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Background
Magnetic resonance imaging (MRI), which is non-invasive, provides non-electromag-
netic radiation, higher soft-tissue contrast, and spatial resolution, has been applied in 
diagnostic medicine for many years. However, due to the limitations of the hardware 
scanning system and the traditional Nyquist sampling theory, MRI scanners take a con-
siderable length of time to acquire k-space data. Patient motion (e.g. a beating heart and 
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Background:  The challenge of reconstructing a sparse medical magnetic resonance 
image based on compressed sensing from undersampled k-space data has been 
investigated within recent years. As total variation (TV) performs well in preserving 
edge, one type of approach considers TV-regularization as a sparse structure to solve 
a convex optimization problem. Nevertheless, this convex optimization problem is 
both nonlinear and nonsmooth, and thus difficult to handle, especially for a large-scale 
problem. Therefore, it is essential to develop efficient algorithms to solve a very broad 
class of TV-regularized problems.

Methods:  In this paper, we propose an efficient algorithm referred to as the fast 
linearized preconditioned alternating direction method of multipliers (FLPADMM), to 
solve an augmented TV-regularized model that adds a quadratic term to enforce image 
smoothness. Because of the separable structure of this model, FLPADMM decomposes 
the convex problem into two subproblems. Each subproblem can be alternatively 
minimized by augmented Lagrangian function. Furthermore, a linearized strategy and 
multistep weighted scheme can be easily combined for more effective image recovery.

Results:  The method of the present study showed improved accuracy and efficiency, 
in comparison to other methods. Furthermore, the experiments conducted on in vivo 
data showed that our algorithm achieved a higher signal-to-noise ratio (SNR), lower 
relative error (Rel.Err), and better structural similarity (SSIM) index in comparison to 
other state-of-the-art algorithms.

Conclusions:  Extensive experiments demonstrate that the proposed algorithm exhib-
its superior performance in accuracy and efficiency than conventional compressed 
sensing MRI algorithms.
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respiratory movement) during lengthy scans can cause motion and streaking artifacts on 
the reconstructed image. This degrades image quality, which could lead to misdiagnosis. 
Thus, accelerating the sampling speed and reducing or eliminating artifacts have always 
been the aims of many studies.

With the rapid development of the novel compressed sensing (CS) theory [1, 2], com-
pressed sensing MRI (CS-MRI) has attracted much attention, as it can reduce imaging 
time considerably. Compressed sensing theory claims that by using random projection, 
a small number of data points can be directly sampled at a sampling frequency that is far 
below the Nyquist frequency. In CS-MRI, the imaging time can be significantly reduced 
by reconstructing an image of good quality from highly undersampled k-space data. 
Specifically, if the signal or image is sparse in a certain domain, we can obtain perfect 
reconstruction with sufficient measurements. MR images are generally sparse in some 
transform domain, such as the wavelet domain. Consequently, the CS technique can be 
easily combined with MRI. The original signals or images can be recovered by using the 
nonlinear reconstruction algorithm under the restricted isometry property (RIP) [3, 4]. 
Nevertheless, owing to the limitations of MR physics, MRI cannot achieve two-dimen-
tional random sampling.

In 2007, Lustig et  al. [5] proposed the SparseMRI algorithm, which selects wavelet 
transform as a sparse basis, and uses variable density random sampling and the conju-
gate gradient descent method for image recovery. This was the first application of CS to 
MRI. However, due to a high time complexity, the SparseMRI is too slow to be put into 
practical use. Since then, a variety of nonlinear algorithms have been proposed for CS-
MRI reconstruction. The alternating direction method of multipliers (ADMM) algorithm 
has been studied extensively [6–8], and has been widely used in optimization problems 
that arise in machine learning, image processing, etc. Recently, the fast alternating direc-
tion method of multipliers (FADMM) [9] has incorporated a predictor-corrector accel-
eration scheme into the simple ADMM, when a strongly convex condition is satisfied. 
This algorithm cannot guarantee a global convergence when weakly convex problems 
are encountered. Another fast method, referred to as the accelerated alternating direc-
tion method of multipliers (ALPADMM) [10], was proposed to deal with a class of affine 
equality constrained composite optimization problems. Although ALPADMM is capable 
of handling saddle point problems, its convergence rate largely depends on the Lipschitz 
constant of the smooth component.

In this article, we propose an efficient algorithm to solve an augmented total varia-
tion (TV)-regularized model that adds a quadratic term to the classical TV-regularized 
model to enforce smoothness of the image. The proposed method applies a linearization 
strategy to two quadratic terms and divides the original convex problem into two sub-
problems, both of which are easy to solve. For all subproblems, the augmented Lagran-
gian function, which combines both the Lagrangian function and the quadratic penalty 
function, is applied to update each variable and gain more reconstruction accuracy than 
the Lagrangian function approach alone. Furthermore, we utilize a multistep weighted 
technique to improve the accuracy of reconstruction. Numerical experiments have been 
conducted to compare the proposed algorithm with previous algorithms on various 
MR images. The experimental results show that the proposed approach can achieve a 
higher signal-to-noise ratio (SNR), lower relative error (Rel.Err), and better structural 
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similarity (SSIM) index. The main contributions of the work are twofold as follows: (i) 
the proposed linearized preconditioned alternating direction method of multipliers 
(FLPADMM) that is inspired by the smooth technique [9], linearized strategy [10, 11], 
and the accelerated method [10] is designed to solve the augmented TV-regularized 
model; and (ii) this algorithm only linearizes the closed convex function and does not 
require the application of multistep weighting to each variable.

The paper is organized as follows: In "Related work", the CS-MRI reconstruction algo-
rithms are reviewed. "Methods" briefly describes the basics of CS problem formulation 
and the proposed FLPADMM method to reconstruct MR images. The experimental 
results of the proposed approach and comparison with other algorithms are illustrated 
in "Results". Corresponding discussions are given in "Discussion" and conclusions are 
provided in "Conclusions".

Related work
In this section, we briefly review the conventional CS-MRI reconstructed algorithms. 
Many nonlinear algorithms, e.g., the iterative shrinkage/thresholding method (IST) [12], 
two-step IST (TwIST) scheme [13], fast IST algorithm (FISTA) [14], split augmented 
Lagrangian shrinkage algorithm (SALSA) [6], wavelet tree sparsity MRI (WaTMRI) 
[15], total variation augmented Lagrangian alternating direction method (TVAL3) [16], 
total variation based compressed magnetic resonance imaging (TVCMRI) [17], recon-
struction from partial Fourier data (RecPF) [18], and fast composite splitting algorithm 
(FCSA) [19], have been proposed to improve reconstruction speed and accuracy. IST is 
an operator-splitting algorithm that can be applied to an optimization problem with a 
simpler regularization term. The global acceleration of IST may be very slow especially 
when the stepsize is quite small or the optimization problem is extremely ill-condi-
tioned. TwIST, which is a variant of IST, utilizes two or more previous iterates to update 
the current values, and does not depend on the previous iterate alone. TwIST gains 
higher speed than IST on reconstruction problem; however, the global convergence rate 
of TwIST has not been thoroughly studied. FISTA is another accelerated variant of IST 
that also takes advantage of two previous iterates. Unlike TwIST, FISTA can achieve 
global convergence with a splitting scheme.

SALSA transforms a constrained problem into an unconstrained problem by adding 
a penalty term that can be dealt with, using an augmented Lagrangian approach. Many 
image linear inverse problems, including image deblurring, MRI image reconstruc-
tion, and image inpainting, can be handled with SALSA. According to structured spar-
sity theories, WaTMRI exploits the tree sparsity to improve CS-MRI, which combines 
standard wavelet sparsity with total variation. To our knowledge, TVAL3 was proposed 
to solve a set of equality-constrained nonsmooth problems, and integrated an alterna-
tive minimization technique with a nonmonotone line search to optimize an augmented 
Lagrange function. Both TVCMRI and RecPF utilize a splitting strategy to minimize 
objective function. The former uses operator-splitting technology, and the latter adopts 
a variable splitting method to obtain optimal solution. In FCSA, the original optimiza-
tion problem is divided into two easier subproblems that can be easily solved by FISTA. 
However, these algorithms are not necessarily easily implemented, or even sufficient to 
solve CS problems with TV-regularization, especially when the measurement matrix is 
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considerably ill-conditioned. Therefore, it is necessary to develop algorithms that are 
both accurate and efficient to solve large-scale problems.

Methods
Problem formulation

Generally, the classical TV-regularized model for CS-MRI reconstruction problems can 
be written as:

where x ∈ Rn is the image to be reconstructed, b ∈ Rm denotes the undersam-
pled k-space data from the MR scanner, and A ∈ Rm×n(m < n) is the measurement 
matrix. The expression δ > 0 represents the noise level in the measurement data and 
(∇x)i,j = (xi+1,j − xi,j , xi,j+1 − xi,j), where ∇ is the discrete gradient operator and |∇x| 
denotes the TV regularization of x. A variant of (1) is the following TV-regularization 
problem:

where τ > 0 is a positive regularization parameter to balance between the two objec-
tives. To enforce image smoothness, we add a quadratic term γ2 �∇x�22 in the objective 
function to give the new TV-regularized model:

where γ is a smoothing parameter. The augmented term |∇x| + γ
2 �∇x�22 can yield accu-

rate solutions by using a proper value of γ. In addition, the dual problem is continuously 
differentiable and facilitates effective use of gradient information. To split the variable x, 
an auxiliary variable z is introduced by ∇x − z = 0, and the unconstrained optimization 
problem (3) is transformed into:

The augmented Lagrangian function for problem (4) is given by:

where � ∈ Rm is the Lagrangian multiplier, µ is a positive penalty parameter, and 
��,∇x − z� denotes the inner product of the vectors � and ∇x − z. The classical ADMM 
minimizes the convex optimization problem (5) with respect to x and z, using the non-
linear block–Gauss–Seidel technique. After minimizing x and z alternatively, � can be 
updated by:

The non-linear block–Gauss–Seidel iteration of ADMM can be written as:

(1)min
x

TV(x) � |∇x| s.t. �Ax − b�2 ≤ δ,

(2)min
x

1

2
�Ax − b�22 + τ |∇x|,

(3)min
x

1

2
�Ax − b�22 + τ |∇x| +

γ

2
�∇x�22,

(4)min
x

1

2
�Ax − b�22 + τ |z| +

γ

2
�z�22, s.t. ∇x − z = 0.

(5)L(x, z, �) =
1

2
�Ax − b�22 + τ |z| +

γ

2
�z�22 − ��,∇x − z� +

µ

2
�∇x − z�22,

(6)�k+1 = �k − µ(∇xk+1 − zk+1).
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Suppose zk and �k are given, then xk+1 can be obtained by:

When xk+1 and �k remain fixed, zk+1 can be minimized by:

The ADMM algorithm above, used to solve (4), is expressed in Algorithm 1.

Algorithm 1 ADMM
1: Choose µ > 0, γ > 0, τ > 0, set k = 1 and λ1 = 0
2: repeat
3: xk+1 = argmin

x

1
2 Ax− b 2

2− < λk,∇x− zk > +µ
2 x− zk

2
2

4: zk+1 = argmin
z

τ |z|+ γ
2 z 2

2− < λk,∇xk+1 − z > +µ
2 xk+1 − z 2

2

5: λk+1 = λk − µ(∇xk+1 − zk+1)
6: k ← k + 1
7: until stopping criterion is satisfied.

The ADMM has been previously studied and analyzed [7, 8, 20]. Generally, if subprob-
lems in (7) are not in closed-form, many solutions could exist within those subproblems. 
Moreover, when the objective functions are poor or difficult to handle at high precision, 
the conventional ADMM algorithms might also perform poorly in image reconstruction.

Proposed algorithm

Based on the above analysis, firstly, the minimization of (8) is given by:

Hence, (10) is transformed into:

Because the measurement matrix A is neither the identity matrix, nor is it typically fully 
dense, it is impossible to derive the exact solution with respect to the x vectors [21]. In 
addition, the computational cost to handle (11) is extremely heavy. In order to reduce 
the computational burden and get closed-form solutions, some variants could be con-
sidered. The linearization of the quadratic term 12�Ax − b�22 is used to update xk+1 as 
follows:

(7)











xk+1 ← argmin
x

L(x, zk , �k),

zk+1 ← argmin
z

L(xk+1, z, �k),

�k+1 ← �k − µ(∇xk+1 − zk+1).

(8)xk+1 = argmin
x

1

2
�Ax − b�22 − ��k ,∇x − zk� +

µ

2
�∇x − zk�

2
2.

(9)zk+1 = argmin
z

τ |z| +
γ

2
�z�22 − ��k ,∇xk+1 − z� +

µ

2
�∇xk+1 − z�22.

(10)

xk+1 = argmin
x

1

2
�Ax − b�22 − ��k ,∇x − zk� +

µ

2
�∇x − zk�

2
2,

= argmin
x

1

2
�Ax − b�22 +

µ

2
�∇x −

(

zk +
�k

µ

)

�22.

(11)(ATA+ µ∇T∇)xk+1 = ATb+ ∇T (µzk + �k).

(12)
1

2
�Ax − b�22 ≈

1

2
�Axk − b�22 + �Grad(xk), x − xk� +

η

2
�x − xk�

2
2,
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where Grad(xk) = AT (Axk − b) is the gradient of 1
2�Ax − b�22 at the current point xk, 

and η is a positive proximal parameter. Then, the x subproblem in (10) can be iterated by:

Considering the quadratic term µ2 �∇x − zk�
2
2 can also be linearized, we also linearize 

µ
2 �∇x − zk�

2
2 at xk. This variant is a fast linearized preconditioned ADMM(FLPADMM) 

algorithm that generates the iterates xk+1 by:

The negative divergence operator −div can be used to solve (14) as follows:

Secondly, for a given xk+1 and �k, zk+1 is computed by solving:

Hence, the solution to (16) obeys:

where soft(·,T ) is the soft thresholding function that is defined as:

Finally, the Lagrangian multiplier is updated by �k+1 = �k − µ(∇xk+1 − zk+1).

(13)
xk+1 = argmin

x
�Grad(xk), x − xk� +

η

2
�x − xk�

2
2

− ��k ,∇x − zk� +
µ

2
�∇x − zk�

2
2.

(14)

xk+1 = argmin
x

L(x, zk , �k),

= argmin
x

1

2
�Ax − b�22 − ��k ,∇x − zk� +

µ

2
�∇x − zk�

2
2,

= argmin
x

�Grad(xk), x − xk� +
η

2
�x − xk�

2
2 − ��k ,∇x�

+ �µ(∇xk − zk),∇x�,

= argmin
x

�Grad(xk), x − xk� +
η

2
�x − xk�

2
2

+ �µ(∇xk − zk)− �k ,∇x�.

(15)xk+1 = xk −
1

η
(−div(µ(∇xk − zk)− �k)+ Grad(xk)).

(16)

zk+1 = argmin
z

L(xk+1, z, �k),

= argmin
z

τ |z| +
γ

2
�z�22 − ��k ,∇xk+1 − z� +

µ

2
�∇xk+1 − z�22,

= argmin
z

τ |z| +
γ

2
�z�22 +

µ

2
�z −

(

∇xk+1 −
�k

µ

)

�22,

= argmin
z

τ |z| +
γ + µ

2
�z −

µ

γ + µ

(

∇xk+1 −
�k

µ

)

�22,

= argmin
z

τ

γ + µ
|z| +

1

2
�z −

µ

γ + µ

(

∇xk+1 −
�k

µ

)

�22.

(17)zk+1 = soft

(

µ

γ + µ

(

∇xk+1 −
�k

µ

)

,
τ

γ + µ

)

,

(18)soft(v,T ) =







v + T , v < −T ,

0, |v| ≤ |T |,

v − T , v > T .
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The FLPADMM algorithm utilizes the gradient descent method and one soft thresh-
olding operator to update variables at each iteration. In addition, this method is a variant 
of the classical ADMM algorithm framework. The proposed FLPADMM algorithm is 
presented in Algorithm 2.

Algorithm 2 FLPADMM
1: Choose µ1 > 0, γ1 > 0, η1 > 0, τ1 > 0, Set k = 1, xw

1 = x1 and λ1 = 0
2: repeat
3: αk = 1

k
4: xm

k = (1− αk)xw
k + αkxk

5: xk+1 = xk − 1
ηk

(−div(µk(∇xk − zk)− λk) +Grad(xm
k ))

6: xw
k+1 = (1− αk)xw

k + αkxk+1

7: zk+1 = soft( µk
γk+µk

(∇xk+1 − λk
µk

), τk
γk+µk

)
8: λk+1 = λk − µk(∇xk+1 − zk+1)
9: k ← k + 1
10: until stopping criterion is satisfied.

The stopping criterion in all of the algorithms above is the relative change of x between 
two successive iterations, which is small enough, i.e.:

where tol is usually a range chosen from 10−5 to 10−3. In the FLPADMM algorithm, αk 
represents a weighted parameter and Grad(xmk ) is the gradient of 12�Ax − b�22 at the point 
xmk . Furthermore, xmk  is the first weighted value that is used to update xk+1.

It should be noted that the appropriate parameter αk can improve the rate of conver-
gence that has been proven in a previous study [10]. Moreover, the superscript m stands 
for “middle,” and w stands for “weight.” Before the gradient descent method in line 5 is 
applied, x is updated by the weighted sums of all previous iterates. Furthermore, after 
the gradient method is applied, x is updated again by the same weighting technique, that 
is, x is weighted twice at each iteration. Specifically, when the weighted parameter αk is 
set to 1, the x subproblem is simply the current point xk+1. At this point, FLPADMM 
becomes another variant of the ADMM algorithm [10]. The accelerated strategy of 
FLPADMM incorporates a multistep acceleration scheme with middle point xm and 
weighted point xw, which was first applied in a previous study [10] and derived from 
the accelerated gradient method [22, 23]. Moreover, the optimal rate of convergence of 
FLPADMM is O

(

1
k2

+ 1
k

)

.

Results
Experimental setup

A series of numerical experiments were conducted to compare the performance of 
the proposed FLPADMM with two state-of-the-art algorithms, namely FADMM [9] 
and ALPADMM [10], for MR image reconstruction from undersampled k-space data. 
The four typical MR datasets (Shepp–Logan phantom, human brain1 MR data, human 
brain2 MR data, and human spine MR data) were used to evaluate our algorithm. All test 
images had the same matrix size of 256 × 256, as shown in Fig. 1a–d. The first Shepp–
Logan phantom was a piecewise smooth image with pixel intensities ranging from 0 to 
1. The complex k-space data of the human brain1 was acquired from a 3T GE MR750 

(19)
�xk+1 − xk�2

�xk�2
≤ tol
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scanner using the FRFSE sequence (TR = 6000 ms, TE = 101 ms). The human brain2 
data was also obtained from the 3T GE MR750 system (TR/TE = 2500/96.9 ms, field 
of view = 280 × 280 mm, slice thickness = 5 mm). The human spine MR data was fully 
sampled k-space data acquired on a 3T GE MR750 system with a FRFSE sequence (TR/
TE = 2500/110 ms, field of view = 240 × 240 mm, slice thickness = 5 mm). To achieve 
fair comparisons, codes of all compared algorithms were downloaded from the authors’ 
websites. All experiments were executed, using Windows 10 and MATLAB 2015b (64-
bit), on a desktop computer with a 3.2GHz Intel core i5-4460 CPU and 8GB of RAM.

Each experiment was repeated 10 times, and the average image metric results of 10 
experiments were recorded. For most of the MR images, the k-space signals with a large 
magnitude were generally localized in the central region. Since a non-Cartesian sam-
pling matrix is incoherent, the results on the Cartesian masks were far less favorable 
than those on the non-Cartesian mask. Therefore, two non-Cartesian masks were cho-
sen as the sampling masks. One was a pseudo-Gaussian mask, displayed in Fig. 2a, that 
was implemented by following the sampling strategy of collecting more low-frequency 
signals in the central part of the k-space, and less high-frequency signals in the periph-
eral part of the k-space. The other mask presented in Fig. 2b, was a pseudo-radial mask 
that was applied by following the rule of RecPF [18]. The sampling ratio was defined as 
the number of sampled points divided by the total size of the original image.

In the present study, we compared our algorithm with two state-of-the-art algorithms 
under similar conditions. To explore the influence of the regularization parameter τ, we 

a b c d
Fig. 1  MR images. (a) Shepp–Logan phantom (b) human brain1 image (c) human brain2 image (d) human 
spine image

a b
Fig. 2  Sampling masks. a pseudo-Gaussian mask at 15% sampling rate, b pseudo-radial mask at 18% sam-
pling rate
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used human brain1 data as an example, to analyze the changes of image quality when 
τ was changed. In Fig. 3, the SNR attained the maximum value when τ was 10−3. Thus, 
we chose this optimum value to achieve favorable reconstruction. Similar searches were 
adopted for the other datasets. For all tests, we also found that when γ = 2τ, our algo-
rithm maintained the most favorable reconstruction performance. Furthermore, the 
default maximum of all three methods was set to 300.

To quantitatively evaluate the result of the proposed algorithm, three objective metrics 
were adopted to measure the quality of the recovered images. The first was SNR, defined 
as:

where x is the original image, 
∧
x is the reconstructed image, and M and N represent the 

number of rows and columns, respectively, in the input image. The quality of the recon-
structed image is directly proportional to the value of SNR. The second metric was the 
Rel.Err, defined as:

A smaller value meant that the reconstructed image had little error and more favorable 
reconstruction in comparison to the original image.

The last metric was the SSIM index that was used to measure the similarity between 
two images, in terms of structure, brightness, and contrast, among other aspects, and 
defined as:

(20)SNR = 10 log10

∑M
i=0

∑N
j=0 x(i, j)

2

∑M
i=0

∑N
j=0(x(i, j)−

∧
x(i, j))2

,

(21)Rel.Err =
�x −

∧
x�2

�x�2
× 100%.

(22)SSIM(p,q) =
(2µpµq + c1)(2θpq + c2)

(µ2
p + µ2

p + c1)(θ2p + θ2q + c2)
,

10-5 10-4 10-3 10-2 10-1
17

18

19

20

21

22

23

SN
R

 (d
B

)

Fig. 3  Analysis to determine the optimum regularization parameters for human brain1 data using a pseudo-
Gaussian mask at a sampling rate of 25%
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where µp and θp are the mean and variance, respectively, of the original image; µq and θq 
are the mean and variance, respectively, of the reconstructed image, θpq is the covariance 
of these two images; and c1 and c2 are fixed constants that prevent unstable phenom-
ena when the denominator is close to zero. When the value of SSIM was increased, the 
image showed greater similarity to the original.

Experimental results

In this section, we first compare our proposed FLPADMM algorithm with FADMM [9] 
and ALPADMM [10] algorithms on the Shepp–Logan phantom, with Gaussian white 
noise of a standard deviation of 0.01. The proposed FLPADMM was applied to the 
Shepp–Logan phantom under pseudo-Gaussian mask with 20% k-space data under-
sampled. Figure 4a shows the original Shepp–Logan phantom, and Fig. 4b–d presents 
the reconstructed images recovered by the FADMM, ALPADMM, and FLPADMM 
algorithms, respectively. Compared with the original Shepp–Logan phantom image, 
FADMM yielded noticeable artifacts and failed to suppress background noise. The image 
recovered by ALPADMM contained fewer artifacts and was evidently more favorable 
than that recovered by FADMM. As the Shepp–Logan phantom is extremely piecewise 
smooth and sparse, ALPADMM also provides good reconstruction. As shown in Fig. 4c, 
d, visible artifacts are not easily observed when both ALPADMM and FLPADMM are 
used. However, for experiments on in vivo data as we will show, FLPADMM would per-
form much more accurately and stably than ALPADMM.

For enhanced visualization, Fig. 4e–g depicts the difference between the reconstructed 
image and the original image of the Shepp–Logan phantom under a pseudo-Gauss-
ian mask at a sampling ratio of 20% using FADMM, ALPADMM, and the proposed 
FLPADMM reconstruction. It was evident that the reconstruction with FLPADMM had 

a b c d

e f g
Fig. 4  Results of three methods under a pseudo-Gaussian mask with 20% sampling. a Original Shepp–Logan 
phantom, b FADMM, c ALPADMM, d proposed FLPADMM, and e–g error map of b–d, respectively
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the smallest error. The proposed FLPADMM exhibited superior performance in sup-
pressing noise without significant artifacts, and yielded the best reconstruction.

All experiments on in vivo data were corrupted with Gaussian white noise with zero 
mean and a standard deviation of 0.01. Experimental results of these in  vivo human 
brain data are displayed in Figs. 5 and 6 at a sampling ratio of 25%. Figure 5a presents the 
original human brain1 image. The reconstructed images illustrated in Fig.  5b–d, were 
obtained by FADMM, ALPADMM, and our proposed FLPADMM, under a pseudo-
Gaussian sampling scheme. Figure  5e–g was produced by FADMM, ALPADMM, and 
FLPADMM, respectively, under a pseudo-radial sampling pattern. The SNR of the 
human brain1 image under the pseudo-Gaussian mask using FLPADMM was 25.0685 
dB, whereas those recovered by FADMM and ALPADMM were 20.9921 and 22.3231 dB, 
respectively. We can clearly see that the FLPADMM reconstruction suppressed back-
ground noise. The recovery result in Fig. 6 is similar to that in Fig. 5.

Figure 7 gives the comparison results of human brain1 data among the state-of-the-art 
MR image reconstruction algorithms, using different sampling masks, when the sam-
pling ratios were 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. As seen in Fig. 7a, b, the proposed 
FLPADMM achieved high image quality with high SNR and low Rel.Err. When the sam-
pling ratio was 0.1, the three methods performed relatively poorly. That is because when 
sampling ratio is too low, the sampled data is insufficient to obtain a faithful image. It 
is notable that as the sampling ratio increased for all algorithms under consideration, 
the SNR was also increased, whereas Rel.Err was gradually reduced. That is, the recon-
structions of higher quality could have been obtained by taking more measurements. In 
addition, when the sampling ratio was increased, the FLPADMM algorithm exhibited 
superior performance in recovering the sampling image. Specifically, a sampling ratio of 
30% was sufficient to reconstruct the human brain1 image effectively.  

Original

a

FADMM

b

ALPADMM

c

FLPADMM

d

e f g
Fig. 5  Reconstructed images and zoomed-in regions among the state-of-the-art MR image reconstruction 
algorithms using a pseudo-Gaussian mask (first row) and pseudo-radial mask (second row) with 25% sampling. 
a Original human brain1 image, b, e FADMM, c, f ALPADMM, d, g FLPADMM
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Figure 8 shows the comparison results of human brain2 data, where (a) and (c) present 
the SNR of the human brain2 image with different ratios, and (b) and (d) describe the 
Rel.Err of the human brain2 image at different ratios. The results are similar to those 

Original

a

FADMM

b

ALPADMM

c

FLPADMM

d

e f g
Fig. 6  Reconstructed images and zoomed-in regions among the state-of-the-art MR image reconstruction 
algorithms using a pseudo-Gaussian mask (first row) and pseudo-radial mask (second row) with 25% sampling. 
a Original human brain1 image, b, e FADMM, c, f ALPADMM, d, g FLPADMM
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Fig. 7  Comparison results of human brain1 data using a pseudo-Gaussian mask (first row) and pseudo-radial 
mask (second row). a, c SNR (dB) vs sampling ratio, b, d Rel.Err vs sampling ratio
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of the human brain1 image. The SNR of FLPADMM was slightly larger than that of 
ALPADMM when a pseudo-radial mask was applied. The Rel.Err of ALPADMM was 
very close to that of FLPADMM (see Figs. 7d, 8d), indicating that both ALPADMM and 
our proposed FLPADMM show similar recovery performance under the pseudo-radial 
mask.

The reconstructed results in Fig.  9 were consistent with those of Fig.  5. Compared 
to FADMM and ALPADMM, our proposed FLPADMM reconstructed better images 
without visual artifacts. For example, when the sampling ratio was 25% under pseudo-
radial sampling, FADMM had significant artifacts and ALPADMM had slight artifacts. 
However, images reconstructed by FLPADMM were the closest to the original image of 
the human spine. These results further validate the superiority of FLPADMM in com-
parison to other algorithms and are consistent with the results of the two human brain 
experiments. It is clear that regardless of the sampling scheme, FLPADMM achieved the 
highest SNR and lowest Rel.Err. From Fig. 10, we can see that all reconstruction results 
showed steady improvement as the sampling ratio increased. Moreover, FLPADMM 
showed superior performance in comparison to other algorithms. As the tissue structure 
of the human spine MR data was extremely complex, the quality of the reconstructed 
image was not as good as that of the human brain tests.

For further comparison, the results of quantitative image metrics, SSIM and CPU 
time (s), are listed in Tables  1 and 2 to demonstrate structural similarity and running 
time of FADMM, ALPADMM, and FLPADMM algorithms for all MR images at vari-
ous sampling ratios. As seen in Table 2, the running time of FLPADMM was faster than 
that of ALPADMM, but slower than that of FADMM by approximately 1 s. Since the 
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Fig. 8  Comparison results of human brain2 data using a pseudo-Gaussian mask (first row) and pseudo-radial 
mask (second row). a, c SNR (dB) vs sampling ratio, b, d Rel.Err vs sampling ratio
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convergence of FADMM was also close to O( 1
k2
) when strict conditions were satisfied, the 

running time of all three methods were very similar. According to the value of the SSIM, 
the proposed FLPADMM achieved higher quality images than the other techniques.
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e f g
Fig. 9  Reconstructed images and zoomed-in regions among the state-of-the-art MR image reconstruction 
algorithms using a pseudo-Gaussian mask (first row) and pseudo-radial mask (second row) with 25% sampling. 
a Original human brain1 image, b, e FADMM, c, f ALPADMM, d, g FLPADMM
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Fig. 10  Comparison results of human spine data using a pseudo-Gaussian mask (first row) and pseudo-radial 
mask (second row). a, c SNR (dB) vs sampling ratio, b, d Rel.Err vs sampling ratio
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Table 1  Additional reconstruction results on different MR images with a pseudo-Gaussian 
mask under different sample ratios

The CPU time and SSIM comparison among FADMM, ALPADMM, and the proposed FLPADMM

Test image Metric Algorithm Sampling ratio

0.1 0.2 0.3 0.4 0.5

Human brain1 SSIM FADMM 0.3493 0.4497 0.7052 0.9707 0.9842

ALPADMM 0.1470 0.5126 0.9748 0.9836 0.9904

FLPADMM 0.3981 0.5241 0.9788 0.9869 0.9918

CPU time (s) FADMM 2.9609 3.0238 3.0955 3.1921 3.6528

ALPADMM 4.2605 4.3840 4.4864 4.6043 4.7250

FLPADMM 4.0840 4.3312 4.4342 4.5427 4.5791

Human brain2 SSIM FADMM 0.2786 0.3702 0.7391 0.9828 0.9914

ALPADMM 0.1631 0.4244 0.9877 0.9922 0.9955

FLPADMM 0.3325 0.4215 0.9911 0.9944 0.9961

CPU time (s) FADMM 3.0527 3.2095 3.2354 3.2802 3.2332

ALPADMM 4.3250 4.4526 4.7770 4.5932 4.6251

FLPADMM 4.2333 4.4974 4.5447 4.4557 4.6193

Human spine SSIM FADMM 0.2077 0.3270 0.4755 0.5528 0.6200

ALPADMM 0.4396 0.7779 0.9425 0.9672 0.9807

FLPADMM 0.6235 0.7869 0.9731 0.9830 0.9889

CPU time (s) FADMM 2.9718 3.0915 3.1162 3.1401 3.1521

ALPADMM 4.3979 4.4857 4.6409 4.5899 4.6300

FLPADMM 4.3400 4.4285 4.4914 4.5481 4.6091

Table 2  Additional reconstruction results on  different MR images with  a pseudo-radial 
mask under different sample ratios

The CPU time and SSIM comparison among FADMM, ALPADMM, and the proposed FLPADMM

Test image Metric Algorithm Sampling ratio

0.1 0.2 0.3 0.4 0.5

Human brain1 SSIM FADMM 0.4324 0.5741 0.7739 0.7794 0.8468

ALPADMM 0.7023 0.8810 0.9397 0.9714 0.9835

FLPADMM 0.6647 0.9512 0.9691 0.9854 0.9919

CPU time (s) FADMM 2.8064 2.8258 2.9255 2.9367 3.0155

ALPADMM 4.2838 4.3129 4.3371 4.4753 4.4069

FLPADMM 4.2480 4.2847 4.3309 4.4369 4.3676

Human brain2 SSIM FADMM 0.4602 0.5735 0.6748 0.7869 0.8608

ALPADMM 0.6803 0.8928 0.9535 0.9828 0.9909

FLPADMM 0.6460 0.9767 0.9874 0.9944 0.9972

CPU time (s) FADMM 2.8830 2.8922 2.9648 3.0214 3.0325

ALPADMM 4.2863 4.5635 4.3734 4.5279 4.6064

FLPADMM 4.2239 4.3988 4.3313 4.4163 4.5621

Human spine SSIM FADMM 0.6269 0.7439 0.8288 0.8885 0.9276

ALPADMM 0.7531 0.8861 0.9373 0.9657 0.9801

FLPADMM 0.7677 0.9325 0.9630 0.9794 0.9887

CPU time (s) FADMM 2.8823 2.8769 2.9891 3.2540 3.0932

ALPADMM 4.4947 6.2550 6.4025 6.4653 6.5581

FLPADMM 4.3113 4.4198 4.3130 4.3558 4.5122
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Discussion
We proposed a novel algorithm for CS-MRI reconstruction, referred to as FLPADMM. 
Except for the TV-regularization term in the classical MR model, we added a quadratic 
term to this classical model to make the image smoother. Using augmented Lagrangian 
function, FLPADMM effectively divides the original convex problem into two subprob-
lems, both of which can be easily dealt with. To further enhance image reconstruction, 
a strategy that incorporated a multistep weighted scheme was adopted in FLPADMM. 
Several parameters need to be tuned in our proposed algorithm. In general, the require-
ment on stepsize η obeys η > µ‖ATA‖. When the regularization parameter τ is 10−3 (see 
Fig. 3) and γ = 2τ, our proposed algorithm yields the best result. The other parameters 
can be manually set for different test data under a fixed sampling scheme. When differ-
ent sampling schemes (i.e., pseudo-Gaussian mask and pseudo-radial mask) are applied, 
our proposed FLPADMM can also produce very impressive results. Experiments vali-
date that the performance of this proposed method is superior to those of FADMM 
and ALPADMM. It particularly shows the best performance in suppressing background 
noise, even at a low sampling ratio.

Some algorithms that combine parallel MRI and CS have been proposed to acceler-
ate MRI reconstruction [24–26]. Our method can also be applied to parallel MRI with 
minor revisions.

Conclusions
The consideration of TV-regularization for CS-MRI has been studied within recent 
years, largely because MR images can be recovered from its partial Fourier samples, 
and TV shows better performance in preserving image edges. In this paper, we first 
briefly reviewed nonlinear algorithms for CS-MRI, and then introduced an augmented 
TV-regularized model with an additional quadratic term to enforce image smoothness. 
An efficient, inexact, but unique algorithm has been proposed to handle this novel TV-
regularized model. The proposed algorithm, referred to as FLPADMM, belongs to the 
classical ADMM framework that decomposes the objective function into two subprob-
lems by adding new variables and constraints. FLPADMM minimizes the TV-regular-
ized objective function by an augmented Lagrangian minimization function technique. 
Furthermore, this method effectively adopts a multistep weighted scheme to improve 
the accuracy of reconstruction. Moreover, FLPADMM could also solve both constrained 
and unconstrained convex optimization problems. Numerous experiments demonstrate 
the superiority of the proposed FLPADMM method in comparison to the previous 
FADMM and ALPADMM algorithms. Our future work would combine this algorithm 
with parallel MRI to further accelerate the imaging time.
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