyzed. 4 Nutritional values of processed laver products composed multiple species
of optional ingredients.
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Nutritional values obtained from processed laver products (i.e., dried, roasted, or seasoned) are
broadly similar (Table 3). However, major differences in nutritional values and product quality can
arise as a result of processing method, either by drying of raw laver or subsequent roasting or by
seasoning. The drying process can affect various nutraceutical components including dietary fiber,
phenolic compounds, pigments, and antioxidants [36]. The higher content and bioavailability of
Vitamin B12 (VitB12) in raw, as opposed to dried, laver may imply the conversion of VitB12 in raw laver
to its analogues (which are not bioavailable to mammals) by the air-drying process [37]. Drying of
laver by lyophilization was suggested to prevent loss of bioactive VitB12 [38]. With respect to further
processing, roasting or deep-frying of dried laver results in decreased mineral content (calcium, iron,
magnesium, phosphate, potassium). Deep-frying (160–180 ◦C for 10 sec) decreased mineral content by
a factor of 2–6 compared with roasting (300 W for 2 min) [39]. Simulated domestic cooking of dried,
roasted, and seasoned laver showed consistent trends in (1) decreased water content (9.69%, 3.66%,
and 1.49% for dried, roasted, and seasoned laver, respectively), (2) denaturation of amino acids
(mainly glycine, citrulline, valine, isoleucine, leucine, and gamma-aminobutyric acid), and (3) higher
mineral contents in dried than in roasted or seasoned laver (calcium: dried 4976 mg/g, roasted 2202
mg/g, seasoned 2037 mg/g; potassium: dried 31210 mg/g, roasted 29540 mg/g, seasoned 28800 mg/g;
zinc: dried 45.12 mg/g, roasted 24.33 mg/g, seasoned 18.37 mg/g; copper: dried 6.49 mg/g, roasted
6.11 mg/g, seasoned 4.71 mg/g) [40]. However, lower contents of functional substances in processed
laver products than in dried laver does not always implicate the processing steps as causal factors:
Although VitB12 content was lower in seasoned (51.7 µg/100 g) than in dried laver (133.8 µg/100 g),
the destruction of VitB12 by the roasting process was not detected, and thus, the addition of optional
ingredients (e.g., seasoning) is thought to be the cause of the difference [41]. With respect to other
measures of product quality, roasting may cause color deterioration by its effects on pigments such
as chlorophyll [42]. Since the processing of laver has acted as essential role for the quality control of
products (e.g., drying greatly improves shelf-life of laver to facilitate wider accessibility for individuals
as a food source), the application of optimal processing conditions ensuring both nutritional/functional
values and the product quality is important.

Lavers can be a component of other food products such as seaweed chips, salads,
laverbread, laver cake, onigiri (rice ball), kimbab (seasoned rice roll), and laver soup [10,13,15,16].
However, previous studies of these processed products focused on organoleptic characteristics with
sensory evaluation, rather than on potential for health and/or nutritional benefits.

3. Lavers as Functional Foods: Unique Health Benefits of Laver

Seaweeds have long been regarded as a rich source of health-promoting substances.
However, relevant studies mainly focused on internationally produced and consumed seaweeds,
including brown [43] and green algae [44], and on red algae other than laver [45]. This section reviews
the available information on the health benefits of lavers, with particular reference to active substances
unique to this group of edible seaweeds. Table 4 summarizes the major components of laver linked to
well-known health benefits based on the currently reported research studies investigating the putative
health effects of each component, highlighting the necessity for future research regarding long-term
outcomes of laver consumption on human health.

Since most of the reported health benefits of laver could also be gained by consumption of
other edible seaweeds [11], this section focuses on studies that report unique health functionalities of
laver derived from components not found in other edible seaweeds, namely, porphyran, VitB12 and
taurine [9,10].
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Table 4. Major health functionality of laver products (raw laver and processed laver products).

Health Functionality Major Components Linked to Health Functionalities References

Anti-cancer polysaccharides (dietary fiber, porphyran), phospholipids,
sterol, peptide [17,46–54]

Prevention of cardiovascular disease
(e.g., hypertension, atherosclerosis, ischemia) betaine, dietary fiber, taurine, porphyran [17,55–61]

Antioxidant effect (e.g., Anti-ageing) porphyran, glycoprotein, polyphenols, tocopherols, peptide [62–67]

Anti-inflammatory effect and immunomodulation glycoprotein, porphyran [64,68–73]

Alcohol metabolism glycoprotein [74,75]

Prevention of nervous diseases
(e.g., Alzheimer’s diseases, methylmalonic acidemias) taurine, porphyran [38,76,77]

Prevention of bone disease
(e.g., osteoporosis, rheumatoid arthritis) porphyran, glycoprotein [64,78]

Anti-diabetes mellitus phenolic compounds (carotenoids, anthocyanins),
polysaccharides (porphyran), peptide [79–82]
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Porphyran is the distinctive dietary fiber found in laver, and its health effects were intensively
studied to determine the nutritional/functional quality of lavers [83]. Important bioactivities that
can be attributed to porphyran include anti-cancer, antioxidant, and anti-inflammatory effects and/or
immunomodulation and prevention of diseases such as cardiovascular, nervous, bone, and diabetic
disorders [9,10]. Those bioactivities have been demonstrated by the examination of porphyran
extracted from laver species as reported in following research studies. The anti-cancer effect of
porphyran was demonstrated by using human cell lines including the hepatic carcinoma (Hep3B),
cervical cancer (HeLa), and human breast carcinoma (MDA-MB-231) cell lines [53]. The anti-cancer
effect of porphyran was also evaluated using human gastric cancer cells through the induction of
apoptosis [46] and the inhibition of cell proliferation [47]. In dietary experiments using rats, prevention
of cardiovascular disease may be achieved by the anti-hyperlipidemic effect revealed by the decrease
in serum cholesterol level [57,84]. The basis of these effects was shown to be reduced secretion of the
essential component of very low-density lipoprotein (VLDL) in blood (i.e., apolipoprotein B100) [58].
Properties of porphyran derivatives were also reported, especially for antioxidant effects assessed by
radical scavenging and reducing power [62,63]. Immunomodulatory effects were shown as immune
responses to myelosuppression by the oral administration of porphyran to rats [68]. Anti-inflammatory
activity was evaluated by inhibition of secretion of inflammatory markers (nitric oxide and tumor
necrosis factor alpha) by macrophages (RAW264.7 cell) [72], and the suppression of activation of
immune cells [73]. Neuroprotective effects may be attributable to oligo-porphyran, with the mechanism
for the protection of neurons shown to be regulatory effects linked to the inhibition of apoptosis in
neuronal cells [77]. Therapeutic effects against bone diseases by suppression of osteoclast formation
induced by the receptor activator of nuclear factor κB ligand were demonstrated using RAW 264.7
cells [78].

The beneficial health effects of the vitamin B complex (e.g., choline, inositol) in laver include
the synthesis of major nutritional factors (i.e., carbohydrate, protein, and lipid), anti-cancer effects,
and enhanced immunomodulation [18,56,85,86]. Lavers produce exceptional quantities of VitB12 and
thus can be used to counter the deficiency of VitB12 (e.g., methylmalonic acidemias) in vegan diets by
the consumption of laver [86–88]. The bioavailability of VitB12 was also confirmed by increases in the
hepatic VitB12 level of rats by the intake of laver [38,89] and by the release of VitB12 from laver after
human consumption simulated through in vitro gastrointestinal digestion experiments [41].

Taurine is a major amino acid in laver and other red algae but rarely present in brown or
green algae [90]. Decreased plasma cholesterol levels in rats after the consumption of taurine
were reported [56,61]. Promotion of neuronal development by taurine in laver extracts was also
experimentally demonstrated by the primary culture of hippocampal neurons [76].

4. Future Perspectives on Technical Advances in Laver Utilization

The main current issue in laver utilization is the elimination of potential risk factors in the process
from farming to the manufacture of laver products. For the future, we need to consider the application
of new technologies for the identification of useful constituents. This section covers the development of
technologies for the control of chemical/microbiological risks and novel techniques that may promote
the consumption of lavers as edible seaweeds, in particular, omics-based research linked to the health
benefits of lavers.

4.1. Management of Current Issues: Control of Potential Risks from Farming to Processing of Lavers

The sequence from cultivation of laver in aquaculture farms to the final drying steps [91] is
common to most processed laver products because roasted and seasoned laver are manufactured using
dried laver as a basic material.

For processed laver food products, effective control of chemical and microbiological risk factors
is the prerequisite for human consumption. Since major risk factors and their extent vary across the
production process, it is important to establish intervention strategies based on a detailed understanding
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of the overall production process. Management strategies effective in the identification and control of
chemical/microbiological risks should also be established for individual product types.

4.1.1. Control of Chemical Risks

The chemical risks can be defined as the consumption of excessive levels of substances that lead
to side-effects and/or the exposure to toxic agents (such as heavy metals) in laver products [92,93].
Major food constituents with side-effects are iodine, fibers, and sodium (in seasoned laver). Iodine has
beneficial effects on thyroid gland functioning, but excessive intake should be avoided to prevent
potential adverse effects such as autoimmune thyroiditis or hypothyroidism [94–98]. Overconsumption
of fibers can lead to vomiting or abdominal pain with diarrhea in people with sensitive stomachs and
may cause dyspepsia even in healthy people due to generation of gases in the digestive system [99].
The much greater sodium content of seasoned (relative to dried) laver shows that salts added during
processing can result in consumption of excessive levels of sodium [32]. Heavy metals (As, Cd,
Cr, Cu, Hg, Ni, Pb, Zn, etc.) were detected in both raw and processed laver products (Table 5). It
should be noted that the contents of heavy metals in laver have been reported as variable according
to a range of factors including the cultivar, species, season, and processing conditions [100,101].
Most previous studies recorded acceptable levels of contaminants according to the hazard quotient
(HQ) of heavy metals in laver products or provisional tolerable weekly intake (PTWI) set by the Food
and Agriculture Organization/World Health Organization (FAO/WHO) [42,102]. Guidance values for
tolerable intake [PTWI, provisional tolerable monthly intake (PTMI), provisional maximum tolerable
daily intake (PMTDI)] for major heavy metals detected from laver were set as follows: Al (PTWI 2.0
mg/kg bw/week), Cd (PTMI 25 µg/kg bw/month), Cu (PMTDI 0.5 mg/kg bw/day), and Hg (PTWI 4.0
µg/kg bw/week) [103]. However, high levels of aluminum in laver (388.6–623.4 mg/kg dry weight)
were reported as indicators of food pollution [104]. In addition, arsenic is the major heavy metal
contaminant in laver [42,102,105,106], and the potential risk of production of toxic metabolites by the
human digestive process was also stressed [107,108].

Table 5. Research studies regarding the chemical risk of laver products.

Category Product Type 1 Target Results
(mg/kg or µg /g of dw 2) References

Raw laver -

arsenic (As)

9.59–34.0 [100]

22.9–33.8 [101]

0.22–0.70 [105]

12.87 [109]

cadmium (Cd) 0.40–1.21 [100]

2.83–3.54 [101]

chromium (Cr) 0.32–0.86 [100]

copper (Cu) 7.92–16.9 [100]

1.94–6.94 [101]

iron (Fe) 290–723 [100]

lead (Pb)
0.78–1.30 [100]

<LOD 3 [101]

0.98 [109]

mercury (Hg) 0.005–0.006 [100]

0.03 [109]

nickel (Ni) 0.69–1.04 [100]

0.74–1.51 [101]

zinc (Zn) 18.0–57.7 [100]

21.1–70.1 [101]



Mar. Drugs 2020, 18, 14 11 of 31

Table 5. Cont.

Category Product Type 1 Target Results
(mg/kg or µg /g of dw 2) References

Processed laver
products

DL

aluminum (Al) 388.6–623.4 [104]

66–511 [106]

arsenic (As)

13.5–32.8 [100]

<LOD–29.850 [102]

ND 4–0.303 [106]

30.18–39.05 [42]

cadmium (Cd)

0.69–4.73 [100]

0.108–3.11 [106]

0.076–0.318 [42]

0.501–2.421 [102]

chromium (Cr) 0.46–0.66 [100]

copper (Cu) 5.02–8.64 [100]

iron (Fe) 103–214 [100]

lead (Pb)

ND–0.86 [100]

ND [42]

<LOD–2.362 [102]

ND–0.208 [106]

mercury (Hg)
0.004–0.008 [100]

0.005–0.009 [42]

0.002–0.050 [102]

nickel (Ni) 0.17–1.49 [100]

zinc (Zn) 27.1–57.7 [100]

DL, RL arsenic (As) 2.1–21.6 [107]

- 5

aluminum (Al) 15.50 6 [110]

arsenic (As) 2.07 6 [110]

cadmium (Cd) 0.109 6 [110]

lead (Pb) 0.063 6 [110]

mercury (Hg) <LOD [110]
1 DL: dried laver; RL: roasted laver. 2 dw: dry weight. 3 LOD: limit of detection. 4 ND: not detected. 5 Specific
product type was not indicated in the cited literature. 6 Average value.

Setting recommended-intake limits to prevent overconsumption of nutritional components
(i.e., iodine, dietary fiber, sodium) that pose potential chemical risks is the primary strategy for risk
management, and specific control methods for these factors are generally not required. By contrast,
since reducing the heavy metal content of laver can lower the risks, intervention technologies for the
elimination of heavy metal contaminants were developed. Cadmium, chromium, and lead can be
removed by immersion of laver in acid solution (citric, hydrochloric, or nitric) of pH 2.5–4.0 for 20
min, and this method could be applied because laver undergoes color changes only in more acidic
conditions (pH 2.0) [111]. Heavy metal contents of processed (roasted or seasoned) laver products
indicate a reduction in the levels of lead, mercury, and cadmium during the cooking process [40].
However, the increase in bioaccessible arsenic after human digestion may be a result of the roasting
process [10,112]. A correlation between the arsenic content of laver and that of seawater in the
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cultivation area was also reported, suggesting environmental management as one of the risk control
strategies [105].

4.1.2. Control of Microbiological Risks

Potential microbiological risks can be identified in the national standards and regulations for
laver products. China, in particular, has strict regulations (GB 2733-2005) specifying maximum
permitted values for aerobic plate counts (APC; 30,000 CFU/g), coliforms (30 MPN/100 g), mold (300
CFU/g), Salmonella spp. (not detected), Vibrio parahaemolyticus (Fujino et al.) Sakazaki et al., 1963 (not
detected), Staphylococcus aureus Rosenbach, 1884 (not detected), and Shigella spp. (not detected) [113].
However, laver is generally contaminated with marine bacteria [114,115], and inappropriate processing
conditions may allow the growth of contaminants not only from the natural habitat but also from
surrounding environments [42,116]. The importance of microbiological quality was stressed by
contamination reports relating to raw and processed laver [117,118] and also to food products based
on laver (e.g., sushi, kimbab) [119,120].

Table 6 summarizes microbiological contamination data for laver categorized as (1) processed
laver products, (2) food products containing laver, and (3) intermediate and end-products from
manufacturing plants. Aerobic plate count is the main indicator of microbiological quality. An APC
value of 6.5 log CFU/g recorded from commercial dried laver products [121,122] indicates a high level
of contamination. Microbiological quality factors represented by viable cell counts and coliforms were
also reported for dried (7.6 log CFU/g and 3.2 MPN/100 g, respectively) and roasted laver (7.5 log
CFU/g and 3.7 MPN/100 g, respectively) as the end-products from manufacturing plants. The close
similarity of these values suggests that the processing of dried into roasted laver has a very limited
antimicrobial effect [123,124]. Microbial populations of commercial products also differ according
to product type (APC: 6.9, 3.4, and 4.9 log CFU/g; coliforms: 2.1, 1.6, and 1.0 log CFU/g, for dried,
roasted, and seasoned laver, respectively) [125]. Aerobic plate count, coliforms, yeast/mold, and
Bacillus cereus Frankland and Frankland, 1887 from processed laver products were also reported
as 4.3–7.2 log CFU/g, 1.9–2.2 log CFU/g, 2.1–4.9 log CFU/g, and 2.3 log CFU/g, respectively [126].
Microbiological quality factors (APC, coliforms) were used to identify laver as the main source of
microbial contaminants in ready-to-eat foods (e.g., kimbab) containing this edible seaweed: dried
laver APC: 8.8 log CFU/g [127–129]; dried and roasted laver APC: 6.0–7.0 log CFU/g; and coliforms:
2.0–3.0 log CFU/g [130]. Bacillus cereus (detection rate: 12%) and Clostridium perfringens (Veillon and
Zuber) Hauduroy et al. 1937 (detection rate: 3%) were also reported in dried laver [131]. In the case
of intermediate and end-products from the manufacture of processed laver products, changes in the
microbial level for each step indicate critical control points for the management of microbiological risks.
Intermediate products from the manufacture of dried laver (i.e., after primary scrubbing in salt water,
primary debris elimination, secondary scrubbing in salt water, secondary debris elimination, chopping
and scrubbing in fresh water, molding, drying, and packaging) from seven companies showed an
increase in total viable cell count (TVC) during the drying step (final products TVC: 5.6–8.0 log CFU/g;
coliforms: 54–27,600 MPN/100 g) compared with the first manufacturing step (primary scrubbing in
salt water TVC: 1.5–2.8 log CFU/g; coliforms: 18–75 MPN/100 g). This indicates the drying step as
a critical control point for the microbiological quality of dried laver [42]. Samples collected from six
companies producing seasoned laver showed high levels of microorganisms in the dried laver raw
material (APC: 4.4–7.8 log CFU/g; coliforms: 54–27,600 MPN/100 g). Changes in microbial counts
during the manufacturing process (i.e., primary roasting, seasoning, secondary roasting, counting,
and packaging) highlighted second roasting as the key intervention step for microbial control [116].
Sequential changes in APC at each stage in the manufacture of seasoned laver (i.e., primary roasting,
secondary roasting, counting, and packaging) also indicate secondary roasting as the most effective
decontamination process [132,133].
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Table 6. Research studies regarding the microbiological risk of laver products.

Category Target
Microorganisms Product Type 1 Results References 2

Processed laver
products

Mesophilic bacteria

Standard 4.48 log CFU/g [113]

DL 6.5 log CFU/g [121]

DL 7.6 log CFU/g [123]
RL 7.5 log CFU/g

DL 6.9 log CFU/g
[125]RL 3.4 log CFU/g

SL 4.9 log CFU/g

DL 5.6–7.2 log CFU/g
[126]RL 3.6 log CFU/g

SL 4.3–6.0 log CFU/g

Coliforms

Standard 30 MPN 3/100 g [113]

DL 3.2 MPN/ 100 g [123]
RL 3.7 MPN/ 100 g

DL 2.1 log CFU/g
[125]RL 1.6 log CFU/g

SL 1.0 log CFU/g

DL 1.9–2.2 log CFU/g [126]

Yeast/mold

Standard 2.48 log CFU/g [113]

DL 4.3–4.9 log CFU/g
[126]RL 2.1 log CFU/g

SL 2.1–4.7 log CFU/g

Bacillus cereus DL 2.3 log CFU/g [126]

Raw materials of
food products

using laver

Mesophilic bacteria

Standard 4.48 log CFU/g [113]

DL 8.8 log CFU/g [127]

DL ca. 7.0 log CFU/g [130]
RL ca. 6.0 log CFU/g

DL 5.3 log CFU/g [131]

Coliforms

Standard 30 MPN/100 g [113]

DL ca. 3.0 log CFU/g [130]
RL ca. 2.0 log CFU/g

DL detection rate 6% [131]

B. cereus DL detection rate 12% [131]

Clostridium
perfringens DL detection rate 3% [131]
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Table 6. Cont.

Category Target
Microorganisms Product Type 1 Results References 2

Work-in-process
and end-products

from
manufacturing

plants

Mesophilic bacteria

Standard 4.48 log CFU/g [113]

DL 5.6–8.0 log CFU/g [42]

DL 4.4–7.8 log CFU/g [116]
SL 1.3–5.9 log CFU/g

DL 4.7–4.8 log CFU/g [132]
SL ND 4–1.0 log CFU/g

DL 3.4–3.6 log CFU/g [133]
SL 1.4–2.8 log CFU/g

Coliforms
Standard 30 MPN/100 g [113]

DL 54–27,600 MPN/100 g [42]
1 DL: dried laver; RL: roasted laver; Standard: permitted values standardized by China which has strict regulations
(GB 2733-2005) were indicated as reference data [113]. 2 This table is adapted and modified from [91].3 MPN: Most
probable number.4 ND: Not detectable.

Antimicrobial treatments to mitigate potential risks were applied to a range of product types
from raw materials to processed foods (Table 7). Little research was conducted into decontamination
of harvested raw laver because subsequent manufacturing steps (washing, drying, roasting) have
generally been considered effective for the control of microbial contaminants. Park et al. [134] reported
that exposing Bacillus cereus and Escherichia coli (Migula) Castellani and Chalmers, 1919 in raw laver
to 200 ppm NaOCl with 60 min of ultrasound could achieve reductions of 2.6 and 3.2 log CFU/g,
respectively. Decontamination methods can be applied to both processed laver products and to other
processed foods containing lavers. Gamma irradiation (3 kGy for 24 h) used as an antibacterial treatment
for kimbab [120,127,130] and dried laver [127] produced a reduction of up to 2 log in mesophilic bacteria
(initial population: 6.0–8.8 log CFU/g), and an inactivation of foodborne pathogens to levels undetectable
by plate-count methods (e.g., Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes
(E. Murray et al.) Pirie, 1940; initial population: 6–7 log CFU/g). Corona discharge plasma jet and
low-pressure air plasma achieved a 1.5 log reduction in mesophilic bacteria on dried laver without
post-treatment color changes [135]. An electron beam (e-beam) can be used as a more energy-efficient
alternative to gamma irradiation. A 4 kGy treatment achieved a 1.4 log CFU/g reduction of APC from
dried laver [136]. Using heat-assisted low dose e-beam irradiation, coliforms could be eliminated from
dried laver (> 1.5 log reduction) by 1–4 kGy without any changes in color or pigment contents [137,138].
Optimal treatment conditions ensuring product quality (i.e., thermophilic acidophilic bacterial count:
~103 CFU/g; water content: 5%; acceptable palatability score from sensory evaluation) were suggested
by response surface analysis as an irradiation dose of 1.8–3.0 kGy and heating at 154–170 ◦C for
10–18 s [139]. Not only for research studies regarding the development and application of intervention
methods for microorganisms, patents specified for laver processing have been reported including raw
wet laver [140], dried laver [141,142], and roasted laver [143]. However, although decontamination
technologies reported from both academic research cases and patents were shown to reduce microbial
populations to acceptable levels, there is major limitation in burden on the adoption of additional
treatment devices for manufacturers. Since most those techniques are physical treatments generally
applied to final products, further research into chemical/physicochemical treatment technologies
applicable from intermediate products to end-products is required to support the wider application of
microbial risk management strategies by manufacturers.
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Table 7. Intervention methods for microbial potential risks of processed laver products.

Target Product Treatment Methods Target Microorganisms Treatment Conditions Microbial Reduction
(log CFU/g) References

Raw harvested laver NaOCl + ultrasound Escherichia coli
Bacillus cereus 200 ppm, 60 min 2.6

3.2 [134]

Kimbab Gamma irradiation Mesophilic bacteria 1–3 kGy, 24 h 1.0–2.0 [130]

Kimbab Gamma irradiation

Escherichia coli
Salmonella Typhimurium

Staphylococcus aureus
Listeria monocytogenes

1–3 kGy, 24 h

1.3–ND 1

2.3–ND
3.4–ND
2.7–ND

[120]

DL 2 UV Mesophilic bacteria 20 W, 20 min 1.0 [123]

DL Gamma irradiation

Escherichia coli
Salmonella Typhimurium

Staphylococcus aureus
Listeria ivanoviis

1–3 kGy, 24 h

2.7–ND
1.7–ND
2.0–ND
1.6–ND

[127]

DL Corona discharge plasma Mesophilic bacteria 3312 rpm, 58Hz,
20 min 2.0 [135]

DL Low–pressure air plasma Mesophilic bacteria 20 min 1.5–2.0

DL e-beam Mesophilic bacteria 4 kGy 1.4 [136]

DL Heat-assisted e-beam
irradiation Mesophilic bacteria 1.8–3.0 kGy, 154–170 ◦C,

10–18 s > 2.0 3 [139]

DL Heat-assisted e-beam
irradiation Coliform

4 kGy,
dose rate as
2.1 kGy/h

> 1.5 4 [137]

DL
Heat-assisted

low-dosee-beam
irradiation

Coliform
1 kGy,

dose rate as
2.1 kGy/hg

> 1.4 5 [138]

1 ND: not detected. 2 DL: dried laver. 3 Microbial reduction was calculated from the control group of this study (no treatment of e-beam irradiation) as heating 160 ◦C for 14 sec without
e-beam irradiation. 4 Initial population level of coliform was 2.5 log CFU/g and the irradiation reduced coliform to undetectable levels with the detection limit as 1 log CFU/g. 5 Initial
population level of coliform was 2.4 log CFU/g and the irradiation reduced coliform to undetectable levels with the detection limit as 1 log CFU/g.
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4.2. Future Issues: Identifying the Health-Promoting Properties of Laver

Omics-technology is the most advanced research method for detailed understanding of the
biological characteristics of edible seaweeds. This section covers the recent findings from the
omics-technologies applied to laver as a future issue for obtaining useful information linked to the
health functionalities and quality control of laver including the growth characteristics and biochemical
composition. Especially since these research studies have also identified the key determinant factors on
the quality of laver with the perspectives to its potential health-promoting properties, the improvement
on long-term outcomes of laver consumption on human health can be expected, and thus, practical
evaluation should be followed as further studies. The genome, microbiome, transcriptome, proteome,
and metabolome of laver species were all analyzed (Table 8).

The plastid and mitochondrial genomes of red algae were first analyzed in Porphyra purpurea
(Roth) C. Agardh, 1824 [144–146], with subsequent genomic research conducted using next-generation
sequencing technologies [146–154]. Laver is regarded as the model genome for red algae, and detailed
analysis has provided data for phylogenetic, taxonomic, and evolutionary studies [146,147,155].
Genomic data from Porphyra and Pyropia species were generated by whole genome sequencing (WGS)
and comparative genomics (Table 8). WGS of laver has allowed identification of genomic features
associated with nutritional/functional characteristics [147] and/or product quality (e.g., color) [154].
In Porphyra umbilicalis Kützing, 1843, structural characteristics are linked to major nutritional/functional
constituents and are believed to confer resistance to stressful habitat conditions, such as repeated
desiccation and rehydration in the intertidal zone [147]. WGS of Pyropia yezoensis followed by annotation
of major functional genes governing photosynthesis has identified new genes involved in the control of
laver color. Designation of biomarkers based on these gene sequences is expected to provide practical
information to the laver industry, allowing prediction of color and also details of diseases responsible
for color fading [154]. Genomic data reveal the sequences for gene sets associated with the specific
metabolism of laver, and this genome-wide identification can be used to target key functional genes
for further transcriptomic analysis [156]. Comparative genomic analysis is an effective method of
species determination in morphologically simple organisms such as lavers. It was suggested that
destructive sampling and DNA extraction from fragmentary material may be useful in the identification
of type specimens [146]. Phylogenetic analysis can clarify the distinct characteristics of laver compared
with other red algae [153]. Complete mitochondrial genome analysis can also allow recognition of
unidentified algal species by comparison of gene sequences with those of morphologically similar
organisms [148]. Phylogenetic analyses of Pyropia and Porphyra also broaden our understanding of
biodiversity within these genera, with Pyropia haitanensis [150] and P. yezoensis [151] providing examples
of this. Biomarkers for the differentiation of laver cultivated in different regions can be identified from
gene sequences based on the divergence in genomic features [152].

From the perspective of the laver industry, transcriptomic analysis can provide a detailed
understanding of the unique life cycle (linked to laver yields) and stress response (linked to laver
quality) (Table 8). Advances in applied transcriptome analysis include identification of housekeeping
genes involved in internal control processes [157]. With respect to the life cycle, previous studies
focused on characterization of the evolutionary aspects of the distinct stages [158,159], development of
applied technologies including the designation of biomarkers [160], and treatments affecting the
regulation of gene expression linked to reproductive processes [161]. A major focus for genomic
research has been the interpretation and/or comparative analysis of transcriptomic data relating to the
responses of laver species to abiotic stress [162,163], principally environmental conditions such as high
temperature [164–166], repeated desiccation-rehydration [167,168], and hypersalinity [169].
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The microbiota of laver is generally host-specific and changes according to the physiological
state of the alga or according to factors in the surrounding environment [170]. Because the spatial
heterogeneity of microbiota on laver can make accurate characterization of microbial communities
difficult, a database of the determining factors affecting microbiome analysis was established [171].
Changes in the microbiome can be regarded as indicators of environmental conditions in the farming
area [172,173]. Analysis of the microbial community of laver has revealed not only seasonal variation
in the microbiota but also evidence of host-microbiota interactions from the identification of bacteria
affecting the morphogenesis and growth of laver [155]. In the sea water of seedling pools, the emergence
of filament diseases resulted in clear changes in microbial community composition. Healthy seedling
pools showed a dominance of Sediminicola spp. and Roseivirga spp. Seedling pools with diseased laver
showed increased abundance of Vibrio spp. and Polaribacter spp., suggesting they may be suitable
biomarker organisms for monitoring laver disease [174].

Proteomic studies of the impact of stress factors on laver have focused on stress-response
mechanisms and the effects of mutation. Abiotic and biotic stresses associated with the sequential
steps from farming to processing of laver include high temperature [175,176], desiccation [177,178],
and pathogen infection [179]. High temperature is one of the main determining factors of
nutritional/functional quality and yield for laver strains able to tolerate elevated temperature [175,176].
A major topic in proteome research is the coordinated activation of various pathways governing
desiccation tolerance, which is triggered under natural conditions by exposure to low tide [177,178].
Metabolic responses to seaweed pathogens and other aspects of host-pathogen interaction can be
explored by comparative proteomic analysis before and after infection [179,180]. In the case of
mutation, identification of key proteins is the primary step for the production and/or isolation of
stress-tolerant strains of laver. Experimental mutagenesis aims to produce cultivated laver strains
capable of efficient growth with resistance to environmental stress factors and has been induced by
chemical (ethyl methane sulfonate exposure) [181] or physical (gamma irradiation) treatments [182].

Lipidomic studies have mainly focused on lipid biomarkers, which play an important role in
stress-response metabolism, and on the assessment of the nutritional/functional quality of lavers.
Elevated habitat temperature as a result of global warming is regarded as a key stress factor for laver,
and thus, lipidomic changes under high temperature were examined to determine the acclimation
strategies of laver [183,184]. Clear differences in the lipidomic profiles of blade (gametophyte) and
conchocelis (sporophyte) stages have identified the main health-promoting lipids characterizing the life
cycle stages. This provides reference data for the selection of appropriate life cycle stages for practical
uses as food and for functional ingredients and/or biotechnological applications [185].

Since metabolites can determine the nutritional quality of laver and organoleptic characteristics
(such as flavor), metabolomic analysis can contribute to the identification of the major metabolites and
suggest optimal strategies to produce high-quality products. Metabolomic variations reported in raw,
recently harvested laver (changes in glutamine, alanine, aspartate, taurine, and isofloridoside) [186]
and in processed laver products during manufacturing (changes in dominant metabolites including
amino acids, carboxylic acids, choline metabolites, and sugars) [187] highlight the importance
of metabolomic data with respect to the effects of these determinant factors on product quality.
Moreover, since metabolite profiles of major edible seaweeds show distinct, species-specific
characteristics, metabolomic data specific to laver are also required [188].
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Table 8. Omics-based studies linked to the health functionality and the processing of lavers.

Omics Technology Topic Species Major Findings References

Genome

Whole genome sequencing
and genomic feature

P. umbilicalis
- Genome governing nutritional/functional values linked

to the growth and survival strategy of laver under
stressful condition of natural habitat (intertidal zone)

[147]

P. yezoensis - First report on the genome sequence of nuclear
ribosomal DNA (nrDNA) cistron [149]

P. yezoensis

- Genome sequence and annotated functional genes from
P. yezoensis

- Identification of photosynthesis system and key genes
governing color of laver

[154]

Genome-wide
identification of functional

genes
P. yezoensis - Gene structure associated with mitogen-activated

protein kinases from P. yezoensis (PyMAPKs) [156]

Comparative genomics

P. perforata
P. sanjuanensis

P. fucicola
P. kanakaensis

- Reliable analytical method for the genomes of laver by
the destructive sampling of type specimen [146]

P. nitida - Recognition of new red algal species [148]

P. haitanensis - Supportive data for the phylogenic differences between
Pyropia from Porphyra [150]

P. yezoensis - Supportive data for the phylogenic differences between
Pyropia from Porphyra [151]

P. yezoensis - Different genomic structure of strains according to the
regions of cultivars (Korea and China) [152]

P. haitanensis,
P. yezoensis

- Biodiversity and distinct phylogenies of laver compared
with other red algae [153]
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Table 8. Cont.

Omics Technology Topic Species Major Findings References

Transcriptome

Analytical techniques P. haitanensis - Selection of housekeeping gene mostly adequate for the designation of
internal control based on the stability under abiotic stresses [157]

Unique life cycle

P. yezoensis -Transition observed in the life cycle with apospory [158]

P. umbilicalis,
P. purpurea - Evolutionary analysis for the growth and development of laver [159]

P. haitanensis
-Transcriptomic profile under different physiological conditions

-Role of cSSR markers linked to the differences in the gene expressions
among lifecycle stages of laver

[160]

P. pseudolinearis - Impact of ethylene precursor treatment to the regulation of gene
expression governing reproduction [161]

Stress response

P. yezoensis - Stress response of PyMAPK gene family [156]

P. yezoensis - Identification of key response genes expressed under various abiotic
stresses [162]

P. haitanensis - Role of heat shock proteins against the abiotic stresses [163]

P. tenera - Distinct transcriptional characteristics of gametophyte thalli by
high-temperature stresses [164]

P. yezoensis - Transcriptomic profiles in response to stresses associated with
temperature [165]

P. haitanensis - Identification of key response genes expressed under thermal stresses
- Mechanisms on the adaptation of high-temperature tolerant strain [166]

P. columbina
- Identification of mechanisms on resistance and key response genes

expressed under stresses from desiccation-hydration cycles in natural
habitat

[167]

P. tenera - Identification of mechanisms on resistance and key response genes
expressed under desiccation [168]

P. haitanensis - Identification of mechanisms on resistance and maintenance of
homeostasis under stresses from hypersaline conditions [169]

Biosynthesis P. yezoensis
- Role of glycine-betaine (GB) capable of maintenance of osmotic balance in

response to desiccation stresses
- Identification of major enzymes involved in the biosynthesis of GB

[189]
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Table 8. Cont.

Omics Technology Topic Species Major Findings References

Microbiome

Diversity in the
microbiota

P. umbilicalis
- Seasonal variation to the microbial community in laver

- Identification of bacterial groups which are expected to contribute to the
evolution and/or function of laver

[155]

P. yezoensis
- Seasonal variation and the effects of the yellow spot disease outbreaks to

the microbial community in the seawater of laver seedling pools
- Identification of disease-associated bacteria

[174]

Analytical techniques P. umbilicalis - Microbial communities affected by the sampling position of laver and the
stabilization techniques applied for the microbiome analysis [171]

Influencing factor
(Red rot disease) P. yezoensis

- Alterations of bacterial community by red dot disease
- Close association between health status of algal host (uninfected or

infected) and bacterial community
[190]

Proteome

Mechanism of
stress-tolerance

P. haitanensis - Investigation on the key metabolisms elucidating the mechanisms of
resistance to high-temperature [175,176]

P. orbicularis - Investigation on the key metabolisms elucidating the mechanisms of
resistance to desiccation

[177,178]
P. haitanensis

Mechanism of
infection resistance P. yezoensis - Investigation on the pathogen-responsive proteins elucidating the

mechanisms of responses against the infection [179]

Identification of key
functional protein P. yezoensis

- Identification of major protein [Pyropia yezoensis aldehyde dehydognease
(PyALDH)] which contributes to the resistance of laver against oxidative

stress
[180]

Mutation of laver
strain

P. yezoensis

- Induction of high-growth-rate mutation by the exposure to ethyl methane
sulfonate

- Comparative analysis for the proteome of mutated strain with wild-type
strain with the perspective to the enhanced growth

[181]

P. yezoensis

- Induction of thermo-tolerance mutation by the exposure to
gamma-irradiation

- Isolation of protein from thermo-tolerant mutant which contributes to the
resistance against elevated temperature

[182,191]
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Table 8. Cont.

Omics Technology Topic Species Major Findings References

Lipidome Lipidomic
variations

P. haitanensis - Identification of lipid biomarkers distinctly expressed under elevated
temperatures [184]

P. dioica - Differences in composition of major lipid molecular species according to
the life cycle stages between the blade and conchocelis [185]

Metabolome
Metabolomic

variations
P. haitanensis - Changes in the nutrient composition according to the harvest time [186]

P. yezoensis
- Changes in the nutrient composition which can determine the taste of

laver by the food processing steps not only for seasoning but also washing,
cutting, and roasting

[187]

Metabolite profile P. pseudolinearis
- Distinctive characteristics of metabolites among species of edible

seaweeds (brown, red, and green algae) and sorbitol as the major sugar
metabolite in laver

[188]
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5. Conclusions

The comprehensive information regarding advances in research reporting health functionality
and quality control of laver analyzed in this study demonstrates the need for consistent research
studies specializing on laver. Major findings from the analysis of literatures are as follows:
(1) nutritional/functional values can be variable according to the type of laver product (raw laver
and processed laver products), (2) potential health functionalities linked to the unique substances
in laver have been demonstrated by in vitro and in vivo research whereas long-term outcomes
of laver consumption on human health should be further examined, (3) intervention methods
for chemical/microbial risks should be improved for wider application to manufacturers’ use,
(4) omics-technologies have revealed the clues for understanding biological nature linked to product
quality of laver. Although previous research studies reported the nutritional/functional values
of laver products (raw laver, processed laver products) as useful edible seaweeds, most of those
studies highlighted that the accumulation of laver-specific data should be accelerated for the in-depth
understanding of the biological nature of laver. The current and future issues described in this study
regarding the usefulness of laver are expected to contribute to the balanced progress on both the
utilization of lavers as edible seaweeds and the source of the health functionality components.
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