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Genomic instability and cancer evolution
Genomic instability is an exaggerated accumula-
tion of genomic abnormalities and one of the clas-
sical cancer hallmarks.1,2 Genomic instability is 
associated with both the appearance of ‘driver’ and 
‘passenger’ mutations and accelerated molecular 
evolution of the tumor. There are two main levels 
of genomic instability.3 At the nucleotide level, it 
generates mostly single nucleotide substitutions, 
short insertions and deletions, insertion of trans-
posable elements,4 and variability of the microsat-
ellite loci.5,6 In turn, chromosomal instability 
implies shuffling of the bigger fragments of the 
genome and is associated with aneuploidy,7 dele-
tions or amplifications of genes,8 chromosomal 

rearrangements,7 translocations, and gene fusions.9 
Chromosomal instability is currently considered 
one of the most common features of cancer cells. 
Approximately 90% of solid tumors and more than 
a half of hematopoietic cancers have large-scale 
chromosomal aberrations.10

Genomic instability generates genomic aberra-
tions and can lead to accelerated evolution of 
cancers toward drug and immune resistance.11,12 
The increased mutation rate can help cancer 
cells to control drug response by eliminating or 
amplifying genes related to drug efficacy mecha-
nisms. These processes, underlaying resistance, 
include loss or gain of chromosomes and their 
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fragments, as well as nucleotide-level mutations. 
For instance, the reversion mutations of BRCA1/2 
in solid cancers make tumors more resistant to 
platinum or PARPi therapy.13 Oncogenic muta-
tions can provide immune evasion, such as muta-
tions in KRAS that promote immune suppression 
in colorectal cancer.14 Moreover, high level of 
cancer cells aneuploidy negatively correlates with 
the effectiveness of immunotherapy.12 On the 
other hand, deficient DNA repair systems can 
also lead to the increased mutation load in pro-
tein coding regions, thus expanding the amount 
of neoantigens in tumor.15 This makes tumors 
susceptible to recognition by immune system, 
thus potentially enhancing immunotherapy effi-
ciency.16 Thus, high tumor mutation burden is 
one of the major biomarkers for immunotherapy 
prescription.17

Genomic instability is preceded by accumulation 
of mutations in proto-oncogenes, tumor suppres-
sor genes, or genetic predisposition that lead to 
defective regulation of tightly connected mecha-
nisms of DNA damage response and repair,18–23 
cell cycle progression, senescence, and apopto-
sis,24 that coincide with inefficient elimination of 
transformed cells by the immune system.25–27 For 
example, negative regulators of Wnt pathway that 
plays a crucial role in cell proliferation, migration, 
polarity, and cell fate determination, are usually 
mutated and, consequently, downregulated in 
lung cancer cells.28 This results in abnormal cell 
proliferation and can provoke metastasis.28 
Immunosuppression can be caused by various 
random events such as viral infection,29,30 insuffi-
cient generation and CD8 T-cell exhaustion,31 
and tissue repair associated with M2 macrophage 
polarization.32

Chromosomal instability is associated with an 
ability to move and interconnect different pieces 
of chromosomes.33,34 During normal germ cell 
development, DNA is exchanged or crossed-over 
between chromosomes during prophase 1 of the 
meiosis followed by haploid cell division to gener-
ate cells with a single copy of each chromosome. 
These mechanisms are absent in the somatic cells 
and re-emerge in cancer leading to translocations 
and aneuploidy.35–38

One of mechanisms that promotes genomic insta-
bility is the so-called replication stress, that is, 
disturbances in the DNA replication process that 

lead to the arrest or destruction of the replication 
fork.39 In turn, termination of replication in the 
absence of timely repair can provoke DNA dou-
ble-strand breaks.40

Hotspots of the DNA double-strand breaks 
often occur at specific ‘fragile’ sites on chromo-
somes.41 At these loci, there is an increased fre-
quency of loss of homozygosity or heterozygosity 
in cancer cells.42 In regions of nucleotide tandem 
repeats, mutations also occur due to malfunc-
tions of the replication fork.43 The system repairs 
DNA double-stranded breaks by the homolo-
gous recombination of adjacent genome regions. 
As a result, duplications of microhomologous 
chromosomal regions can occur, which are 
found in many types of cancer, such as ovarian 
and breast cancers.44

Mitotic disorders are another reason for the 
appearance of genomic instability at the chromo-
somal level. Errors can occur both in the early 
and late stages of cell division. The contribution 
to the development of genomic instability of sister 
chromatids pairing violations is well known.45 
Also, mutations in the genes responsible for the 
passage of cell cycle checkpoints can be associ-
ated with genome instability.46 A common occur-
rence in the anaphase of cancer cells is 
chromosome lagging.47 This is usually due to 
abnormal attachment of chromosomes, when one 
kinetochore attaches to microtubules extending 
from different poles of the spindle. Because this 
phenomenon is not recognized by the spindle 
assembly checkpoint, this merotelic attachment 
and the resulting lagging of the chromosome is an 
important cause of genomic instability.46 Mitotic 
disorders can lead to aneuploidy and even 
genome-wide duplications.48 It is important to 
note that the ploidy of the genome is directly 
related to the ability of cells to adapt. Tetraploid 
cells have more mutations per genome, but not 
per chromosome, which increases the adaptabil-
ity of the cell.49 In addition, it has been experi-
mentally shown that genome-wide duplications 
increase the resistance of cells to subsequent 
manifestations of genomic instability.49

Telomere changes can also lead to genomic insta-
bility.50 Thus, shortening of telomeric regions is a 
frequent event in the early stages of tumor devel-
opment.51 Normally, it occurs as a result of the 
accumulation of the effect of previous acts 
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of progenitor cell replication, and when the 
threshold value is crossed, such cells undergo 
aging and/or are eliminated. However, mutations 
in the cancer cell, for instance, leading to loss of 
function of negative regulators of cell prolifera-
tion, can help to avoid apoptosis.52 Alternatively, 
mutations can result in function gain for the dif-
ferent protein families that inhibit apoptosis, for 
example, members of IAP and Bcl-2 protein fam-
ilies, or other prosurvival factors.53 This has a 
strong potential to evade programmed cell 
death.54 Telomere shortening can also be associ-
ated with various manifestations of genomic 
instability at the chromosomal level, from ampli-
fication or deletion of individual loci to changes in 
entire chromosomes.55 Late-stage tumors typi-
cally reactivate telomerase or activate an alterna-
tive telomere elongation pathway.50 The latter 
mechanism appears to be associated with signifi-
cant genomic rearrangements and defects in 
DNA repair systems.56

In addition, high expression and insertions of 
LINE-1 and other active transposable elements 
within accessible chromatin regions generate 
multiple somatic variants, and contribute to the 
genomic instability in cancers.57–60 Moreover, 
epigenetic factors can also cause and promote 
genomic instability. The key epigenetic factors 
contributing to gene expression regulation and 
mutagenesis are DNA methylation, histone mod-
ification, nucleosome remodeling, and non-cod-
ing RNAs.61

Novel fusion genes in cancer
Chromosomal translocations, deletions, inser-
tions, and inversions can lead to the formation of 
chimeric genes with oncogenic functions. The 
first chimeric gene was described within the so-
called Philadelphia chromosome, which is formed 
as a result of the translocation of regions of chro-
mosomes 9 and 22 [t (9;22) (q 34; q 11.2)] and 
occurs in approximately 90% of all cases of 
chronic myeloid leukemia.62,63 As a result of 
structural rearrangement, a chimeric gene BCR-
ABL1 is formed, which encodes the corresponding 

chimeric protein BCR-ABL.64 It is a continuously 
active tyrosine kinase that permanently activates 
proliferation, replication, differentiation, and also 
renders the cell resistant to apoptosis.64 Active 
proliferation can lead to an increased rate of 
mutagenesis, which contributes to the develop-
ment of drug resistance in cancer cells.65

Since the discovery of the Philadelphia chromo-
some, many other chimeric genes have been 
found that are specific to a particular type of 
cancer.65 For example, the chimeric EWSR1-
FLI gene is characteristic for a number of sar-
comas.66,67 KIAA1549-BRAF fusion oncogene 
is characteristic for spinal intramedullary astro-
cytomas,68 and fusions with JAZF1 and 
YWHAE genes frequently occur in leiomyosar-
comas.69,70 In many cases, fusion genes are just 
passenger mutations accompanying carcino-
genesis that do not play any significant role in 
cancer progression.71–73 On the other hand, 
some fusion genes harbor specific tumor pro-
moting molecular activities and are, therefore, 
referred to as driver mutations.74 Their tumor-
promoting activities may strongly differ in 
nature and are still most probably not com-
pletely understood.

However, even for the fusion oncogenes, only a 
tiny fraction of them currently serves as the tar-
gets for cancer therapeutics. All such chimeras are 
fusions with receptor tyrosine kinase (RTK) 
genes. Presence of such fusion gene in the genome 
can be a significant biomarker both for the diag-
nosis and prognosis of the disease, and for the 
choice of therapy. Tens of small molecular mass 
therapeutics that inhibit kinase activities of these 
gene products have been approved by the US 
FDA for treatment of tumors with confirmed chi-
meric genes (Table 1). In particular, chimeric 
transcripts of genes for RTKs ALK, FGFR 1-4, 
NTRK 1-3, RET, ROS1, and MET are used for 
prescription of the respective targeted therapeu-
tics (Table 1).

For these fusion oncogenes, all paternal tyrosine 
kinase receptor proteins have a set of common 
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structural features (Figure 1). They consist of (at 
least) an extracellular ligand-binding domain, 
transmembrane domain, and cytoplasmic tyros-
ine kinase domains.93,94

Binding of the ligand to the extracellular part of the 
receptor causes dimerization and transphospho-
rylation of tyrosine residues of the intracellular 
domain. This leads to activation of the kinase 

Table 1.  US FDA-approved cancer drugs targeting fusion genes. Only three out of 35 drugs approved for BCR-
ABL1 fusion are shown (Data collected from https://nctr-crs.fda.gov/fdalabel/ui/search).

Cancers Targeted kinase 
fusion partners

Drug Approval, year Reference

Ph+ CMLa BCR-ABL1 Imatinib 2001 Amarante-
Mendes et al.75, 
Milojkovic and 
Apperle76

Ph+ CMLa BCR-ABL1 Nilotinib 2010 Amarante-
Mendes et al.75, 
Radich et al.77

NSCLC ALK or ROS1 
positiveb, ALCL ALK 
positivec

ALK, ROS1, MET Crizotinib 2011 Shaw et al.,78 
Solomon et al.79

NSCLC ALK positived ALK, ROS1 Ceritinib 2014 Facchinetti 
et al.80

NSCLC ALK positived ALK, ROS1, EGFR Brigatinib 2017 Descourt et al.81

NSCLC ALK positive ALK Alectinib 2017 Wang et al.82

Solid tumors with NTRK 
gene fusions

NTRK1-3 Larotrectinib 2018 Rudzinski et al.83

NSCLC ROS1 positivee, solid 
tumors with NTRK fusions

NTRK, ROS1, ALK Entrectinib 2019 Dziadziuszko 
et al.,84 Doebele 
et al.85

Urothelial cancer with 
FGFR3 fusion

FGFR3 Erdafitinib 2019 Zengin et al.86

Cholangiocarcinoma with 
FGFR2 fusion

FGFR1-3 Pemigatinib 2020 Abou-Alfa et al.87

RET-positive NSCLC, thyroid 
cancerf

RET Pralsetinib 2020 Gainor et al.88

RET-positive NSCLC, thyroid 
cancerf

RET, VEGFR1, 
VEGFR3

Selpercatinib 2020 Subbiah et al.89

NSCLC ALK positive ALK Lorlatinib 2021 Sehgal et al.,90 
Descourt et al.81

Cholangiocarcinoma with 
FGFR2 fusion

FGFR2 Infigratinib 2021 Javle et al.91

Ph+ CMLa BCR-ABL1 Asciminib 2021 Yeung et al.92

aPh+ CML – chronic myeloid leukemias with Philadelphia chromosome.
bNSCLC ALK or ROS1 positive – non-small-cell lung cancers harboring translocations of ALK or ROS1 genes.
cALCL ALK positive – anaplastic large-cell lymphoma, systemic ALK-Positive.
dNSCLC ALK positive – non-small-cell lung cancers with translocation of ALK gene.
eNSCLC ROS1 positive – non-small-cell lung cancers with translocation of ROS1 gene.
fRET-positive NSCLC – non-small-cell lung cancers with translocation of RET gene.
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domain and subsequent triggering of various intra-
cellular cascades.99 In this case, the signaling path-
way of mitogen-activated protein kinase (MAPK 
pathway), the phosphoinositide-3-kinase/protein 
kinase B (PI3K/AKT/mTOR), protein kinase C 
(PKC), and STAT-dependent pathways are acti-
vated, which are responsible for the induction of 
proliferation and cell survival.100–103 Breakage and 
ligation during chimera formation occur in the 
intron region and, thus, due to splicing, the exon–
intron structure of both parts of the transcript is 
preserved. Ligand binding leads to autophospho-
rylation and adaptor protein binding that further 
phosphorylate and ubiquitinate receptor which is 
subsequently internalized into lysosomes followed 
by either recycling or degradation,96,97 Internalized 
RTK continues to signal inside the cell.

There are two main types of structure of chimeric 
tyrosine kinase genes (Figure 2). In the first case, 
the N-terminal extracellular and transmembrane 
domains-encoding part of a tyrosine kinase 

receptor gene may be replaced by a partner gene, 
which results in the presence of tyrosine kinase 
domain is the 3′-moiety of a chimeric gene. In this 
case, the 5′-partner domains, as a rule, contribute 
to the dimerization of the tyrosine kinase domain. 
For example, the coiled coil motif, sterile alpha 
domain, LIS 1-homologous, IMD domain, and 
caspase domain can be mentioned as the contrib-
uting structural motifs of the 5′ fusion partner.104 
This can lead to ligand-independent dimerization 
of the tyrosine kinase domain which triggers fur-
ther carcinogenic properties of such fusion 
oncogene.

In the second type, the tyrosine kinase receptor is 
the 5′-terminal partner, and the 3′-partner most 
probably can additionally stabilize the chimeric 
RNA or protein product.105 The breakpoint in 
such case is usually located after the exons encod-
ing the tyrosine kinase domain. Thus, the partner 
gene is fused to the C-terminus of a nearly full-
length tyrosine kinase receptor.105

Figure 1.  Life cycle of the tyrosine kinase receptor. Ligand binding to RTK monomer mediates receptor dimerization, autophosphorylation, 
and various adapter protein binding. In turn, RTK interacting proteins mediate receptor internalization and downstream RAS/MAPK cascade 
activation including negative and positive feedback loops regulating ubiquitination and phosphorylation. Internalized RTK continues signaling 
and upon ubiquitination can be recycled to the cell surface.95–98 Alternatively, RTK can be subjected to lysosomal degradation.96,98

MAPK, mitogen-activated protein kinase; RTK, receptor tyrosine kinase.
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Importantly, for both types, the main feature is the 
preservation of the active tyrosine kinase domain. 
This appears to be a key factor distinguishing a 
‘driver’ mutation from random chimeric products 
arisen as a side effect of genomic instability.106 The 
second factor is the preservation of an open reading 
frame for both parts of the chimera. Both factors are 
important to distinguish between the ‘driver’ and 
‘passenger’ gene fusion events. For example, in 
infant hemispheric glioma, only the patients with 

preserved open reading frame for a ZCCHC8-ROS1 
fusion were responding to entrectinib.107 Note also 
the published outstanding case of heavily pretreated 
glioblastoma which expressed transcripts for four 
clinically relevant fusion transcripts: with ALK, 
FGFR2, NTRK2, and NTRK3 genes. Due to tumor 
heterogeneity, these were, however, expressed each 
by only a minor fraction of tumor cells, and the pre-
scription of the corresponding targeted therapies 
would be most likely unsuccessful.108

Figure 2.  Structure and functions of the tyrosine kinase gene fusions of the first and second types.109 (a) Type 1 fusion diagram 
represents a fusion protein between EML4 and ALK retaining the tyrosine kinase domain, whereas the rest of the RTK including 
transmembrane domain is lost. The resulting chimera translocates into the cytoplasm where it signals in a RAS/MAPK-dependent 
manner forming lipid-independent protein granules.110,111 ELM4 is a spindle checkpoint protein112 whose trimerization domain is 
retained in chimeras and most likely mediates interaction with the spindle assembly checkpoint complex and mitotic defects.113,114 
(b) Type 2 RTK diagram exemplifies FGFR3-TACC3 chimera in which TACC3 dimerization leucine zipper is attached to the C-terminus 
of FGFR3 mediating ligand-independent dimerization and signaling. In turn, TACC3 is a spindle checkpoint protein and FGFR3-TACC3 
chimera causes mitotic defects.115,116

MAPK, mitogen-activated protein kinase; RTK, receptor tyrosine kinase.

Fibroblast growth factor receptor gene fusions
Fibroblast growth factor receptors 1–4 (FGFR1–4) 
are a highly conserved family of transmembrane 
tyrosine kinases that can form chimeric oncogenes 
in various tumors. Normally, FGFR family mem-
bers play important roles in cell proliferation, 

embryonal development, organogenesis, mainte-
nance of homeostasis, and tissue integrity.117 In 
turn, structural aberrations of FGFR family genes 
contribute to oncogenesis, tumor progression, and 
development of drug resistance. In about 8% of 
the cases, abnormal increase in FGFR activities in 
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cancers is thought to be caused by their gene 
fusions.118

Many chimeric gene partners of the FGFR family 
have been described.105 The FGFR1-HOOK3 and 
FGFR1-TACC1 chimeras have been described for 
cases of the gastrointestinal stromal tumor and glio-
mas.119 FGFR1-ZNF703 chimeric gene is found in 
breast cancer.120 The products of these chimeras 
include the N-terminal portion of the FGFR1 pro-
tein and the coiled coil motif at the C-terminal, 
which induces dimerization of the tyrosine kinase 
triggering various signaling cascades.

Among all family members, FGFR2 gene is more 
likely than others to form chimeras.118 As a result 
of the fusion, the normally prohibited activation of 
FGFR2 and the launch of various signaling cas-
cades also occur, which can stimulate oncogenesis. 
FGFR2 fusions are characteristic for cholangiocar-
cinomas, where they occur in 10–16% of the 
cases.121 Thus, in patients with cholangiocarci-
noma, the chimeric genes FGFR2–AHCYL, 
FGFR2–BICC1, FGFR2–PPHLN1, and FGFR2–
TACC have been identified and functionally char-
acterized.104 The chimeric FGFR2-CCDC6 gene 
can initiate the proliferation of cancer cells in 
vivo.122 Furthermore, more than a hundred of 
FGFR2 chimeric partners have been identified 
but not studied in detail. Such partners include 
KIAA1217, KIAA1598, DDX21, LAMC1, 
NRAP, NOL4, PHC1, RABGAP1L, RASAL2, 
ROCK1, TFEC, AFF4, CELF2, DCTN2, 
DNAJC12, DZIP1, FOXP1, INA, KCTD1, 
LGSN, and other genes.123 In addition to cholan-
giocarcinoma, chimeric FGFR2 genes are also fre-
quently found in colorectal cancer, lung cancer, 
and in hepatocarcinomas.124,125

In turn, FGFR3 fusions are characteristic for 
glioblastoma, lung, and bladder cancers.126 One 
of the best studied chimeras is FGFR3-
TACC3.115 The product of this chimeric gene is 
a fusion of the N-terminal region of the FGFR3 
with the coiled coil domain of TACC3.115 Coiled 
coil motif is located at the C-terminus of the 
protein and is normally involved in the forma-
tion and stabilization of the mitotic spindle.127 
The FGFR3-TACC3 fusion has been found in 
different types of cancer: in gliomas, in cancers 
of the lung, bladder, head and neck, and cer-
vix.125,128,129 The formation of this chimeric 
oncogene results in constitutive activation of the 
FGFR3 tyrosine kinase domain and, as a conse-
quence, activation of the MEK/ERK and STAT1 

signaling pathways.129 Also, the chimeric protein 
FGFR3-TACC3 is localized to the mitotic spin-
dle and induces errors in the chromosome segre-
gation process, thus resulting in the appearance 
of aneuploid cells in glioblastoma.115 In contrast, 
in bladder cancer cells, FGFR3-TACC3 chi-
mera inhibits TACC3 localization to mitotic 
spindle, thereby contributing to aneuploidy.116 
FGFR3 fusions with other genes have also been 
detected but have not been characterized in-
depth. For example, the product of the FGFR3–
BAIAP2L1 chimera was found in bladder and 
lung cancers, and the AES, ELAVL3, JAKMIP1, 
TNIP2, and WHSC1 genes are also known 
among the confirmed FGFR3 fusion 
partners.118,130

Fusions with FGFR genes are important prognos-
tic molecular markers. A study was made of tumors 
of the bile ducts: 152 cholangiocarcinomas and 4 
intraductal papillary mucinous tumors were ana-
lyzed by fluorescent in situ hybridization (FISH) for 
the presence of FGFR2 chimeras.131 Totally, 13 
tumors carrying FGFR2 translocations were found 
which showed statistically significantly longer over-
all survival: 123 versus 37 months for the patients 
without translocations.131 Similar results were 
obtained in a study of 377 patients with biliary tract 
cancer, of which 63 had FGFR2 chimeras.132

Neurotrophic TRK family gene fusions
The neurotrophic TRK (NTRK) family includes 
TRKA, TRKB, and TRKC proteins which are 
encoded by the NTRK1, NTRK2, and NTRK3 
genes, respectively.133 Normally, these tyrosine 
kinases play a pivotal role in neuronal survival 
and CNS plasticity.134

Various mutations of the NTRK family genes in 
cancer cells have been described leading to single 
nucleotide substitutions, amplifications, and 
abnormal splice isoforms.135 However, the forma-
tion of chimeric oncogenes is the most common 
mutation type that leads to increased kinase activ-
ity. NTRK gene sequences including a tyrosine 
kinase domain are usually located at the 3′ end of 
the chimeras, and are fused to the 5′ region of a 
partner gene.136 The product of the chimeric gene 
is an oncoprotein capable of activating the tyros-
ine kinase domain without the involvement of a 
ligand binding.137 Various NTRK chimeric 5′ 
partners are known, including ETV6, TPM3, and 
LMNA, yet their exact roles in the function of an 
oncoprotein have not been fully characterized.138
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NTRK fusion oncogenes were found in multiple 
types of cancer. At the same time, their occurrence 
is relatively low. The analysis of 13,467 adult and 
pediatric tumor samples from The Cancer Genome 
Atlas (TCGA) and St. Jude PeCan databases 
showed that the frequency of chimeric NTRK 
genes in the most common cancer types was less 
than 1%.139 Another study by Rosen and col-
leagues showed that, when present, functional chi-
meric NTRK genes are expressed from the very 
beginning until the most advanced stages of car-
cinogenesis, thereby indicating a ‘driver’ rather 
than a ‘passenger’ nature of the mutation.140

RET gene fusions
RET mutations such as amplifications, single 
nucleotide substitutions, insertions and deletions, 
and the formation of chimeric genes have been 
described in cancer cells. Chimeras with the 3′ RET 
moiety are more frequently detected and better 
described. In this case, the tyrosine kinase domain 
part is usually placed under the control of a stronger 
promoter, which leads to its overexpression.106 
Many 5′ fusion partners of RET have been 
described, of which the most common are CCDC6, 
NCOA4, and KIF5B.103,141,142 RET activation as a 
result of chimera formation can occur through dif-
ferent mechanisms. First, as already noted, the sub-
stitution of the 5′-part of RET for a gene fragment 
with a stronger promoter. Second, dimerization of 
RET tyrosine kinase domains due to fusion with 
partners providing a coiled-coil motif, as in the case 
of CCDC6 gene. As a result, ligand-independent 
kinase activation occurs.143 Also, oncogenic hyper-
activation of RET in a fusion is possible due to the 
loss of the autoinhibitory N-terminal region.130

ROS1, ALK, and MET gene fusions
ROS1 fusions.  ROS1 is a proto-oncogene encod-
ing a tyrosine kinase with unknown physiological 
function. The first ROS1 chimeric gene was found 
in the U118MG glioblastoma cell line in 1987.144 
Interestingly, the tyrosine kinase domain of ROS1 
has high structural identity with another RTK, 
ALK.78 Impaired expression of ROS1 is known 
for many cancer types, and at least 55 5′-terminal 
partners of the ROS1 chimeras were reported.145 
The frequency of occurrence of 5′-partners in the 
chimeras may depend on the cancer type. In par-
ticular, large heterogeneity of the 5′-partners is 
characteristic of glioblastoma, non-small-cell lung 
cancer (NSCLC), and of inflammatory myofibro-
blastic tumors. In NSCLC tumors, the most 

common 5′-partners for the ROS1 chimeras are 
CD74 (~44%), EZR (16%), SDC4 (14%), and 
SLC34A2 (10%).145

ROS1 chimeras are formed due to both intra- and 
interchromosomal rearrangements. For example, 
in glioblastoma, the chimeras are more often the 
result of intrachromosomal translocations, and in 
NSCLC, they are instead interchromosomal.146,147

The most common structure of the ROS1 chimera 
includes the loss of virtually the entire extracellular 
domain of ROS1 and the fusion with the 5′ part of 
the partner gene, retaining the open reading frame 
and a complete intracellular kinase domain.145 As 
before, the formation of chimeras usually results in 
ligand-independent, constitutive activation of the 
ROS1 tyrosine kinase domain. The intracellular 
localization of the chimeric ROS1 gene depends on 
the 5′-partner gene and influences the activation of 
specific signaling pathways. For example, the SDC4-
ROS1 and SLC34A2-ROS1 chimeras are localized 
in endosomes and activate the MAPK pathway 
more efficiently than the CD74-ROS chimera local-
ized in the endoplasmic reticulum.148 It was shown 
in mice models that the presence of the chimeric 
ROS1 gene alone may be sufficient to induce car-
cinogenesis. However, when combined with the loss 
of tumor suppressor p16Ink4a, this results in develop-
ment of a more aggressive tumor.149

ALK fusions.  Also, many tumors including large 
cell lymphoma, diffuse large B-cell lymphoma, 
glioma, NSCLC, colorectal cancer, breast, ovar-
ian, and esophageal cancer have chimeras with 
tyrosine kinase ALK.150 More than 90 5′-partner 
genes of ALK have been described,150–152. ALK 
translocations are not uncommon and are found 
in approximately 8% of all NSCLCs.153 As a 
result of structural rearrangements, the chimeras 
retain a full-fledged ALK tyrosine kinase domain 
at the C-terminus. As in other cases, dimerization 
of chimeras results in aberrant persistent kinase 
domain activity.154 ELM4-ALK is the most fre-
quent ALK fusion in NSCLC.155 ELM4 is a spin-
dle checkpoint protein required for the proper 
chromosome alignment and attachment of  
microtubules to the kinetochore.112 Accordingly, 
ELM4-ALK fusion inhibits spindle assembly 
checkpoint control, that is, inhibits cell cycle 
arrest in response to the paclitaxel and leads to 
the mitotic errors (Figure 2), 113,114 This effect is 
partially due to the kinase activity of ALK domain 
and, most likely, other oncogenic ALK fusions 
have acquired kinase activity as well.114
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MET fusions.  The MET gene is another important 
RTK-encoding proto-oncogene. The formation of 
chimeras with MET is a relatively rare event, but 
such products are found in various cancer types. 
The first described chimeric gene was TPR-MET.156 
The replacement of MET extracellular and juxta-
membrane domains containing regulatory regions 
by TPR two leucine zipper domains leads to a con-
stitutively dimerized and therefore activated Met 
kinase domain.156 The dimerization domains are 
essential for TPR-MET oncogene transforming 
activity, as well as the absence of MET extracellular 
and juxtamembrane domains.156 Similar to many 
other RTKs, the increased MET activity promotes 
activation of downstream intracellular pathways and 
signaling axes RAS-MAPK and PI3K-AKT.157

Structural rearrangements involving MET were 
detected in 0.5% of cases of NSCLC, 3% of glio-
blastomas, and isolated cases were described in 
secretory carcinoma of the salivary gland and 
pediatric fibrosarcoma.158–161 Several partners of 
MET chimeras have been described: the HLA-
DRB1, KIF5B, PTPRZ1, STARD3NL, and ST7 
genes.162 The stability and degradation of the 
MET receptor is regulated by an intracellular 
peri-membrane domain encoded by exon 14.163 
Interestingly, the formation of TPR-MEt  also 
resulted in the loss of exon 14 of MET without 
disturbing the reading frame. Mutations result-
ing in the loss of exon 14 in the MET mRNA 
occur in 3–5% of NSCLCs.164 This can be caused 
by both structural rearrangements and point 
mutations leading to splicing disorders.165 
Mutations are detected both in the intron region 
around exon 14 and directly in the splicing sites. 
After pre-mRNA maturation, a mutant MET 
receptor with an increased lifetime is then trans-
lated.163 These mutations are characteristic of 
lung adenocarcinomas; however, they are also 
found in other types of cancer: pulmonary sarco-
matoid (pleomorphic) carcinomas, squamous 
cell NSCLC, and less often in gliomas and other 
tumors.165,166

Application of protein fusion inhibitors in 
clinical practice
The recent findings revealed overall better 
response rate to the approved TKIs in patients 
with different target RTK fusion genes.167 Thus, 
development of new and broader testing of 
already approved drugs in more than 100 clinical 
trials targeting 26 gene fusions is currently under-
way (Table 2).

Accordingly, the presence of chimeric genes for 
RTKs is one of the key biomarkers facilitating the 
choice of therapy. For example, the drug larotrec-
tinib is approved by the US FDA for tumors har-
boring chimeric NTRK genes.168 Enterectinib is 
another drug with a similar profile of action, with 
somewhat broader activity85: it can also inhibit 
ROS1 and ALK chimeric products.130 In addi-
tion, broad-spectrum tyrosine kinase inhibitors 
were the first drugs to treat tumors with FGFR 
chimeras: dovitinib, lenvatinib, lucitanib, nint-
edanib, derazantinib, and ponatinib. In addition 
to their activity against FGFR, they can also 
inhibit VEGFR, RET, KIT, and PDGFR.

However, drugs with low specificity may cause 
more serious side effects.169 Therefore, more pre-
cise inhibitors have been developed that act spe-
cifically against mutations of FGFR family 
members, including fusion formations. Two 
selective inhibitors for the treatment of tumors 
with FGFR chimeric genes have been approved 
by the US FDA. Erdafitinib is approved for the 
treatment of urothelial carcinomas with FGFR2 
and FGFR3 mutations, which included the chi-
meric gene FGFR3-TACC3.170

Selective RET inhibitors pralsetinib (BLU-667, 
NCT03037385) and selpercatinib (LOXO-292, 
NCT03157128) in early-stage clinical trials of 
NSCLC with RET fusions resulted in 56% overall 
response rate for pralsetinib.88,89 LOXO-292 was 
recently approved by the US FDA for the treat-
ment of lung and thyroid cancers with RET driver 
mutations, with respect to fusions.171 In addition, 
cases have been described of the acquisition of 
drug resistance to tyrosine kinase inhibitors in 
tumors with EGFR mutations, which occurs as a 
result of structural rearrangements of RET.172 
This also highlights the importance of RET analy-
sis for selecting the optimal treatment strategy.

For the treatment of NSCLC with ROS1 rear-
rangements, crizotinib has been approved in mul-
tiple countries, with an overall response rate of 
65–80%.78 Crizotinib is also the first targeted 
drug for the treatment of tumors with ALK 
rearrangements.79

Entrectinib is an US FDA-approved drug for the 
treatment of NSCLC with ROS1 rearrange-
ments.84 Entrectinib is able to penetrate the 
blood–brain barrier, which is especially important 
in the treatment of tumors that have metastasized 
to the brain. Currently, clinical trials investigate 
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Table 2.  Drugs tested against neoplasms with gene fusions that are currently in clinical trials (clinicaltrials.org). Please refer to the 
website for complete information regarding treatment modalities and specific groups of patients in a specific clinical trial.

Cancer type Targeted drug(s) Fusion gene partner(s)* Clinical trial ID

AML Bosutinib monohydrate, decitabine, 
enasidenib mesylate, gilteritinib fumarate, 
glasdegib maleate, ivosidenib, venetoclax

BCR-ABL1 NCT04655391

Bladder cancer Neratinib HER2-GRB7 NCT01956253

Bladder cancer with mutation in FGFR3 
gene

Erdafitinib FGFR3 NCT04917809

Solid cancers with fusions of NTRK, ROS1, 
ALK genes

Entrectinib NTRK genes, ROS1, ALK NCT03066661

Cholangiocarcinoma E79 FGFR genes NCT04238715

Cholangiocarcinoma with mutations of FGF 
or FGFR genes

Futibatinib FGFR genes NCT02052778

Cholangiocarcinoma with mutations in 
FGFR2 gene

Infigratinib (BGJ398) FGFR2 NCT02150967

Cholangiocarcinoma with mutations in 
FGFR2 gene

Infigratinib (BGJ398), gemcitabine, 
cisplatin

FGFR2 NCT03773302

CML Imatinib withdrawal, dasatinib, nilotinib BCR-ABL1 NCT04147533

CML Dasatinib, nilotinib BCR-ABL1 NCT03079505

CML LBH589 BCR-ABL1 NCT00451035

CML PF-114 BCR-ABL1 NCT02885766

CML, ALL Nilotinib BCR-ABL1 NCT01077544

Clear cell sarcoma AMG 337 EWSR1-ATF1 NCT03132155

Epithelioid hemangioendothelioma Trametinib TAZ-CAMTA1 NCT03148275

Fibrosarcoma with NTRK fusion Larotrectinib, standard of care NTRK genes NCT05236257

Glioblastoma, IDH-wildtype Metformin and radiation therapy, 
temozolomide

FGFR3-TACC3 NCT04945148

Glioma PLB11 PTPRZ1-MET NCT02978261

Intrahepatic cholangiocarcinoma Derazantinib FGFR genes NCT03230318

Malignant hepatobiliary neoplasm Ponatinib hydrochloride FGFR2 NCT02265341

Myeloproliferative disorders Imatinib PDGFR NCT00038675

Non squamous lung cancer Crizotinib ALK NCT01154140

Non-squamous, NSCLC Afatinib NRG1 NCT04750824

NRG1-rearranged malignancies Afatinib NRG1 NCT04410653

NSCLC TPX-131 ALK NCT04849273

NSCLC Tarloxotinib bromide ERBB NCT03805841

NSCLC Pemigatinib FGFR genes NCT05210946

NSCLC Toripalimab injection combined with 
axitinib

negative: EGFR mutation, 
ALK, and ROS1 fusions

NCT04459663

(Continued)
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Cancer type Targeted drug(s) Fusion gene partner(s)* Clinical trial ID

NSCLC Tarloxotinib bromide NRG1, ERBB NCT03805841

NSCLC XZP-5955 tablets NTRK genes NCT04996121

NSCLC Apatinib single agent arm RET NCT02540824

NSCLC Vandetanib RET NCT01823068

NSCLC Cabozantinib RET, ROS1, NTRK genes NCT01639508

NSCLC AB-16 ROS1 NCT04395677

NSCLC with ALK and ROS1 aberrations Carboplatin + Pemetrexed +  
Atezolizumab + Bevacizumab,  
Carboplatin + Pemetrexed + Atezolizumab

ALK, ROS1 NCT04042558

NSCLC PF-234166 ALK NCT00932451

NSCLC Selpercatinib, placebo RET NCT04819100

NSCLC with ALK rearrangement Crizotinib ALK NCT02201992

NSCLC and thyroid neoplasms LOXO-26 RET NCT05241834

NSCLC and thyroid neoplasms LOXO-26 RET NCT05225259

Ovarian cancer and carcinosarcoma Pamiparib ABCB1 NCT03933761

Pancreatic cancer Seribantumab NRG1 NCT04790695

Prostate cancer Cytarabine ETS NCT00480090

Prostate cancer ESK981 ETS NCT03456804

Prostate cancer Androgen deprivation therapy TMPRSS2-ETS NCT02303327

Prostate cancer Enzalutamide TMPRSS2-ETS NCT02288936

Prostate cancer Enzalutamide, abiraterone, carboplatin, 
cabazitaxel, docetaxel, radium chloride 
Ra-223, niraparib plus abiraterone 
acetate plus prednisone

RET NCT03903835

Recurrent IDH-wildtype glioma with  
FGFR(1-3)-TACC3 fusion

AZD4547 FGFR(1–3)-TACC3 NCT02824133

Renal cell carcinoma with Xp11.2 
translocation and TFE3 fusion

Cabozantinib, sunitinib TFE3 NCT03541902

Renal cell carcinoma with Xp11.2 
translocation and TFE3 fusion

Axitinib, nivolumab TFE3 NCT03595124

Solid tumors Debio 1347 EGFR NCT03834220

Solid tumors Derazantinib EGFR NCT01752920

Solid tumors Erdafitinib FGFR NCT04083976

Solid tumors HMBD-1 NRG1 NCT05057013

Solid tumors Seribantumab NRG1 NCT04383210

Solid tumors AB-16 NTRK genes NCT04617054

Solid tumors Entrectinib NTRK genes NCT02568267

Solid tumors ONO-7579 NTRK genes NCT03182257

(Continued)

Table 2.  (Continued)
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Cancer type Targeted drug(s) Fusion gene partner(s)* Clinical trial ID

Solid tumors DS-651b NTRK genes, ROS1 NCT02675491

Solid tumors BOS172738 RET NCT03780517

Solid tumors KL59586 RET NCT05265091

Cholangiocarcinoma Infigratinib EGFR NCT04233567

NSCLC with RET rearrangements Pralsetinib RET NCT03037385

Solid tumors Pembrolizumab EGFR, ALK, ROS1 NCT03049618

Solid tumors Afatinib NRG1 NCT05107193

Solid tumors with NTRK gene fusions Larotrectinib NTRK genes NCT02576431

Solid tumors with NTRK, ROS1, ALK gene 
fusions

SIM183-1A NTRK genes NCT04671849

NF2-deficient solid tumors with YAP1, TAZ 
gene fusions

IK-93 YAP1, TAZ genes NCT05228015

CNS tumors Entrectinib FGFR genes NCT02650401

Solid tumors with FGFR alterations E79 FGFR genes NCT04962867

Solid tumors with NTRK gene fusions Larotrectinib NTRK genes NCT03025360, NCT04945330, 
NCT02637687, NCT02122913, 
NCT04142437, NCT05192642

Solid tumors with NTRK gene fusions Selitrectinib NTRK genes NCT03206931, NCT04275960, 
NCT03215511

Thyroid cancers with PAX8-PPARG fusion Pioglitazone PAX8-PPARG NCT01655719

Upper tract urothelial carcinomas, 
urothelial bladder cancer

Infigratinib FGFR genes NCT04197986

Urothelial carcinoma AZD4547 FGFR2/3 NCT05086666

*Some rows of the column contain only one fusion gene in case the clinical trial was conducted regardless the second fusion partner gene.
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; FGFR, fibroblast growth factor receptor;  
NSCLC, non-small-cell lung cancer.

Table 2.  (Continued)

the activity of entrectinib against tumors with 
ROS1 fusions regardless of the cancer type. It was 
possible to observe objective responses, for exam-
ple, even for the cases of melanoma and high-
grade gliomas.173,174

Crizotinib, ceritinib, alectinib, brigatinib, and lor-
latinib are approved by the US FDA for the treat-
ment of ALK chimeric lung cancer. Response to 
ALK-inhibiting therapy has also been described 
in studies on renal cell and colon cancers.173 Of 
note, a retrospective clinical study showed that 
progression-free survival after treatment of ALK-
positive NSCLC depends on the 5′-partner of the 
chimera with the 3′-part of ALK.175 However, the 
partner genes of the ALK chimeras are not 

currently routinely taken into consideration when 
prescribing therapy.

In addition, the drugs capmatinib and tepotinib 
have recently been approved for the treatment of 
NSCLC with MET mutations resulting in exon 
14 skipping.175

Experimental methods for identification  
of fusion oncogenes
Identification of fusion oncogenes is a non-trivial 
task because there are many alternative methods 
available that can produce results which may con-
tradict each other (Table 3). It is important, 
therefore, to carefully select method(s) of choice 
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for the experimental testing considering availabil-
ity of biomaterials, costs, equipment, high 
throughput, time of analysis, and even complexity 
of bioinformatic data interpretation.

Fluorescent in situ hybridization
FISH is a method based on the hybridization of 
labeled specific DNA probes. It allows detecting 
changes in the number of chromosomes, gene 
fusions, loss of a chromosomal locus or an entire 
chromosome in both fresh and fixed tumor tissue 
samples.176 For example, FISH is used to detect 
amplifications of the ERBB2 gene for Her2 pro-
tein, an important prognostic marker for breast 
cancer.177 FISH is also a standard method for 
detecting the Philadelphia chromosome in 
chronic myeloid leukemia.178 In particular, probes 
for loci that are contiguous in the absence of rear-
rangements are used to detect translocations. The 
signal from the native chromosome will be a pair 
of closely spaced color signals, whereas in the case 
of rearrangement, the two colors are separated in 
space.179

The chimeric EML4-ALK gene is a characteristic 
biomarker of lung adenocarcinoma. Routine 
detection of this well-known translocation can 
also be performed using the FISH method.180 
Likewise, FISH is used to detect known rear-
rangements of the ETV6 gene in secretory carci-
noma and pediatric fibrosarcoma specimens.181 A 
number of laboratories use this approach to detect 
NTRK gene rearrangements and other fusions 
such as the FGFR3-TACC3 chimeric onco-
gene.182,183 Nevertheless, FISH diagnostics does 
not provide information about the functional 
activity of translocations including preservation of 
an open reading frame and expression level and 
does not allow detection of the non-canonical or 
unknown rearrangements. In addition, this 
method is poorly sensitive to the detection of local 
intrachromosomal rearrangements that are char-
acteristic of FGFR2 fusion genes.184

Immunohistochemistry
Immunohistochemistry ((IHC) method is simple, 
does not require complex equipment, is relatively 
affordable, and fast in execution. In addition, reli-
able results can be obtained using a relatively 
small amount of starting material. The use of 
IHC has been approved by the US FDA for the 
detection of ALK rearrangements in lung cancer 
samples for selection of patients for treatment 

with ALK-targeted therapy.185 Also, a ROS1-
specific monoclonal antibody is used to detect 
ROS1 rearrangements by the IHC.186

Apparently, IHC method detects not the chimeric 
gene products themselves, but rather the expres-
sion level of the respective tyrosine kinase domain. 
Thus, increased IHC signal can be registered also 
due to stronger expression of the whole, non-
fusion RTK gene which still can be targeted by 
the respective specific drug(s). Although this 
method is easy to perform and inexpensive, its 
accuracy may be reduced due to technical issues 
arising from tissue fixation, or other pre-analyti-
cal variables.187 Specifically, comparisons of IHC 
with FISH and next-generation sequencing 
(NGS) methods for screening of ALK rearrange-
ments in lung cancer resulted in prevalence of 
ALK-positive samples tested by IHC.188–190 
Furthermore, most of IHC-positive and FISH-
negative samples were shown to be negative by 
NGS, thus supporting the hypothesis of frequent 
misleading detection of mutations other than 
fusions (e.g. amplifications) using IHC.189 
However, some patients who were FISH negative 
but IHC positive for ALK fusion showed com-
plete or partial responses to ALK-targeted ther-
apy, thus supporting the relevance of IHC 
application in practice190 and clinical importance 
of other factors, such as the overexpression of 
ALK.191

PCR-based methods
PCR-based methods are widely used both for the 
diagnosis and for the prognosis and treatment of 
cancer. Also, reverse transcription PCR is a 
standard method for confirming the presence of 
chimeric transcripts resulting from structural 
rearrangements of chromosomes.178,180 Several 
kits are commercially available to detect NTRK, 
ALK, Ret, and ROS fusions in formalin-fixed 
paraffin-embedded (FFPE) RNA by the multi-
ples real-time PCR using mutation-specific prim-
ers and/or hybridization probes with about 1% or 
more sensitivity and 100% specificity. Detection 
of 22 fusion genes in AML patients RNA using a 
commercial quantitative PCR kit demonstrated 
99% concordance with cytogenetic analysis.192 
Nonetheless, an agarose gel electrophoresis was 
used for measurements of multiple EWSR1-ETS 
and FUS-ETS fusions in Ewing sarcoma by mul-
tiplex RT-PCR (Ueno-Yokohata et al. 2021). In 
turn, high-resolution capillary electrophoresis 
was used to detect 9 fusion transcripts in the 
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single multiplex reaction.193 Intriguingly, out of 
122 patients examined, abnormal size was 
detected for one sample due to a rear deletion of 
the ETV6 exon 5 within ETV6-RUNX1 chimeric 
gene. Interestingly, RT-PCR was used in Idylia 
GeneFusion assay to detect fusion products of the 
NTRK gene without knowledge of the fusion 
partner by measuring an imbalance between 5′ 
and 3′ end of the gene.194 The Idylia GeneFusion 
assay is basically a device that automatically 
extracts RNA and performs expression analysis 
directly from the samples including fresh and 
FFPE samples. The data demonstrated good 
concordance between Idylia GeneFusion, IHC, 
and RNA-seq based Oncomine Focus Assay. 
Another method, droplet digital multiplied PCR, 
measures the presence of RNA in small droplets, 
and each of them encompasses a single RNA mol-
ecule, allowing ‘YES-NO’ quantification of PCR 
results. Thereby, RNA is measured by counting 
positive and negative droplets. This method was 
recently used to measure gene fusions from as lit-
tle as 1 pg of RNA with great success.195,196

To conclude, traditional and novel PCR-based 
tools represent a gold standard for fusion detec-
tion in cancer and are widely used in clinical prac-
tice, research, and development.

NGS methods
NGS is an increasingly common method for ana-
lyzing tumors. It has a number of advantages over 
the approaches listed above. Thus, NGS is a more 
accurate and sensitive method that allows one to 
analyze various genetic variants in one experi-
mental procedure, eliminating the need to con-
duct multiple tests in sequence to identify 
significant biomarkers, thereby significantly 
reducing the time for selecting therapy.5,197–199 It 
should be noted that in order to obtain informa-
tive results, NGS technologies require a mini-
mum amount of tumor material; they are also 
able to capture DNA variants present in a minor-
ity of cells.200 To date, many approaches have 
been proposed for the detection of molecular 
markers of tumors based on NGS. Although 
whole genome studies are not widely used in clin-
ical practice, in particular due to their high cost, 
whole exome analysis, gene panel analysis, and 
whole transcriptome technologies are increasingly 
used in the selection of cancer therapies. Methods 
based on NGS have been developed to search for 
single nucleotide substitutions, deletions, and 

duplications of genes, to assess the mutation load 
of tumors, structural rearrangements of chromo-
somes, as well as to analyze the level of expression 
of clinically significant genes and to detect chi-
meric transcripts.201,202

Several clinical trials investigating applicability of 
NGS for prognosis and ultimately for treatment 
decision can be mentioned including Strata PATH 
(NCT05097599), GITIC Study (NCT02013089), 
The MATCH Screening Trial (NCT02465060), 
MyTACTIC (NCT04632992), and BALLETT 
(NCT05058937). The methodology for detection 
of mutations used in these studies is based on the 
NGS. The aim of these studies was formulated as 
to determine the presence of molecular targets for 
the approved drugs (including gene fusions) and 
to verify whether patients will benefit more from 
the targeted treatment.

DNA sequencing.  Whole genome sequencing 
(WGS) is the most comprehensive platform for 
genome profiling.203 The method has potential to 
identify the genomic locations of all known and 
currently unknown fusion events.204 However, 
application of WGS in tumor biology is nowadays 
limited to research field due to high costs, lack of 
standardization, and median turnaround times.

Methods based on whole exome sequencing 
(WES) are used to detect deletions and duplica-
tions of genes, assess the mutational load of 
tumors, and determine the MSI status.205 Whole 
exome studies mainly cover only coding regions 
of the genome (less than 2%), which provides a 
reduced cost compared to whole genome analysis 
with sufficient coverage. Despite technical diffi-
culties, the method is widely used to determine 
various changes in the genome. For example, sev-
eral approaches have been developed to detect 
changes in the copy numbers of specific genome 
regions [copy number aberration (CNA)] using 
sequencing data.206 Perhaps the optimal approach 
for the analysis of WES data for CNA is measur-
ing of the sequencing depth of different genome 
regions.206 If, after normalization, an imbalance 
in the number of reads in certain part(s) of the 
genome is detected, then this can be interpreted 
as a marker of a copy number alteration in the 
corresponding chromosomal region(s).206 
However, this algorithm cannot detect fusion 
genes. Moreover, WES as a basis for fusion detec-
tion tool has a strong technical limitation, namely 
its focus on gene exons, whereas most of fusion 
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junctions are located in introns. Thus, WES 
capacity to detect fusion breakpoints is strongly 
limited. Indeed, the attempt to develop fusion 
detection tool based on WES data showed lower 
sensitivity compared to RNA-seq-based 
approach.207

To detect structural rearrangements of chromo-
somes that lead to the formation of chimeric 
genes, a number of targeted DNA sequencing 
approaches have also been developed. Thus, the 
panel to detect both known and not yet described 
chimeric genes for regulatory kinases ALK, ROS1, 
RET, BRAF, MET, FGFR1-3, and NTRK1-3 
has been developed. The panel consists of DNA 
probes labeled with biotin that are complementary 
to the intron and exon sequences of the genome, 
which are known breakpoints in the formation of 
chimeric genes.208 Similar approaches have been 
used in commercial panels to search for chimeric 
genes from different manufacturers. Most fusions 
occur in intron sequences, which often contain 
repetitive sequences, such as insertions of trans-
posable element, and are sequenced less efficiently 
than coding sequences.209 This leads to false-neg-
ative results when the presence of the chimeric 
gene is confirmed by another method, for exam-
ple, FISH or RNA sequencing.

Davies et  al. compared three approaches for 
detecting rearrangements of ROS1 gene in lung 
cancer.210 Targeted DNA sequencing did not 
detect 4 out of 18 chimeric genes confirmed by 
alternative approaches. The authors attribute 
false-negative results to specific structural fea-
tures of specific introns.

Also, Benayed et al. analyzed the quality of chi-
meric genes detection using DNA sequencing 
panels.211 14% of tumors with confirmed chi-
meric genes for clinically relevant tyrosine kinases 
were not detected when analyzed by the US FDA 
approved MSK-IMPACT panel, which is based 
on biotinylated oligonucleotides to capture 
genomic sequences of interest. False-negative 
results are also associated with the structural fea-
tures of introns.

Sequencing of circulating cell-free DNA.  Sequenc-
ing of circulating cell-free DNA from plasma of 
cancer patients revealed the presence of muta-
tions characteristic for tumor DNA.212 Sequenc-
ing of cell-free DNA from plasma of NSCLC 
patients with ALK mutation revealed acquisition 

of additional mutations in ALK and co-occurring 
amplification of MET1,162 KRAS amplification, 
and a PI3KCA E545K mutation.213,214 This 
method requires prompt isolation of plasma for 
DNA extraction and permits non-invasive and 
cheap monitoring of cancer patients.

RNA sequencing.  RNA sequencing is a method 
that has several advantages over DNA-based 
approaches. This approach has been proven infor-
mative for analyzing the expression level of vari-
ous genes associated with the effectiveness of the 
response to anticancer drugs,215 activation or 
inhibition of various molecular pathways.202,216,217 
Approaches for the analysis of the mutational 
load of tumors according to full transcriptome 
analysis are also described.197,218 Therefore, the 
use of RNA sequencing makes it possible to assess 
the manifestation of various clinically important 
biomarkers in one experimental procedure.

The detection of chimeric transcripts has a num-
ber of advantages over DNA sequencing 
approaches. For example, when analyzing tran-
scriptomic profile data, only transcriptionally 
active chimeric genes are identified, thereby filter-
ing in only those fusions that might be the drivers 
of cancer progression and leaving out the passen-
ger mutations. Second, in such a way both parts 
of a fusion gene can be identified at once – equally 
effective for both known and previously unknown 
fusions. Third, integrity of an open reading frame 
can be easily assessed, as well as the presence of a 
kinase domain in the chimeric gene product.

Targeted RNA sequencing.  A variety of targeted 
panels have been proposed to search for both 
known and novel chimeric transcripts using RNA 
sequencing. Two approaches are widely used: 
selection of genes of interest by hybridization of 
cDNA with oligonucleotides labeled with biotin 
and complementary to exons of the target genes; 
or enrichment of libraries by PCR with specific 
primers complementary to the exon boundaries 
of the genes of interest and the universal adapter 
sequence (Figure 3).219,220

In a recent study, Heydt et  al. compared four 
RNA sequencing and one DNA-sequencing-
based targeted panels for the detection of chi-
meric genes from cell lines and FFPE tumor 
samples.208 As in the studies described above, the 
DNA-based approach appeared to be less sensi-
tive, producing more false negatives in the 
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analysis of biopsies. Among the alternative RNA 
analytical panels, three were enriched by amplifi-
cation: Archer FusionPlex Lung Panel 
(ArcherDX), QIAseq RNAscan Custom Panel 
(Qiagen), and Oncomine Focus Assay (Thermo 
Fisher Scientific). In turn, TruSight Tumor 170 
Assay (Illumina) is based on hybridization of tar-
get sequences with biotinylated oligonucleotides. 
The best results were obtained for the TruSight 
Tumor 170 Assay (Illumina), which detected all 
chimeric transcripts in the samples under analy-
sis. The single false-negative signal was observed 
in the results of ArcherDX and Qiagen panels; 
however, Qiagen panel returned more false-posi-
tive chimeras. The Thermo Fisher Scientific assay 
did not find 7 chimeric genes out of 18. The low 
sensitivity of the last panel is explained by the fact 
that the approach is based on classical PCR: both 
primers are complementary to known sequences 
of chimeric transcripts, which makes it impossible 
to detect chimeras that were never described pre-
viously and not included in the panel design. 
Thus, in general, RNA sequencing approaches 
are technically more effective than DNA analysis 
for the detection of chimeric oncogenes.208

Methods for generation of sequencing libraries 
enriched in regions close to susceptible chimeriza-
tion point are highly sensitive, especially for the 
detection of known structural rearrangements. 
However, this approach is limited by the set of 
probes available in the targeted panels, which does 
not allow detecting in such a way rearrangements 
at previously unknown loci. Also, the use of panels 

limits the set of biomarkers that can be analyzed in 
one experimental procedure. These shortcomings 
are devoid of total RNA or mRNA sequencing.

Whole transcriptome RNA sequencing for detec-
tion of fusion genes.  Genome-wide RNA sequenc-
ing evaluates mutations of the transcribed DNA 
in an unbiased manner. A number of approaches 
have been proposed for the detection of chimeric 
transcripts in the analysis of full-transcriptome 
data. There are two main directions to the analy-
sis of the RNA sequencing data for the detection 
of chimeric transcripts: (i) alignment of reads per 
genome and search for those reads that map to 
different loci or (ii) initial assembly of reads into 
long transcripts followed by a search for chimeras 
that do not map entirely to one genome region 
(Figure 4).222

In search for chimeric transcripts, Haas and col-
leagues used both approaches to compare 23 ana-
lytic algorithms.222 The authors showed that the 
sensitivity of methods based on primary align-
ment is higher than for the approaches based on 
assembly of reads. The best analytic tools identi-
fied were STAR-Fusion, Arriba, and STAR-
SEQR. It is important to note that algorithms for 
searching of the chimeric reads have been devel-
oped primarily for the analysis of cell lines and 
fresh frozen biopsies.223,224 Most of the work 
devoted to assessing their quality was carried out 
on artificial data, or again data obtained from cell 
lines and fresh frozen biopsies.225,226 However, 
paraffin-embedded biopsies fixed in formalin are 

Figure 3.  Methods for enrichment of sequencing libraries with specific cDNA targets. (a) Enrichment of the 
library by hybridization to biotinylated oligonucleotide. (b) Enrichment of the library by PCR with a specific 
primer (modified, according to Kozarewa et al.221 Zheng et al.220).
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the most common type of biomaterial in clinical 
practice, which is stored in collections for a long 
time.227,228

However, RNA in paraffin blocks is more 
degraded due to the fixation and storage proce-
dures, which can lead to more false-negative 
results when searching for chimeric transcripts 
from the RNA sequencing data using existing 
algorithms. Validation of the work of the studied 
algorithms for this type of biomaterial has not yet 
been published.

Analysis of gene fusions from the FFPE material by 
RNA-seq.  The use of DNA and RNA from archi-
val material for genome-wide studies attract 
researchers’ attention for a long time and it was 
initially demonstrated that about 80% of genes, 
expressed in the fresh tissue can be detected in 
the FFPE samples by microarrays.229,230 Since 
then, we have witnessed considerable progress in 
the field and more recent investigations of RNA 
from paraffin blocks for gene expression analysis 
using microarrays231 and sequencing228,232–234 
revealed sufficient quality of RNA obtained from 
the FFPE samples to generate reproducible data 
consistent with RNA from the unfixed material. 
Furthermore, specific features such as conserva-
tion of open reading frame in both fusion part-
ners, presence of RTK domain, and finding of 
several non-duplicate transcript reads for a fusion 
were shown as the efficient criteria for discrimi-
nating true versus artifact fusion reads in FFPE-
derived RNA sequencing data.235

Indeed, despite the absolute gene expression lev-
els being not necessarily the same, very similar 
pathways were overrepresented within dysregu-
lated genes obtained from the FFPE and freshly 

extracted RNA,232,233 thus demonstrating consist-
ency with IHC studies.236,237

Fusion transcript detection by RNA-seq from 
FFPE samples was recently reviewed, focusing on 
the experimental variables; however, the difference 
in bioinformatics approaches of fusion transcript 
detention was not discussed.238 Gene fusions were 
detected by RNA sequencing in 7 out of 8 cases of 
DNA-fusion positive fibrous histiocytomas.239 
Interestingly, comparison of ChimeraScan with 
TopHat software used in this study revealed better 
sensitivity of the former (9 versus 5 fusion tran-
scripts detected) suggesting that detailed analysis of 
the software applications for the fusion transcript 
detection is needed.239 It was shown that RNA-seq 
from the FFPE clinical material detects fusions 
with 94% (43 out of 46 fusions) concordance with 
DNA fusions, and one ST7-MET fusion was 
detected only by RNA-seq.240

Analysis of single-cell RNA sequencing.  High-
throughput sequencing technology made single-
cell RNA (scRNA) or DNA analysis possible at 
an unprecedented scale. Lately, several consor-
tiums published aggregations and the analysis of 
the scRNA sequencing data.241–243

Functional enrichment analysis distinguishes 
different cell types as well as cancer cells, which 
also can be distinguished by the mutations and 
copy number variations typically observed in 
cancer,244

Importantly, single-cell sequencing characterizes 
not only cancer cells, but also immune cells infil-
trating the tumor. And, analysis of this data might 
reveal information which is relevant to tumor pro-
gression and treatment strategies. For example, 

Figure 4.  Scheme of operation of algorithms based on alignment (left) and primary assembly (right) 
(according to Haas et al.,222 modified).
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sequencing of the T-cell receptor repertoire from 
glioblastomas treated by vaccination with heat 
shock protein peptide complex-96 identified 
dominant T-cell clones that reside in glioblasto-
mas before treatment and stratify patients that are 
more sensitive to therapy.245

Various methods have been developed to analyze 
gene expression of single cancer cells and to dis-
sect their molecular subgroups.246 Finding of 
gene fusions at single cell level can potentially 
shed light on specific features of cells and their 
subtypes. Several algorithms for fusion identifica-
tion in bulk RNA-seq data have been devel-
oped,222,247 but detection of fusions on single cell 
level is still largely unsolved task. Indeed, the 
ambiguous and complicated library preparation 
steps result in generation of artificial chimeric 
reads and significant increase in the number of 
false-positive results. Moreover, the probability to 
detect fusion present in many cells is higher using 
bulk methods. Thus, several approaches both for 
sample preparation and for data analyses stages 
have been proposed. For example, using full-
length scRNA-seq method enabled to detected 
and experimentally verify more gene fusions in 
scRNA-seq data than in bulk RNA-seq data for 
HeLa S3 cells.248 These results were congruent 
with the finding published by another group of 
authors who could identify well-known as well as 
potential new fusion in colon cancer samples 
solely on single cell level.249 However, experimen-
tal verification could not be performed here; thus, 
the increased number of fusions might at least 
partly represent artifacts of library preparation.249 
Another attempt to increase sensitivity of fusion 
detection at single cell level is to include specific 
primers targeted for the genes of interest.250 This 
approach increased sensitivity of BCR-ABL1 
detection in chronic myeloid leukemia cells.250 
However, this method is suitable only for the 
analysis of known fusions.

A more recent algorithm called scFusion was 
published for improving data analysis step.251 
This method utilizes both statistics and a deep 
learning model to exclude false-positive results. 
The algorithm also relies on the hypothesis that 
cells collected from one sample are more likely 
to contain the same gene fusions.251 This limits 
its ability to detect rare or low expressed fusions, 

especially in highly heterogenous samples. 
Overall, scFusion requires greater sequencing 
depth as well as sequencing of larger amounts of 
cells from the same sample for obtaining reliable 
results. Analysis of the single-cell DNA sequenc-
ing of the NSCLC cohort enrolled in the 
MATCH-R (NCT0251782) trial that developed 
osimertinib resistance revealed heterogeneity of 
acquired mutations in the cells including 
FGFR3-TACC3, KIF5B-RE, and STRN-ALK 
fusions that can be treated by existing drugs, 
thus suggesting possible treatments to overcome 
osimertinib resistance.252 Similarly, RNA 
sequencing revealed that ALK junctional hetero-
geneity in NSCLC may predict resistance to cri-
zotinib.253 Likewise scRNA-seq of chemoresistant 
cervical cancer revealed induction of the (PI3K)/
AKT pathway.254 Thus, it is possible to infer the 
mechanisms of acquired resistance and to moni-
tor clonal changes of tumors in response to 
therapy.

Detection of fusions at single cell level can 
improve distinguishing cells subpopulations, thus 
shedding light on drug-resistant subclones in a 
tumor. However, this type of analysis still has 
strong limitations such as low coverage per indi-
vidual cells, high PCR amplification bias and lack 
of standardization in data analysis.

Fusion oncogene databases
The fast growth of gene fusion data necessitates 
major organizational effort to gather them in the 
databases, and there is currently nearly a dozen of 
published databases of cancer fusion genes. Table 4 
summarizes the common databases that are spec-
ified for fusion genes. One of the first databases 
designed to catalog gene fusions is the Mitelman 
database of chromosome aberrations and gene fusions 
in cancer that was first published in 1994. This 
database is supplemented with clinical associa-
tion information that relate cytogenetic and 
genomic abnormalities, in particular gene fusions, 
to tumor characteristics or patient prognosis, 
based either on individual cases or associations. 
The database is searchable by a wide variety of 
fields, such as patient age, publication authors, 
gene, tumor histology, tissue type, mutation 
recurrence, associated clinical features, and can-
cer types.255
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Table 3.  Summary of advantages and disadvantages of common methods for detection of gene fusions.

Method Advantages Disadvantages References

FISH Diagnostic gold standard, high 
sensitivity and specificity

Laborious. Visual quantification, 
difficult to automate, requires pre-
defined knowledge of fusions. Low 
resolution, problematic detection of 
fusions within the same chromosome. 
Cannot detect fusions with novel 
partners

Thompson et al.,176 
Nguyen et al.,177 Ali 
et al.,178 Cruz-Rico 
et al.,180 De Luca et al.,184

IHC Common detection method Detects protein overexpression, but 
not fusions

Thorne-Nuzzo et al.,185 
Boyle et al.,186 Shia.256 
Zhang.257

RT-PCR methods Diagnostic gold standard, 
excellent sensitivity and 
specificity, widely accepted 
and cheap. Easy to multiplex 
and automate. Straightforward 
interpretation, best suited for 
clinical laboratory analysis

Requires information about location of 
fusion breakpoint. Cannot detect novel 
fusions

Ali et al.,178 Cruz-Rico 
et al.,180 Lyu et al.,192 
Sorber et al.,194 Abbou 
et al.,195 Shelton et al.196

DNA sequencing of 
tumors

Allows unbiased detection of 
mutations and fusions. Covers 
both transcribed and non-coding 
regulatory elements of the 
genome. For example, allows 
detection of an active promoter – 
oncogenic transcript fusions

All NGS methods require 
bioinformatics support. Analytical 
methods are not standardized yet. 
Detects expressed and non-expressed 
fusions. The whole genome deep 
sequencing is still expensive. Lower 
sensitivity compared to RNA-seq-
based assays

Gerstung et al.,258 ICGC/
TCGA Pan-Cancer 
Analysis of Whole 
Genomes Consortium,72 
Zhang et al.259

Circulating cell-free DNA 
sequencing

Minimally invasive analysis of 
tumor DNA for monitoring of the 
disease. Straightforward DNA 
extraction from serum

Relatively high frequency of false-
negative results. Accurate sample 
preparation is needed. Plus, the above 
disadvantages of DNA sequencing 
methods

Hofman,212 Dagogo-Jack 
et al.,162 Blaquier et al.,213 
Leighl et al.214

Targeted DNA/RNA 
sequencing

Relatively high-throughput with 
high coverage of target fusion 
sites

Collects only information about tested 
regions and/or fusion types

Heydt et al.,208 Gasc 
et al.,219 Zheng et al.220

Bulk RNA-seq Allows detection of known and 
novel fusions and the presence 
of an ORF for possible protein 
expression. Filters out passenger 
mutations. Permit analysis 
of archived FFPE samples. 
Relatively cheap and achieve high 
coverage. Allows high throughput. 
Simultaneously measures level of 
gene expression

May require further standardization. 
Can be technically challenging

Sorokin et al.,5 Sorokin 
et al.,197 Winters et al.,225 
Peng et al.240

Single-cell RNA-seq Measures clonality of tumors. 
Independently measures gene 
expression and T-cell receptor 
heterogeneity of immune cells 
and quantity and gene expression 
of other non-cancerous cells

Requires additional equipment 
for single-cell library preparation. 
Relatively expensive and requires 
extensive bioinformatics support. 
Low coverage in terms of reads per 
single cell, so very low sensitivity of 
fusion detection. Clinical benefit is 
questionable

Rozenblatt-Rosen 
et al.,241 Zeng et al.,242 
Nieto et al.,243 Amir 
et al.,260 Becht et al.,261 
Maynard et al.244

FFPE, formalin-fixed paraffin-embedded; NGS, next-generation sequencing; ORF, open reading frame.
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Table 4.  Databases of gene fusions.

Database name and 
URL

Description Database size Source of data Reference

Mitelman https://
mitelmandatabase.isb-
cgc.org

Relates gene fusions and other 
chromosomal aberrations to tumor 
characteristics, based either on 
individual cases or associations

Total number of unique gene 
fusions 32,962, Total number 
of genes involved 14,016 as for 
April 2022

Manual curation of 
literature

Denomy et al.255

COSMIC: the Catalogue 
Of Somatic Mutations In 
Cancer https://cancer.
sanger.ac.uk

Catalog of translocations and 
fusions between gene pairs 
supplemented with extensive clinical 
data

19 368 Gene Fusions as for 
August 2018

Manual curation of 
literature

Tate et al.,262

TumorFusions: TCGA 
Fusion Gene Data portal 
https://tumorfusions.
org/

An integrative resource for cancer-
associated transcript fusions giving 
a landscape of cancer-associated 
fusions using the pipeline for RNA 
sequencing data analysis

Total fusion called across 
multiple cancer types is 20731 
as of July 2017

Integrated analysis of 
RNA-seq and DNA-seq 
data from TCGA

Hu et al.,263 
Yoshihara et al.264

ChimerDB http://www.
kobic.re.kr/chimerdb/

Fusion transcripts across multiple 
species knowledgebase and 
information on cancer breakpoints

67 610 fusion gene pairs, of 
which 1597 fusion genes with 
publication support as for 
November 2019

Sequencing data from 
TCGA and PubMed 
publications curation

Jang et al.265

ChiTaRS http://chitars.
md.biu.ac.il/

Catalogue of fusion transcripts 
in humans, mice, fruit flies, 
zebrafishes, cows, rats, pig and 
yeast using RNA-seq data

111,582 fusion transcripts in 
humans, mice, fruit flies, rats, 
zebrafishes, cows, pigs, and 
yeast as for 2019

EST and mRNA 
sequences analysis 
from NCBI/GenBank and 
review of publications by 
Mertens et al. and from 
the Mitelman collection

Balamurali et al.266

FusionCancer http://
donglab.ecnu.edu.
cn/databases/
FusionCancer/

Fusion gene database derived 
exclusively from cancer RNA-seq 
data

11 839 gene fusions as for 2015 Analysis of 591 RNA-seq 
cancer datasets

Wang et al.267

FARE-CAFÉ http://ppi.
bioinfo.asia.edu.tw/
FARE-CAFE

Database of functional and 
regulatory elements in gene fusion 
events related to cancer

1587 gene fusions as for 2015 Combination of 
information from 
different sources, 
including TICdb, dbCRID, 
NCBI, and miRTarBase

Korla et al.268

HYBRIDdb http://www.
primate.or.kr/hybriddb

Database of hybrid genes in the 
human genome

3404 gene fusions as for 2007 Data from INSDC about 
mRNA, EST, cDNA, 
and genomic DNA 
sequences

Kim et al.269

FusionGDB 2.0 https://
compbio.uth.edu/
FusionGDB2/

Fusion Gene annotation DataBase 102 645 fusion genes with 16 
146 in-frame as for 2021

Combined data from 
ChiTaRS 5.0 and 
ChimerDB 4.0 and 
manual curation of 
PubMed articles for the 
most frequent fusions

Kim et al.270

dbCRID http://dbCRID.
biolead.org

Curated database of human 
chromosomal rearrangements, 
associated diseases and clinical 
symptoms

2643 chromosome 
rearrangements as for 2010

Manual curation of 
literature

Kong et al.271

TICdb http://www.unav.
es/genetica/TICdb/

Finely mapped translocation 
breakpoints in cancer

1374 fusion sequences from 
431 different genes as for 2007

Databases analysis and 
publications review

Novo et al.272

KuNG FU (KiNase Gene 
FUsion) http://www.
kungfudb.org/

Database containing in-frame kinase 
gene fusions with intact kinase 
domain in cell lines

108 total fusions as for January 
2021

Manual curation of 
literature

Kim et al.269

EST, expressed sequence tag; FISH, fluorescent in situ hybridization; TCGS, The Cancer Genome Atlas.
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The Mitelman database was followed by COSMIC 
database in 2004, that started with only four 
genes,273 then evolved to contain more than 5 mil-
lion somatic mutations and more than 19 thou-
sand gene fusions.262

RNA-seq data is a major source of mining fusion 
transcripts. Several fusion databases were gener-
ated from transcript sequences available datasets, 
such as TCGA dataset. The Fusion Analysis 
Working Group identified 25 664 fusion events 
using RNA-seq data from tumor and normal 
samples from TCGA using multiple fusion call-
ing tools.223 Similarly, TumorFusions database is a 
searchable portal that catalogues over two thou-
sand gene fusions detected in cancer and normal 
samples from TCGA.263,264

ChimerDB is another knowledgebase database of 
fusion genes265,274; this database contains fusions 
identified using bioinformatics analysis of transcript 
sequences compiled from GenBank and various 
other well-known public fusion databases and 
PubMed articles reporting fusion genes. ChimerDB 
is composed of three modules dealing with the 
analysis of deep sequencing data (ChimerSeq) and 
text mining of publications (ChimerPub) with 
extensive manual annotations (ChimerKB).265

Newer gene fusion database is the ChiTaRS, gen-
erated by performing a bioinformatics analysis of 
transcript sequences and expressed sequence tags 
(ESTs) for multiple organisms in GenBank, start-
ing from three organisms in the first version,275 
then extended to include eight organisms: human, 
mouse, fruit fly, rats, zebrafishes, cows, pigs, and 
yeast in the most recent version.266 The latest ver-
sion includes an extended information about 
fusions features, as well as 3D chromatin contact 
maps. In addition, FusionCancer database con-
tains cancer fusion genes deduced from RNA-seq 
data.267

Other databases combine fusion genes functional, 
regulatory, and genomic information. Example of 
such is the FARE-CAFE database that collect 
various aspects and data concerning fusion genes 
and proteins as protein domains, domain–domain 
interactions, protein–protein interactions, tran-
scription factors and microRNAs. FARE-CAFE 
database incorporates chimeric transcripts and 
their Genomic information from different 
resources including Mitelman’s, dbCRID and the 
Trans location in Cancer (TICdb) databases.268

dbCRID is a comprehensive database of human 
chromosomal rearrangements events and their 
associated diseases that documents the type of 
each event with the related disease or symptoms, 
the breakpoint positions and other genomic infor-
mation.271 Similarly, TICdb documents the pre-
cise location of each breakpoint inside a fusion 
gene. TICdb gather molecular information on 
gene fusions resulting from reciprocal transloca-
tion events associated with tumors.272

Aside from cataloging gene fusions, numerous algo-
rithms have been developed to predict fusion candi-
dates from transcriptome data. Data aggregation 
and functional annotation with visualization sup-
port are necessary to assess the reliability, functional 
significance, and biological roles of predicted 
fusions. Programs such as GFusion, FusionScan, 
and STAR-Fusion are thought to be highly sensitive 
in detecting fusions with less false positives.265 More 
recently, FusionHub introduced an integrated web 
platform that supports both annotation and visuali-
zation for the largest collection of fusion gene data-
sets aggregated from 24 resources.276

HYBRIDdb is one of the earliest databases of 
hybrid genes to use a bioinformatics analysis for 
identifying gene fusions. HybridDB identified 
more than 3000 fusions from mRNA, EST, 
cDNA, and transcript sequences in the NCBI 
database.269

Kim and Zhou built FusionGDB (Fusion Gene 
annotation DataBase) that gathers more than 
40,000 fusion genes from fusion gene public 
resources such as TumorFusions and ChiTaRS 
3.1. FusionGDB provides extensive functional 
annotations for these collected fusion events. 
Most importantly, the gene assessment across 
pan-cancer fusion genes, open reading frame 
(ORF) assignment and retention search of pro-
tein features.277 FusionGDB was recently updated 
using deep learning techniques to provide eight 
categories of annotations: Fusion Gene Summary, 
Fusion Gene ORF analysis, Fusion Gene 
Genomic Features, Fusion Protein Features, 
Fusion Gene Sequence, Fusion Gene PPI analy-
sis, Related Drugs, and Related Diseases.270

Since kinase gene fusions are valuable biomark-
ers and promising drug targets, specific databases 
of such fusions have been developed. KuNG FU 
(KiNase Gene FUsion) is one of the largest 
curated databases, containing precise 
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annotations on solely in-frame kinase gene 
fusions with intact kinase domain, which param-
eters were investigated in cancer cell lines. KuNG 
FU database is an available and informative tool 
for facilitating drug development and diagnostic 
studying.270

Conclusions and further perspectives
Gene rearrangements stand among the major 
driver mutations in cancer. Recent developments 
unravel several therapeutically actionable fusion 
genes with approved targeted drugs effective 
against hematological and solid tumors. Many 
additional drugs targeting these and other fusion 
genes are in clinical trials and in development. 
Altogether, this gives physicians more options for 
the choice of therapy. However, cancer genomic 
instability leads to clonal heterogeneity and selec-
tion of cells with resistance to treatment, immune 
evasion, and metastatic potential, in many cases 
leading to failure of the therapy. Metastasis is the 
major problem in oncology. In particular, the pic-
ture becomes more complicated by the fact that 
each metastasis loci represents an individual clone 
with different mutational profile and drug sensi-
tivity. To choose a proper therapy, it is critically 
important to provide a physician with actionable 
information about emerging clones. Thus, the 
future clinical oncology will utilize methods that 
will be able to measure mutations in the individ-
ual clones and assess the status of immune cells 
regulating tumor microenvironment. While sin-
gle-cell sequencing methods that can measure 
clonal heterogeneity become available for aca-
demic research, targeted sequencing, FISH, and 
IHC remain the working horse of oncology.

To conclude, NGS-based methods provide sev-
eral advantages for fusion detection both in clini-
cal practice and in research studies. First, they 
combine fusion detection with finding of other 
clinically relevant biomarkers, thus providing 
more relevant information than ‘classical’ meth-
ods in just one test, which requires minute 
amounts of biosample. NGS approaches are suit-
able for the investigation of different sample 
types, including cell lines, fresh frozen, and FFPE 
biopsies. Different computational algorithms 
have been developed for the analyses of DNA and 
RNA NGS derived data and obtaining of highly 
reliable results. Further improvements in fusion 
detection approaches at both sample preparation 
and data analysis stages will expand the current 
knowledge of fusion frequencies among different 

cancer types, and of their particular impact on 
tumorigenesis, drug sensitivity, and resistance 
development. The latter has a strong potential of 
increasing efficacy of cancer treatment.
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