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Summary
Background Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would
allow precision clinical management strategies. However, long COVID is incompletely understood and characterised
by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of
machine learning classification of COVID-19 clinical outcomes has rarely been tested.

Methods We present a method for computationally modelling PASC phenotype data based on electronic healthcare
records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our
approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a
matrix of pairwise patient similarity that can be clustered using unsupervised machine learning.

Findings We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including
clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with
broad, severe manifestations and increased mortality. There was significant association of cluster membership with a
range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from
other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the
clusters were generalisable across different hospital systems. The increased mortality rate originally identified in
one cluster was consistently observed in patients assigned to that cluster in other hospital systems.

Interpretation Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for
natural history or therapy studies on PASC.
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Research in context

Evidence before this study
Previous studies demonstrated that a substantial fraction of
those infected with SARS-CoV-2 go on to develop long
COVID. Current evidence is insufficient to determine whether
distinct subtypes of long COVID exist. We searched PubMed
for studies on data-driven clustering of individuals with post-
acute sequelae SARS-CoV-2 infection (PASC). One prospective
study on 233 individuals (PMID: 35265728) employed
multiple correspondence analysis (MCA) on commonly
reported symptoms and identified three clusters characterised
by the predominance of symptoms such as pain or
cardiovascular manifestations, or by a paucity of symptoms.
We did not identify previous studies that used cluster analysis
of comprehensive phenotypic manifestations recorded in EHR
data from individuals with long COVID, nor did we find
computational methods to assess the generalisability of the
resulting clusters across different patient cohorts.

Added value of this study
We describe an unsupervised machine learning method that
uses semantic similarity of phenotype data to stratify long
COVID patients into clusters. These clusters correlate with pre-
existing comorbidities, markers of clinical severity of COVID-
19, and mortality in the post-acute long COVID-19 period.

Implications of all the available evidence
This study demonstrates the existence of subtypes of long
COVID that differ with respect to clinical outcome and pre-
existing clinical features. This demonstrates the feasibility of
stratifying long COVID patients and provides a foundation for
characterising the natural history of long COVID and
developing precision clinical management strategies.
Introduction
Hundreds of millions of cases of acute Coronavirus
disease 2019 (COVID-19) have been recorded since the
beginning of the pandemic, and more than six million
deaths had been reported by the World Health Organi-
sation (WHO) by the end of March, 2022.1 The clinical
presentation of COVID-19 ranges from asymptomatic
infection to fatal disease, with many patients continuing
to have heterogeneous, long-term, multi-system symp-
toms including fatigue, post-exertional malaise, dys-
pnea, cough, chest pain, palpitations, headache,
arthralgia, weakness (asthenia), paresthesias, diarrhoea,
alopecia, rash, impaired balance, and memory or
cognitive dysfunction.2,3 Although there is still no
detailed and widely accepted case definition, post-acute
sequelae of SARS-CoV-2 infection (PASC, long-haul
COVID or long COVID) generally refers to a range of
persistent or new symptoms beyond three or four weeks
of the initial infection.4–7 The NIH REsearching COVID
to Enhance Recovery (RECOVER) Initiative program
defines PASC as ongoing, relapsing, or new symptoms,
or other health effects occurring after the acute phase of
SARS-CoV-2 infection (i.e., present four or more weeks
after the acute infection). The WHO has developed a
case definition of “post COVID-19 condition” suggest-
ing that the syndrome is usually diagnosed several
months after the onset of acute symptoms of COVID-19
based on new-onset or lingering symptoms (e.g.,
fatigue, dyspnea, cognitive dysfunction) which cannot
be explained by an alternative aetiology and which
continue for at least 2 months.8 In this work, we will use
the term long COVID to refer to patients given a diag-
nosis using the newly introduced ICD-10 U09.9 code
(“Post COVID-19 condition”). Although presumably
only a small subset of all individuals with PASC are
identified by this code, we chose to focus on it since it
marks patients diagnosed with PASC by a physician.

Our understanding of the natural history of long
COVID is still incomplete. Limited emerging evidence
suggests the existence of clinical subtypes or clusters
characterised by the predominance of symptoms such
as pain or cardiovascular manifestations, or by a paucity
of symptoms.9 However, computational methods to
characterise long COVID subtypes based on compre-
hensive phenotypic analysis are lacking, as are
approaches to assess the generalisability of the resulting
clusters across different patient cohorts. In this study,
we constructed a cohort of 6469 patients diagnosed with
www.thelancet.com Vol 87 January, 2023
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long COVID using the U09.9 code from multicentre
electronic health record (EHR) data available through
the National COVID Cohort Collaborative (N3C), a
harmonised EHR repository with 5,434,528 COVID-19
positive patients as of August 10, 2022. Previous work
mapped 287 unique clinical findings previously re-
ported in studies of long COVID10 to the Human
Phenotype Ontology (HPO), which is widely used to
support differential diagnosis and translational research
in human genetics.11,12 Here, we introduce an approach
that calculates the semantic similarity between patients
by transforming EHR data to phenotypic profiles using
the HPO. The method identifies distinct clusters of long
COVID patients that show highly significant correla-
tions with pre-existing conditions and generalise across
different hospital systems.
Methods
Ethics
The N3C data transfer to NCATS is performed under a
Johns Hopkins University Reliance Protocol
#IRB00249128 or individual site agreements with NIH.
The N3C Data Enclave is managed under the authority
of the NIH; information can be found at https://ncats.
nih.gov/n3c/resources.
Setting
We obtained patient data from the National COVID
Cohort Collaborative (N3C; covid.cd2h.org). N3C ag-
gregates and integrates EHR data across multiple clin-
ical organisations in the United States, including the
Clinical and Translational Science Awards (CTSA) Pro-
gram hubs. N3C harmonises EHR data across four
clinical data models and provides a unified analytical
platform in which data are encoded using version 5.3.1
of the Observational Medical Outcomes Partnership
(OMOP) common data model.13
Cohort
The Centers for Disease Control (CDC) announced an
International Classification of Diseases, version 10
(ICD-10) code (U09.9) for emergency/provisional use in
the United States of America on June 30, 2021. The code
represents Post COVID-19 condition, unspecified. Use
of the code was approved for implementation effective
October 1, 2021. The code should be used for patients
with a history of probable or confirmed SARS CoV-2
infection who are identified with a post-COVID condi-
tion. The data freeze date was August 10, 2022 (v87
release). Only patients with an initial COVID-19 diag-
nosis within the Enclave were included in the cohort. At
the time of the data freeze for this analysis, 38 partici-
pating data partners were using the code, and a total of
20,532 patients were coded in this way.
www.thelancet.com Vol 87 January, 2023
Human Phenotype Ontology (HPO)
The HPO is a rich representation of the diversity of
phenotypic features associated with human disease and
is the de facto standard for the computational analysis
and exchange of phenotype data in human
genetics.11,14–18 The HPO comprises over 16,000 terms
that denote specific phenotypic abnormalities at
increasingly specific granularity, for example, Atrial
septal defect (HP:0001631) and Interrupted inferior vena
cava with azygous continuation (HP:0011671). We
recently identified 287 unique clinical findings reported
in cohorts of patients with long COVID and mapped
them to existing HPO terms and in some cases created
new HPO terms to cover COVID-specific features such
as Pseudo-chilblains on toes (HP:0034036).10 The 2022-08-
11 release of the HPO was used in our study.
Mapping OMOP codes to HPO terms
To obtain mappings between standard OMOP condition
concept identifiers and HPO concepts, we used
OMOP2OBO (https://github.com/callahantiff/OMOP2OBO)
and LOINC2HPO.19,20 The OMOP2OBO algorithm was
developed to generate mappings between clinical
vocabularies in the OMOP common data model and
eight Open Biomedical Foundry ontologies21 spanning
diseases, phenotypes, anatomical entities, organisms,
chemicals, vaccines, and proteins. Using this algorithm,
a large-scale set of mappings was developed, which in-
cludes 92,367 conditions, 8615 drug ingredients, and
10,673 measurement results.20 For this project, we
filtered the v1.0.0 release of mappings to only include
exact 1:1 mappings at the concept level. This mapping
set aligned 4767 OMOP concept IDs to 3804 unique
HPO concepts (1.25 OMOP concept IDs/HPO concept).
To apply LOINC2HPO mappings from OMOP to HPO
concepts, we reimplemented the LOINC to HPO map-
pings in the N3C Enclave. For any HPO term that was
among the 287 HPO terms associated with long
COVID, we determined for each patient in our study
group the LOINC codes present in the measurement
OMOP table determined to be ‘low’, ‘high’, or ‘positive’
compared to the reference range for the test in question,
and assigned the HPO term to the patient if the test
occurred during the long COVID period for that patient
(starting 28 days after diagnosis of acute COVID-19 for
outpatients, and 28 days after hospitalisation for
inpatients).
Specificity-weighted fuzzy phenotype matching
We previously developed a method called Phenomizer
for clinical diagnostics that uses the semantic structure
of the HPO to weight clinical features on the basis of
specificity and to identify those clinical features that best
distinguish among the top candidate differential di-
agnoses.22 The algorithm represents the clinical
3
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specificity of a finding as the information content (IC) of
a term. Given a set of diseases of interest in the differ-
ential diagnosis process, the frequency of each HPO
term is defined as the proportion of diseases in a data-
base that are annotated by the term or any of its
descendant terms (for instance, the HPO resource
currently comprises 8260 Mendelian diseases).12 The IC
is then defined as the negative natural logarithm of the
term frequency.23 The annotation propagation rule ap-
plies to all terms in the HPO. That is, if a disease is
annotated to the term t, it is implicitly annotated to all
ancestors of t recursively. For instance, Marfan syn-
drome is annotated to Aortic root aneurysm
(HP:0002616), and it is therefore implicitly annotated to
the parent term Thoracic aortic aneurysm (HP:0012727)
and its parent term Aortic aneurysm (HP:0004942), and
so on. Thus, the IC of terms increases as we move from
the root term of the HPO ontology to the more specific
descendant terms.

To define the similarity between any two HPO terms
t1 and t2, we find the most specific common ancestor of
t1 and t2 in the HPO hierarchy, which we call the Most
Informative Common Ancestor of t1 and t2, MICA(t1,
t2). We calculate its IC as IC(MICA(t1, t2)) In essence,
this procedure leverages the ontological structure of the
HPO to perform specificity-weighted fuzzy matching.

In the Phenomizer algorithm, the similarity between
a set of query terms (symptoms, signs, etc.) entered by a
physician for an individual case is used to calculate a
similarity score for each of the diseases in the HPO
database as an aid in differential diagnosis. In the cur-
rent work, we adapt this algorithm to implement se-
mantic phenotypic-based clustering by using the
Phenomizer framework to calculate a matrix of pairwise
phenotypic similarities between all patients in the long
COVID cohort. In the following, we represent the set of
n long COVID patients as p1,p2,…,pn ∈ P. The set of m
HPO terms associated with patient i is represented as t1,
t2,…, tm ∈ pi. Then the similarity from patient pi to pj is
calculated as

sim(pi → pj)= 1
m

∑
t1∈pi

maxt2∈pj IC(MICA(t1, t2))

This equation is not symmetric, so the final similarity
score is calculated as

sim(pi, pj)= 0.5 × sim(pi → pj)+ 0.5 × sim(pj → pi)
k-means clustering
For n patients, we calculated a similarity matrix Xn×n

using the Phenomizer algorithm. We then applied
k-means clustering to partition the patients into c clus-
ters, denoted C1, C2, …, Cc, where Ci is the set of ni
objects in cluster i and c is the number of clusters
(a user-chosen hyperparameter). We randomly initialized
the c cluster centroids so that the centroids were maxi-
mally distant from one another.24,25 Clusters were then
formed iteratively such that the Euclidean distance be-
tween the vector that represents any object and the
centroid vector of its cluster was at least as small as that
between the object and any of the other clusters. In each
iteration, objects were moved to the cluster with the
closest centroid, following which the centroids were
recalculated until no further improvement was obtained
or the maximum number of 100 iterations was reached.26

We used the elbow method to choose a suitable
number of clusters, as k-means clustering does not
provide this value. The elbow method computes the total
within-cluster sum of squares error (SSE) for each
candidate number of clusters. The SSE is plotted against
the number of clusters and an ‘elbow’ in the curve is
used to determine the number of clusters.
Statistics
Assessing cluster reproducibility between data partners
We first performed clustering on patients from the data
partner with the greatest number of U09.9 long COVID
patients. To maintain data privacy, we refer to this as
data partner 1. We then assessed reproducibility of
clustering results in data partners 2–6 (hereafter
referred to as test data partners) as explained below.
This approach was chosen given the inherent challenge
owing to the lack of a generally applicable method for
assessing any given clustering approach.26–28 The HPO
terms for patients from data partner 1 and their
assignment to k-means clusters were recorded. We
reasoned that if the clustering results in data partner 1
are generalizable, then patients of the test data partners
will tend to display more similarity to one or other
cluster of data partner 1 than one would expect by
chance. To this end we introduce a similarity measure s
between a patient p and cluster C of patients that
assesses the average similarity of patient p to all patients
in cluster C:

s(p,C)=meanq∈Csim(p, q)
Assuming we have k clusters from data partner 1,

then a normalized weighted similarity vector can be
calculated for each patient p from a test data partner as
[s1, s2,…, sk]/∑

i
si where the index refers to the cluster. In

other words, si = s(p,Ci) is the similarity between the
test patient p and the cluster Ci. If the patient is equally
similar to each of the k clusters, then s1 = s2 = … =
sk = 1

k. If, on the other hand, the patient is much more
similar to one of the clusters, say cluster i, then we
expect si ≫ sj, for j ∕= i. We therefore define the test
statistic smax = max

i
si for patient p. To assess generaliz-

ability, we calculate smax for each patient p in the test
www.thelancet.com Vol 87 January, 2023
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data partner and take the mean value of smax between a
random 10% sample of patients in the test data partner
and a random 10% sample of patients from data partner
1 as our test statistic smax. To generate a null distribution
of this statistic, we create 1000 permuted cluster as-
signments by assigning a random 10% sample of pa-
tients from data partner 1 uniformly at random to one of
the k clusters. We compute the test statistic for each of
these random cluster assignments as described above
and record the mean, μ, and standard deviation, σ, of
these values. We present the results as a z score calcu-
lated as z = (x − μ)/σ, where x = smax . Note that this
procedure does not cluster patients from the test data
partners. Instead, it calculates similarities of patients
from the test data partners to the clusters defined in data
partner 1.

Assessing covariate distribution
The HPO terms assessed in the above procedures were
derived from clinical data at least 28 days after the initial
bout of COVID-19. We analysed additional clinical
covariates covering items such as comorbidities and
medications prior to and during acute COVID-19
(Supplemental Tables S12 and S13). Categorical vari-
ables were assessed with a chi-squared test if at least five
counts were present for each cell of the contingency
table and numerical variables were assessed with one-
way ANOVA. Analysis was done using R version 3.5.1.

Post hoc testing
To improve the informativeness of the cluster de-
scriptions, post hoc tests were conducted to detect dif-
ferences in the distribution of covariates deemed as
significantly different between clusters by the chi-
squared test or one-way ANOVA. Pairwise chi-squared
tests with Bonferroni correction were performed for
categorical covariates (to assess which specific category
distributions are significantly different from the others),
while non-parametric Dunn’s test with Bonferroni
correction was used for numeric covariates to assess
which means are significantly different from the
others.29 To summarise the results, the Compact Letter
Display (CLD) method30 was used.
Role of the funding source
The funders had no role in study design, data collection,
analysis, interpretation, writing of the report, or in the
decision to submit for publication.
Results
A cohort of patients diagnosed with PASC
As of August 10, 2022, the N3C platform (“Enclave”)
contained data for 5,434,528 patients diagnosed with
acute COVID-19, and 38 data partners had begun to use
the newly introduced ICD-10 diagnosis code U09.9 for
www.thelancet.com Vol 87 January, 2023
use in US hospitals to denote Post COVID-19 condition.
These 38 data partners provided data for 20,532 patients
with this diagnosis (Fig. 1). Phenotypic features
observed in the post-acute COVID-19 period were
mapped from OMOP codes to HPO terms. The post-
acute COVID-19 period was defined as starting 28
days after the earliest COVID-19 index date for out-
patients, and 28 days after the end of hospitalisation for
inpatients. The COVID-19 index date for each patient
was defined as the earliest date of any positive PCR or
antigen SARS-CoV-2 test or diagnosis with ICD-10
U07.1 (acute COVID-19).
Phenotypic clustering of patients with long COVID
We hypothesised that consistent subgroups of patients
with long COVID can be defined based on the spectrum
of phenotypic features in the patients’ electronic health
records (EHR). Our previous analysis identified 287
clinical findings previously reported in studies on long
COVID and coded these findings using terms of the
Human Phenotype Ontology (HPO).10,12 Numerous al-
gorithms have been developed that define a fuzzy,
specificity-weighted similarity metric between a patient
and a computational disease model or between pairs of
patients.31–34 Here, we adapted an algorithm called
Phenomizer that calculates semantic similarity between
a pair of patients based on their phenotypic features
(Methods).22 Common clustering methods define
feature vectors with one field for each measured quan-
tity. In principle, one could define a feature vector with
287 dimensions, one for each of the clinical findings
related to long COVID, and for each clinical finding
identified in a patient, a “1” would be placed in the
corresponding field of the vector, otherwise a “0”. Pa-
tient similarity could then be measured by calculating
the cosine between any two such vectors, which essen-
tially counts the number of exact matches normalised by
the total number of features in each vector. This pro-
cedure would not capture the fact that some features are
similar. For instance, although dyspnea and hypoxemia
are both abnormalities of respiratory physiology, they
are represented by different fields in the feature vector
and thus if one patient was recorded to have dyspnea
and another hypoxemia, this would not contribute to the
similarity score. Another drawback to a simple 0/1
feature vector for the 287 clinical findings would be that
matches between more or less specific findings would
be weighted equally. The Phenomizer algorithm uses
the structure of the ontological hierarchy to identify
partial matches between related clinical findings, and it
leverages the information content of each term, which is
a measure of specificity, to weight the matches. The
Phenomizer is thus a nonlinear mapping from the
original feature space of clinical findings to a pairwise
similarity matrix that implements a fuzzy, specificity-
weighted matching strategy. The resulting similarity
5
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Long COVID patients with 
 rich HPO data

n = 6,469

Patients with U09.9 (Long COVID) diagnosis 
n = 20,532

N3C patients
n = 13,998,246

COVID-19+ patients
n = 5,434,528

Patients from data partners 2-6
n = 4,213

Patients from data partner 1
n = 2,256

Patients from other data partners
n = 12,609

Data partner with 
most U09.9 
patients

Data partners with average long COVID 
HPO terms per patient > 5 AND > 750 

U09.9 patients, patients >= 1 HPO term

For clustering For assessing 
generalizability

Not analyzed
Other data 

partners

Fig. 1: Cohort construction. Patients with long COVID (U09.9 diagnosis) were extracted from the much larger dataset of the N3C. Long COVID
patients were selected from the six data partners that provided data for at least 300 U09.9 patients and had an average of at least 7 long COVID
HPO terms per patient. The data partner with the most U09.9 patients (data partner 1) was chosen for clustering, and additional U09.9 patients
from five other data partners (data partners 2–6) were chosen to assess generalizability.
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matrix can be used as input to a number of clustering
algorithms (Fig. 2).

To leverage this procedure for analysis of N3C data,
we mapped the 287 long COVID-associated HPO
terms10 to corresponding Observational Medical Out-
comes Partnership (OMOP) codes13 (see Methods). Of
these, 118 terms were identified in the data
(Supplemental Tables S1–S11). The terms not found in
the data largely were clinical or patient-reported features
that are not commonly represented in EHR data, such as
Centrilobular ground-glass opacification on pulmonary
HRCT (HP:0025180) or Ocular pruritus (HP:0033841),
and were not included in further analyses.

We selected data partners that provided at least 750
U09.9 patients and an average of at least five HPO terms
per patient (Fig. 1). This threshold was chosen to
include data partners with a sufficient number of pa-
tients with a sufficient depth of phenotypic information
available in EHR data to assess patient similarity. For
clustering, we selected U09.9 patients from the data
partner (referred to here as data partner 1, as data reg-
ulations disallow use of real data partner names or IDs)
that supplied data for the greatest number of U09.9
patients (2256 patients with at least one long COVID
HPO phenotypic feature). For assessment of the
generalizability of the clusters to other data partners, we
selected the remaining U09.9 patients who had at least
one long HPO phenotypic feature from the remaining
data partners (referred to here as data partners 2–6,
again due to data regulations) (4213 patients). We
calculated the frequency with which each term was used
in the total group of 2256 patients from data partner 1
and used this value to determine the information con-
tent (a measure of specificity; see Methods) for each
term.

In order to calculate pairwise phenotypic similarity of
patients at data partner 1 for clustering, we leveraged the
Phenomizer algorithm to calculate a 2256 × 2256 simi-
larity matrix for the 2256 patients with at least one HPO
term at data partner 1. K-means clustering was applied
to the data and the number of clusters was determined
to be 6 based on visual inspection of the ‘elbow’ curve
(Fig. 3; Supplemental Figure S1). We note that although
the determination of cluster number by this method is
subjective, the major findings were similar with 4 or 5
clusters (Supplemental Figures S2 and S3).
Characterization of PASC clusters
We characterised the features of each of the six clusters
with respect to age, gender, and race/ethnicity (Table 1).
The six clusters contained between 250 and 500 pa-
tients, and differed significantly with respect to rate of
hospitalisation, age, gender, and ethnicity. Results of
post-hoc analysis (see Table 1 and additional details in
Supplemental Tables S14–S17) found statistically sig-
nificant differences suggesting that Cluster 1 contains a
larger proportion of patients with acute infection,
Cluster 6 contains a larger proportion of females,
Cluster 1 and Cluster 2 contain older patients, Cluster 3
contains a higher proportion of White non-Hispanic
people, while Cluster 5 contains a lower proportion of
www.thelancet.com Vol 87 January, 2023
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Fig. 2: Calculating patient semantic similarity based on HPO phenotypes. A) HPO terms are arranged in a directed acyclic graph with specific
terms such as Bradycardia (HP:0001662) being related to more general terms (here: Arrhythmia; HP:0011675) by subtype relations. An excerpt
of the entire ontology (15,247 terms) is shown. B) Example showing a pair of patients with relatively high phenotypic similarity; for each of the
HPO terms in patient 1, the best match is sought in patient 2. If an exact match is not found, the algorithm searches for the most informative
common ancestor (MICA) in the ontology; the information content (a measure of specificity) of the exact matching term or most specific
ancestor term is calculated to determine the specificity. For instance, Visual hallucinations (HP:0002367) and Auditory hallucinations
(HP:0008765) are not an exact match, so the information content of their MICA Hallucinations (HP:0000738) is chosen. Hallucinations
(HP:0002367) is still relatively specific (and shown in grey), while the MICA of Angina pectoris (HP:0001681) and Hypotension (HP:0002615) is
more general (shown in red) and contributes less to the matching score. C) Example of a pair of patients with a relatively lower similarity due to
(specific) fewer exact matches and one unmatched term. The pairwise similarity is calculated in this way for all pairs of patients to construct the
similarity matrix that is used for clustering (Fig. 3).
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White non-Hispanic people (significant differences are
shown in Table 1 using CLD notation).

To further characterise each of the six clusters, we
identified HPO terms that tended to occur among
patients in certain clusters (Fig. 4). Of the 287 HPO
terms we identified as being used in published cohort
studies on long COVID,10 only 118 were identified in
our data. The presence or absence of each of the 118
HPO terms used for clustering was treated as a
www.thelancet.com Vol 87 January, 2023
categorical variable whose distribution among the six
clusters was assessed using a chi-squared test. Of the
118 HPO terms, 63 were significantly correlated with
cluster membership following Bonferroni correction.
Of these, 29 terms had a corrected p-value of less
than 10−5 and were present in at least 20% of patients
in one or more clusters. These terms were therefore
considered to be the features that best defined the
clustering.
7
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Fig. 3: Patient similarity matrix illustrating long COVID subtypes
in data partner 1. A heatmap representing the 6 clusters created by
k-means clustering is shown. Cluster hierarchy was calculated using
the nearest point algorithm and Euclidean distance.

Feature

n

Inpatient**

Age - mean ± SD**

Female**

White Non-Hispanic*

Black or African American

Other/Unknown

For the overall study popula
for which there were fewer
re-identification. **p < 0.00
significant by omnibus tests
The results of adjusted pair
significant (details in Suppl

Table 1: Characteristics o
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HPO terms were classified into these categories:
cardiovascular, constitutional, endocrine, ear nose and
throat (ENT), eye, gastrointestinal, immunology, labo-
ratory, neuropsychiatric, pulmonary, and skin. The
constitutional category encompasses symptoms and
findings such as Fatigue (HP:0012378), Night sweats
(HP:0030166), and Xerostomia (HP:0000217) that cannot
be unambiguously assigned to a single organ system.
UpSet plots36 were used to visualise the salient charac-
teristics of each cluster according to these categories.
UpSet visualisations show not only the most common
categories, but also the most common combinations of
categories. For instance, in cluster 1, patients most
commonly had HPO terms from the categories
Overall Cluster 1 Cluster 2 Cl

2256 262 491 33

440 (19.5%) 89 (34.0%) a 103 (21.0%) b 55

53.0 ± 16.7 57.7 ± 15.0 a 55.1 ± 17.1 a 51

1403 (62.2%) 141 (53.8%) a 268 (54.6%) a 21

1787 (79.2%) 207 (79.0%) ab 398 (81.1%) ab 28

Non-Hispanic 109 (4.8%) <20 20 (4.1%) <2

360 (16%) 43 (16.4%) 73 (14.9%) 40

tion and for each cluster, age, gender, and race/ethnicity are shown. Data for characteristi
than 20 patients overall (Other Non-Hispanic, Native Hawaiian or Other Pacific Islander
1 by one-way ANOVA (age) or chi squared test (all others). *p < 0.05 by chi squared t
. For categorical variables, we computed pairwise chi-square tests while we used Dunn’s t
wise comparisons are summarised using Compact Letter Display (CLD). The CLD metho
emental Table S14). For instance, a cluster marked “a” is significantly different from a c

f the study population in data partner 1.
pulmonary, neuropsychiatric, laboratory, constitutional,
gastrointestinal, cardiovascular, and ear nose throat
(ENT), and pulmonary. Although there was some over-
lap in the distribution of features, the profiles of terms
and categories were distinct for the six clusters (Fig. 4).
The six PASC clusters differ with respect to
frequencies of clinical manifestations
For ease of exposition, we refer to the six clusters ac-
cording to the category or categories of the HPO terms
showing the highest degree of enrichment. We refer to
cluster 1 as multisystem + lab, because patients in this
cluster had a high frequency of terms in the multiple
categories: neuropsychiatric, pulmonary, constitutional,
cardiovascular, gastrointestinal and ENT (vertigo) as
well as multiple laboratory abnormalities. Patients in
cluster 2, which we refer to as the pulmonary cluster,
had high frequencies ofHypoxemia and Cough. We refer
to cluster 3 as neuropsychiatric because of the relatively
high frequencies of the terms Headache, Insomnia,
Depression, Sleep apnea, Abnormality of movement, and
Paresthesia. We refer to cluster 4 as cardiovascular
because of the high frequency of Tachycardia, Palpita-
tions, Hypoxemia (and also Pulmonary embolism, which
because of the ontological structure of the HPO is a
subclass of both the pulmonary and the cardiovascular
subhierarchies). Cluster 5 is referred to as the pain/fa-
tigue cluster because of the relatively high frequencies
of Pain, Chest pain, and Fatigue. Finally, cluster 6 had a
similar distribution of terms as cluster 1, but substan-
tially lower frequencies of the laboratory abnormalities.
Cluster 6 had the highest frequency of Pain of any
cluster. Therefore, we refer to cluster 6 as the
multisystem-pain cluster. Details are shown in Fig. 5A,
and the results of post hoc testing are shown in 5B. For
the latter, the proportion of patients in each cluster who
had one or more of the manifestations in each category
was compared by pairwise chi-squared testing.
uster 3 Cluster 4 Cluster 5 Cluster 6

4 250 500 419

(16.5%) b 38 (15.2%) b 89 (17.8%) b 66 (15.8%) b

.9 ± 16.9 b 51.7 ± 16.1 b 52.1 ± 17.8 b 50.2 ± 15.2 b

1 (63.2%) a 165 (66.0%) ab 306 (61.2%) a 312 (74.5%) b

1 (84.1%) a 204 (81.6%) ab 377 (75.4%) b 320 (76.4%) ab

0 <20 22 (4.4%) 25 (6.0%)

(12%) 29 (11.6%) 35 (12.8%) 74 (17.7%)

cs for which there were fewer than 20 patients, and data about race/ethnicities
Non-Hispanic, Asian Non-Hispanic) are not shown to reduce the risk of patient
est. We applied post-hoc tests on categorical and numeric variables that were
est35 for numerical variables. Bonferroni correction was performed in both cases.
d uses letters to mark groups for which the differences were not statistically
luster marked “b” but not from another cluster marked “a” or “ab”.
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Fig. 4: Phenotypically characterising long COVID subtype clusters. Shown are the most frequently co-occurring combinations of categories of
HPO terms representing long COVID phenotypic features for patients in the overall cohort (A) and for each of the 6 clusters (B). Only those
categories are shown that were found to be significantly correlated with cluster membership (chi-squared test, p < 0.00001). For the overall
population of patients in data partner 1 and for each cluster, the frequency of each category of long COVID HPO terms (left) and the frequency
of the three most common combinations of HPO categories (top) are shown (Six combinations are shown for cluster 5 because of a tie.)
Notably, most clusters contain some widely shared features, but also distinguishing features such as symptoms in the pulmonary, neuro-
psychiatric, and cardiovascular systems. Data are shown as UpSet plots, which visualise set intersections in a matrix layout and show the counts
of patients with the combination indicated by the black dots as bars above the matrix.36

Articles
The multisystem-lab cluster 1 is characterised by
manifestations suggesting increased clinical
severity
The clustering described above relied solely on HPO
terms that represent phenotypic abnormalities identi-
fied 4 weeks or more following COVID-19 diagnosis.
We analysed the clusters for differences in the distri-
bution of other variates. As shown by post-hoc tests the
multisystem-lab cluster contained a higher proportion of
inpatients (34.0%) compared to any other cluster and
the mean age of 57.7 years was higher (see Table 1 and
Supplemental Tables S14–S17).

The multisystem-lab cluster showed a high frequency
of post-acute COVID-19 laboratory abnormalities that have
been associated with severe course of acute COVID-19,
namely, Lymphopenia (HP:0001888), Elevated circulating
alanine aminotransferase concentration (HP:0031964),
Increased circulating ferritin concentration (HP:0003281),
Elevated circulating alkaline phosphatase concentration
(HP:0003155), Hypocalcemia (HP:0002901), and Thrombo-
cytopenia (HP:0001873).37–42 Further, post-hoc tests
www.thelancet.com Vol 87 January, 2023
suggested that this cluster contains higher proportions of
patients with (either pre-existing and/or contextual to
COVID-19) acute kidney injury (AKI, see Tables 2 and 3)
and steroid usage (Table 3). This suggests that this cluster
may represent patients with residual manifestations of
more severe COVID-19 and/or long COVID manifesta-
tions, although severity cannot unambiguously be inferred
from EHR data. Patients in cluster 1 showed a higher
mortality, a finding that was generalizable to other data
centres (see below).

In the entire cohort, 61.2% of patients were
female. In the multisystem-lab cluster characterised by
a severe clinical course, only 53.8% of patients were
female. This was significantly different from the
multisystem-pain cluster in which 74.5% of patients
were female (See Table 1). Evidence available prior to
our study suggests that sex differences exist that in-
fluence the clinical course of COVID-19. For instance,
although males are more likely to be hospitalised or
die with acute COVID-19, females are more likely to
develop long COVID.43
9
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Fig. 5: Summary of phenotypic feature distribution in the six clusters. A) The HPO terms corresponding to different phenotypic features are
grouped in HPO categories shown on the left. Categories are colour-coded and are in the same order as shown in panel B. Laboratory ab-
normalities are grouped together because of their association with severe COVID-19 (see text). HPO terms are shown if at least 20% of patients
in at least one cluster had the corresponding phenotypic feature and if Pearson’s chi-squared test found a significant difference (p < 0.00001) in
the phenotypic feature distribution. B) Post hoc analysis of categories of long COVID HPO phenotypic features by cluster. For each category of
Long COVID HPO phenotypic feature, we performed a post hoc analysis (pairwise chi-squared test with Bonferroni correction) to assess dif-
ferences between clusters. For each category, the percent of patients from each cluster that have at least one HPO term in the given category
are shown, and red and blue cells mark the CLD group having the highest and lowest proportion, respectively. Letters a–e indicate CLD groups
between which differences for the given category are statistically significant according to post hoc analysis (Methods).
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The six PASC clusters differ with respect to
pre-existing comorbidities
To investigate how clinical features before or during
COVID-19 infection correlated with cluster member-
ship, we assessed the distribution across the six clusters
of 44 clinical features determined prior to acute COVID-19
or during acute COVID-19. Of these, 13 displayed a sta-
tistically significant difference between clusters and are
shown in Tables 2 and 3. Among parameters that were
present before acute COVID-19 (Table 2), 10 differed
significantly between clusters, mainly showing a higher
frequency in the multisystem-lab cluster (as per post-hoc
www.thelancet.com Vol 87 January, 2023
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Pre-existing clinical feature Cluster 1.
Multisystem + lab

Cluster 2.
Pulmonary

Cluster 3.
Neuropsychiatric

Cluster 4.
Cardiovascular

Cluster 5.
Pain/fatigue

Cluster 6.
Multisystem-pain

Acute kidney injury 24.8% a 8.1% b 11.1% b 9.2% b 10.4% b 7.9% b

Chronic lung disease 44.7% a 28.7% bc 29.6% bc 30.8% bc 23.8% b 33.9% ac

Depression 32.1% a 21.2% b 37.7% a 16.4% b 20.8% b 37.0% a

Diabetes (complicated) 28.6% a 12.0% b 8.7% b 7.2% b 10.2% b 11.0% b

Diabetes (uncomplicated) 38.9% a 20.4% b 16.2% b 17.2% b 19.2% b 21.0% b

Hypertension 60.7% a 44.2% b 40.4% b 36.0% b 36.2% b 42.7% b

Immunocompromised (other) 14.9% a 7.9% ab 7.5% ab 4.0% bc 2.4% c 7.4% b

Kidney disease 29.0% a 12.0% b 14.1% b 9.6% b 9.8% b 12.6% b

Mild liver disease 17.9% a 5.5% b 8.1% b 6.4% b 6.8% b 9.5% b

Peripheral vascular disease 14.1% a 5.5% b 5.1% b 2.0% b 5.0% b 4.1% b

The 10 of 45 clinical features present before COVID-19 infection (Supplemental Table S12) that were significantly overrepresented in clusters (chi squared p < 0.001 after Bonferonni correction) and the
percent of patients in each cluster with each clinical feature are shown. Letters a-c indicate CLD groups between which differences for the given pre-clinical feature are statistically significant according to
post hoc analysis (Methods).

Table 2: Clinical features of patients before acute COVID-19 infection by cluster.

Articles
analysis). The risk of long COVID has been shown to be
associated with the number of comorbidities.44 These ob-
servations are consistent with the notion that the
multisystem-lab cluster is composed of patients with more
severe clinical manifestations, and that there may be
different risk factors for clusters 2–6.

Post-hoc analysis also confirmed that covariates
during acute COVID-19 whose frequencies were higher
in the multisystem-lab cluster included acute kidney
injury (AKI) and corticosteroid medications that also
may be proxies for a severe clinical course (Table 3).
Severity of acute COVID has been associated with risk
of persistent symptoms in some studies.45 Although the
frequency of depression as a pre-existing comorbidity
was highest in the neuropsychiatric cluster (Table 2),
post hoc tests failed to find statistically significant dif-
ferences when comparing it to the proportions of pre-
existing depression in the multisystem-lab and the
multisystem pain clusters.
Generalisability of clusters to new data partners
The results presented in the previous sections were
generated with data from data partner 1. We assessed
the generalizability of the clustering results for four
additional data partners (data partners 2–6, Fig. 1) by
comparing each patient from these data partners to the
Clinical feature during COVID-19 Cluster 1.
Multisystem + lab

Cluste
Pulmo

Acute kidney injury 14.5% a 6.3%
Corticosteroid regimen 30.2% a 19.8%
COVID diagnosis during hospitalisation 34.0% a 21.0%

The 3 of 43 clinical features present during COVID-19 infection (Supplemental Table S1
percent of patients in each cluster with each clinical feature are shown. Letters a and b i
post hoc analysis (Methods).

Table 3: Clinical features of patients during acute COVID-19 infection by clu
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patients in each cluster from data partner 1 and also to
randomly permuted clusters (Methods). If the clusters
in data partner 1 did not generalise at all to other data
partners, we would expect that patients from other data
partners would be equally similar to the patients of any
of the clusters in data partner 1.

We observed that patients from data partners 2–6
were much more similar to clusters from data partner 1
compared to randomly permuted clusters. The mean
similarity ranged from 0.202 to 0.211 for test data
partners 2–6 for the randomly permuted clusters, but
the observed mean similarities to the original clusters at
data partner 1 ranged from 0.283 to 0.319, correspond-
ing to z-scores of 28.6–65. The mean similarity score for
the randomly permuted clusters was never as high as
the observed score over 1000 permutations, corre-
sponding to an empirical p-value of less than 0.001 for
each of the data partners 2–6. This strongly suggests
that clusters identified in data partner 1 generalise to
patients from other data partners (Table 4).
The multisystem-lab clusters is characterised by
higher mortality reproducibly across data partners
1–6
Because of the indications that the multisystem-lab
cluster may be characterised by greater clinical
r 2.
nary

Cluster 3.
Neuropsychiatric

Cluster 4.
Cardiopulmonary

Cluster 5.
Pain/fatigue

Cluster 6.
Multisystem-pain

b 4.2% b 4.4% b 4.8% b 4.1% b
b 14.1% b 14.4% b 15.4% b 13.8% b
b 16.2% b 15.2% b 17.6% b 15.8% b

3) that were significantly overrepresented in clusters (chi squared p < 0.001 after Bonferonni correction) and the
ndicate CLD groups between which differences for the given clinical feature are statistically significant according to

ster.
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Test data partner Similarity to permuted clusters Observed mean similarity Z-score Empirical p-value

2 0.211 ± 0.0032 0.302 28.6 <0.001

3 0.208 ± 0.0017 0.318 65.0 <0.001

4 0.21 ± 0.0026 0.319 42.6 <0.001

5 0.202 ± 0.0022 0.283 36.3 <0.001

6 0.204 ± 0.0022 0.294 40.5 <0.001

The similarity of patients from test data partners 2–6 to patients in clusters made from data partner 1 clusters and to patients from randomly permuted clusters was
measured as in Fig. 2. For each test data partner, a random 10% sample of patients from test data partner and data partner 1 was selected. The average similarity of its
patients to the best matching randomly permuted cluster and to the best matching cluster from data partner 1 are shown along with the Z-score and p-value. Results are
representative of five duplicate experiments with different random samples. The empirical p-value reflects the number of times that the similarity of a permuted dataset
was higher than that of the observed clusters (this never occurred).

Table 4: Generalisability of clusters in patients from new data partners.
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severity, we assessed recorded mortality in the time
period subsequent to acute COVID-19. We assigned
patients from data partners 2–6 to the original six
clusters according to the maximum mean similarity of
patients in those clusters (Methods). In these patients,
the majority of cases of recorded mortality occurred in
patients assigned to clusters 1 (counts less than 20 are
masked for data privacy reasons). We performed a chi-
squared test of the null hypothesis that the proportion
of mortalities in the clusters was uniform. The observed
correlation between mortality and cluster membership
was statistically significant for the analysis of clustered
patients in data partner 1 (p = 5×10−5) and in data
partners 2–6 (p = 5×10−5) using a Fisher’s exact test
calculated by the Monte Carlo method with 100,000
permutations (Table 5).

Discussion
According to the WHO, approximately 10–20% of pa-
tients with COVID-19 may experience new-onset,
lingering or recurrent clinical symptoms after acute
infection. This has been termed ‘post-acute sequelae of
SARS-CoV-2 infection’ (PASC) or long COVID.
Cluster Data Partner 1
deaths total

1 - multisystem+lab 33 262
2 - pulmonary <20 491
3 - neuropsychiatric <20 334
4 - cardiovascular <20 250
5 - pain/fatigue <20 500
6 - multisystem-pain <20 419

Data partner 1 was the source of data for generating the six clusters. Patients from data
total number of patients, and percentage of patients with recorded death in each cluster are

Table 5: Recorded deaths according to cluster.
Definitions of long COVID in the literature vary, and the
frequencies and time course of phenotypic manifesta-
tions following acute COVID-19 are highly heteroge-
neous.10 This observation raises the question of whether
long COVID can be stratified into well delineated and
reproducible subtypes, or whether the degree of het-
erogeneity is so high that stratification is impossible.
This is critically relevant for defining sub-cohorts in
clinical research studies such as the NIH program
“Researching COVID to Enhance Recovery
(RECOVER),” and for identifying candidate therapeu-
tics. ML clustering methods offer a data-driven approach
to stratification of patients that can reveal such subtypes
in the face of this new and heterogeneous disease.

Evidence available prior to our study suggests that
important clinical differences do exist that influence the
susceptibility to subsequent complications of COVID-19.
For instance, although males are more likely to be hos-
pitalised or die with acute COVID-19, females are more
likely to develop long COVID.43 It is possible that the
pathophysiology of long COVID may be multifactorial in
origin. Conceivably, the biological underpinnings of long
COVID may vary among individuals as a function of
Data Partners 2-6
% deaths total %

92 1490
<20 435
<20 322
<20 539

0 <20
<20 1312

partners 2–6 were assigned to these clusters (Methods). Number of recorded deaths,
shown.
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baseline risk factors, resulting in different general phe-
notypes of long COVID, the treatment or prevention of
which may need to be specifically tailored using precision
medicine in order to achieve optimal outcomes. As a first
step, we sought to use unsupervised learning to delineate
potential subtypes of patients with long COVID with
differing clinical characteristics. We identified six pub-
lished studies that present clusters from either patient-
reported data (in four studies) or manually recorded
clinical data (two studies) with cohorts of between 145
and 3762 patients. The studies report two or three clus-
ters based on different types of input data, making study
comparison challenging. None of the studies were based
on EHR data and no assessment of generalisability to
other data partners was presented.9,46–50

Here we have presented a method for semantic
clustering of long COVID patients based on HPO-
encoded EHR data. We further present a method for
assessing generalisability of the identified subtypes or
clusters across different data contributing sites.
Ontology-based algorithms differ from machine
learning and other algorithms in many ways. Coding
numerical data with HPO implies that parameters are
simplified into categories. Although this loss of nu-
merical data reduces precision in data granularity,
simplification allows powerful simultaneous analysis of
all phenotypic observations using semantic similarity
that can take the relatedness of concepts into account.

Our method for assessing patient–patient similarity
using the Phenomizer algorithm generates an essen-
tially continuous similarity value from arbitrary sets of
HPO terms that characterise any two patients. An
alternative method would be to encode the 287 HPO
terms as a 287-dimensional feature vector and to mea-
sure similarity for example using dot product (cosine) of
these vectors. The Phenomizer algorithm has several
advantages over the feature vector method: it does not
suffer from sparse count issues that may make clus-
tering less robust,51 and it takes advantage of the simi-
larity between individual items using the structure of
the HPO in a way that a feature vector cannot.22 This
approach has proven powerful both in the support of
differential diagnosis of rare disease and in efforts to
enable longitudinal analysis of EHR data as a means of
identifying gene–phenotype associations with Mende-
lian forms of epilepsy,52,53 but has never before been
applied in the context of infectious disease EHR data
and methods for assessing generalisability have not
previously been presented.

We have shown that unsupervised learning based on
semantic clustering identifies phenotypic profiles that
are reproducible across data partners with a high degree
of statistical significance. The six clusters that emerged
demonstrated non-uniform frequencies of symptoms
and clinical findings across an array of features, span-
ning constitutional/systemic symptoms and pain, car-
diac, respiratory, gastrointestinal, and neurologic
www.thelancet.com Vol 87 January, 2023
symptom domains, with some degree of overlap but
clear distinctions between various groups. We interpret
our multisystem-lab cluster as comprising patients with
a severe course of acute COVID-19 because of the
higher hospitalisation rates (Table 1) and mortality
(Table 3). It is possible that this cluster represents a
subtype of long COVID that results from severe acute
COVID-19. Our findings confirm and extend previous
findings of a steeper risk gradient for long COVID
manifestations that increases according to the severity of
the acute COVID-19 infection.54

We suggest that analogous algorithms could be used
to evaluate data gathered from prospective studies of
long COVID patients to extend and deepen our char-
acterization of phenotypic clusters by including data that
are currently difficult to ascertain reliably from EHR
data, including symptoms such as Asthenia
(HP:0025406) or Exertional dyspnea (HP:0002875) and
radiology findings (which are typically not represented
using structured fields in EHR data and are underrep-
resented in OMOP datasets). The recently released
Phenopacket Schema of the Global Alliance for Geno-
mics and Health (GA4GH) provides a standardised way
to record clinical findings including phenotypic fea-
tures, measurements, biospecimens, and medical ac-
tions over the time course of a disease as a
computational case report.55 Recording clinical data with
the Phenopacket Schema would promote data sharing
and comparability of results from different studies.
Study limitations
While our study provides insight into the variability and
natural history of long COVID, there are limitations that
should be considered. While the U09.9 code provides a
simple inclusion criterion, its application in health sys-
tems across the country is not uniform and may differ
across data partners. Also, since the use of the code
began only recently, patients with long COVID that were
diagnosed prior to the introduction of the code are not
included, limiting our ability to compare the current
clinical manifestations with those observed earlier in the
pandemic before widespread vaccination and with
different distributions of SARS-CoV2 strains and vari-
ants. However, in a pilot study in Denmark, coding with
U09.9 was found to have a positive predictive value of
94% for long COVID.56

Our ability to capture clinical manifestations of long
COVID is limited by the accessibility of clinical data in
EHR systems. Of the 287 HPO terms we identified as
being mentioned in published cohort studies on long
COVID,10 only 118 are present in our data. The reasons
for this presumably include unstructured data such as
symptoms and radiological findings that are not well
represented in the OMOP data that is the source of our
data. Examples include Gaze-evoked nystagmus
(HP:0000640), Pericardial effusion (HP:0001698), and
13
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Exercise intolerance (HP:0003546) that are typically
diagnosed using specialist examinations or medical
history that may not be easily coded in structured EHR
fields. Additionally, several common manifestations of
long COVID, including dysautonomia,57 are less docu-
mented in EHR data in part due to the difficulties in
recognizing these illnesses clinically and the fact that
relevant findings may not be well represented in struc-
tured fields including the OMOP data available in N3C.

Our study uses the newly minted ICD code U09.9 to
identify patients with PASC/long COVID. At the time of
this writing, a relatively small number of labelled pa-
tients was available for analysis. Furthermore, the pop-
ulation defined by these patients is not fully
representative of the American population; for instance,
the proportion of African Americans in our study (∼5%)
is lower than the proportion of African Americans
among the entire population. As more data accrues,
future work will be required to characterise the role of
social determinants of health that are confounded with
race in our society in determining long COVID sub-
types. It is likely that many additional long COVID pa-
tients are present in the N3C dataset who have not
received the U09.9 diagnosis code, and it is possible that
this fact could introduce a bias into the data analysed in
this study. Additionally, the group of patients who pre-
sent for medical care for long COVID symptoms and
receive a U09.9 diagnostic code may not be represen-
tative of the entire population of patients with long
COVID manifestations.

Our exploration of k-means clustering results with
different values of k from 2 to 8 showed that increasing
the number of clusters tended to subdivide existing
clusters hierarchically. Although numerous methods for
determining the ‘best’ number of clusters are available,
there is no objective definition of optimum that applies
to all applications, and the choice of k is perforce sub-
jective in nature. Our main findings of generalisable
phenotypic clusters pertain also for values of k of 4 and 5
(Supplemental Figures S2 and S3).

Conclusions
We have presented a novel algorithm for semantic
clustering that identifies patient similarity by trans-
forming EHR data to phenotypic profiles using the
HPO, and identified long COVID subtypes that show a
statistically significant degree of generalizability of
clusters across different medical centres. There was a
significant association of cluster membership with a
range of pre-existing conditions and with measures of
severity during acute COVID-19. One of the clusters
(multisystem-lab) was associated with severe manifes-
tations and displayed increased mortality, and other
clusters showed enrichment for pulmonary, neuropsy-
chiatric, cardiovascular, pain/fatigue, and a multi-
system/pain profile not associated with significantly
increased mortality. Additionally, we show that the
identified clusters were generalizable across different
hospital systems and that the increased mortality rate
was consistently observed in the multisystem-lab clus-
ter. Semantic phenotypic clustering could provide a
basis for assigning patients to stratified subgroups for
natural history or therapy studies.
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