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ABSTRACT

We previously reported the chemical synthesis of
oligonucleotides containing thymine glycol, a major
form of oxidative DNA damage. In the preparation
of the phosphoramidite building block, the predom-
inant product of the osmium tetroxide oxidation of
protected thymidine was (5R,6S)-thymidine glycol.
To obtain the building block of the other isomer,
(55,6 R)-thymidine glycol, in an amount sufficient
for oligonucleotide synthesis, the Sharpless asym-
metric dihydroxylation (AD) reaction was examined.
Although the reaction was very slow, (5S,6R)-
thymidine glycol was obtained in preference to the
(5R,6S) isomer. The ratio of (5S5,6R)- and (5R,6S)-
thymidine glycols was 2:1, and a {trans isomer
was also formed. When an ionic liquid, 1-butyl-3-
methylimidazolium hexafluorophosphate, was used
as a co-solvent, the reaction became faster, and the
yield was improved without changing the preference.
The phosphoramidite building block of (5S,6R)-
thymidine glycol was prepared, and oligonucleo-
tides containing 5S-thymine glycol were synthesized.
One of the oligonucleotides was used to analyze the
binding of distamycin A to thymine glycol-containing
DNA by Circular dichroism (CD) spectroscopy and
surface plasmon resonance (SPR) measurements.
Distamycin A bound to a duplex containing either
isomer of thymine glycol within the AATT target
site, and its binding was observed even when the
thymine glycol was placed opposite cytosine.

INTRODUCTION

Thymine glycol (5,6-dihydro-5,6-dihydroxythymine) is a
major type of oxidative DNA damage that results from the
reaction of a thymine base with reactive oxygen species gen-
erated by ionizing radiation (1) or as a consequence of aerobic
metabolism (2). While this damage causes mutations only at
a low frequency (3), it effectively blocks DNA replication (4)
and must be repaired by the base excision repair pathway (5).
There are four diastereomers of thymine glycol, i.e. (5R,6S),
(5R,6R), (5S,6R) and (5S5,6S), but thymine glycol exists as
either the 5R cis—trans pair [(5SR,6S) and (5R,6R)] or the 55
cis—trans pair [(5S,6R) and (55,6S)] in solution, due to epi-
merization at the C6 position (6). It has been reported that
the SR and 5S isomers are formed in equal amounts in
v-irradiated DNA (7), but the oxidation of thymidine or
thymidine-containing oligonucleotides preferentially yields
(5R,6S)-thymine glycol (8,9). We observed the same prefer-
ence [the ratio of the (5R,6S) and (5S5,6R) isomers was 6:1] in
our previous study on the chemical synthesis of thymine
glycol-containing oligonucleotides using a phosphoramidite
building block (10), and a large-scale preparation was
required to obtain (55,6R)-thymidine glycol in a yield suffi-
cient for its incorporation into oligonucleotides (11). Bio-
chemical studies on translesion replication (12,13) and base
excision repair (14-16) revealed that the stereochemistry
of thymine glycol is recognized by proteins responsible
for these biological processes. Therefore, it is becoming
more important to synthesize oligonucleotides containing
each isomer of thymine glycol, which can be used for com-
parative experiments. The problem to be solved is the devel-
opment of a practical method to obtain the building block
of (55,6R)-thymidine glycol. Here we report the synthesis
of (5S,6R)-thymidine glycol, using Sharpless asymmetric
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dihydroxylation (AD) (17), and its incorporation into oligo-
nucleotides. This reaction was previously employed by
Barvian and Greenberg (18) to synthesize (5S,6R)-thymidine
glycol, but their study was only at the nucleoside level,
because the 5'- and 3'-hydroxyl functions of the sugar
moiety were both protected by the tert-butyldimethylsilyl
(TBDMS) group, which is unsuitable for oligonucleotide syn-
thesis. In our current study, the reaction was slow due to the
bulky protecting group, but the yield was improved using an
ionic liquid (19).

One of the oligonucleotides synthesized in this study was
used to analyze drug binding to thymine glycol-containing
DNA. Previously, we found that distamycin A, a natural
antibiotic, bound to DNA duplexes containing the (6-4)
photoproduct, one of the major types of ultraviolet (UV)-
induced lesions, although the photoproduct formation alters
both the chemical structure of the base moiety and the local
tertiary structure of the duplex (20). This compound did
not bind to a duplex containing the cis—syn thymine dimer,
another UV lesion, and the binding stoichiometry for
the AATT target site was changed to 2:1 upon the formation
of the (6-4) photoproduct. In the chemical structure, thymine
glycol resembles the 5’ component of the (6-4) photo-
product, and the thermodynamic properties of the duplexes
containing these lesions are similar to each other (11,21).
Therefore, we expected that distamycin A might be able to
bind to the duplexes containing thymine glycol in a similar
manner.

MATERIALS AND METHODS

For the chemical synthesis, the general methods were basically
the same as those reported previously (11). "H-NMR spectra
were measured on a JEOL AL-400 or Varian INOVA 600
spectrometer, and mass spectra were obtained on a Micromass
LCT spectrometer. High-performance liquid chromatography
(HPLC) analyses were carried out on a Gilson gradient-type
analytical system equipped with a Waters 2996 photodiode
array detector. Matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectra of oligo-
nucleotides were measured in the negative ion mode on an
Applied Biosystems Voyager DE PRO spectrometer, using
3-hydroxypicolinic acid as a matrix.

The sharpless AD reaction for the preparation of 2a

To a mixture containing K,0s04-2H,O (28.0 mg, 76 wmol),
(DHQ),PHAL (284 mg, 0.36 mmol), KsFe(CN)s (1.45 g,
4.41 mmol), K,CO5; (609 mg, 4.41 mmol) and methane-
sulfonamide (140 mg, 1.47 mmol) in tert-butanol and water
(1:1, v/v, 36ml), 5-0-(4,4'-dimethoxytrityl)-3'-O-benzoyl-
thymidine (1, 953 mg, 1.47 mmol) was added, and the resultant
mixture was stirred for 7 days. The mixture was cooled in an
ice bath, and Na,SO3 (2.42 g, 19.2 mmol) was added. After
stirring for 30 min on ice, the mixture was poured into water
(100 ml), and the products were extracted three times with
chloroform (200 ml in total). The organic layer was dried with
Na,SO, and concentrated in vacuo, and the products were
purified on silica gel (0-0.5% methanol in chloroform). The
starting material (1, 151 mg, 232 pumol) was recovered. Yield:

2a, 254 mg (372 umol, 25%); 2b, 141 mg (207 wmol, 14%);
trans isomer, 175 mg (256 umol, 17%).

For the synthesis using an ionic liquid, 1 (973 mg,
1.50 mmol) was added to a solution of K,0sO042H,O
(27.6 mg, 75 pmol), (DHQ),PHAL (292 mg, 375 pmol)
and 4-methylmorpholine N-oxide (900 mg, 7.68 mmol) in a
mixture of water, 1-butyl-3-methylimidazolium hexafluoro-
phosphate and fert-butanol (1:1:2, v/v/v, 12 ml), and this solu-
tion was stirred for 2 days. After the reaction mixture was
poured into water (100 ml), the products were extracted three
times with chloroform (200 ml in total) and were purified by
column chromatography. Wakogel C-200 (15 g, Wako Pure
Chemical Industries) was first used to obtain all of the products
together, and after the ratio of the products was determined by
NMR spectroscopy, the cis isomers were separated on Wako-
gel C-300 (30 g) eluted with chloroform. Yield: 2a, 410 mg
(600 umol, 40%); 2b, 179 mg (262 umol, 17%).

2a: TLC (chloroform—methanol, 10:1), Ry 0.57; '"H-.NMR
(CDCl3, 8, p.p.m.), 8.03 (dd, 2H, Bz, J = 7.2, 1.2 Hz), 7.60
(t, 1H, Bz, J = 7.4 Hz), 7.51-7.41 (m, 4H, Bz, DMT), 7.35
(s, 1H, NH), 7.34-7.21 (m, 7H, DMT), 6.83 (d, 4H, DMT,
J = 8.8 Hz), 6.48 (dd, 1H, HI', J = 8.3, 6.7 Hz), 5.65-5.61
(m, 1H, H3'), 5.01 (d, 1H, H6,J = 2.4 Hz), 4.23 (dd, 1H, H4/,
J = 6.6, 2.9 Hz), 3.77 (s, 6H, OCH3), 3.59 (d, 1H, 6-OH,
J =2.0 Hz), 3.50 (dd, 1H, H5, J = 10.8, 4.0 Hz), 3.39
(dd, 1H, H5, J =10.8, 2.8 Hz), 3.10 (s, 1H, 5-OH),
2.46-2.36 (m, 2H, H2'), 1.39 (s, 3H, CH3); ESI-TOF-MS,
caled [M + Na]™ = 705.2419, found 705.2406.

2b: TLC (chloroform—methanol, 10:1), Ry 0.54; '"H-NMR
(CDCls, 8, p.p.m.), 8.05 (dd, 2H, Bz, J = 7.2, 1.2 Hz), 7.59
(t, 1H, Bz, J = 7.4 Hz), 7.57-7.44 (m, 4H, Bz, DMT), 7.41
(s, 1H, NH), 7.37-7.28 (m, 7H, DMT), 6.85 (d, 4H, DMT,
J = 8.8 Hz), 6.33 (dd, 1H, HI’,J = 9.2, 5.2 Hz), 5.72 (d, 1H,
H3', J = 6.4 Hz), 5.27 (d, 1H, H6, J = 1.2 Hz), 4.23-4.20
(m, 1H, H4), 3.78 (s, 6H, OCH3), 3.57 (dd, 1H, H5',J = 10.4,
3.6 Hz), 3.46 (s, 1H, 5-OH), 3.32 (dd, 1H, H5, J = 10.4,
2.8 Hz), 2.83 (d, 1H, 6-OH, J = 1.6 Hz), 2.79-2.71
(m, 1H, H2"), 2.53-2.46 (m, 1H, H2'), 1.36 (s, 3H, CHjy);
ESI-TOF-MS, calcd [M + Na]* = 705.2419, found 705.2410.

Trans isomer: TLC (chloroform—methanol, 10:1), Ry 0.51;
'"H-NMR (CDCls, §, p.p.m.), 8.03 (dd, 2H, Bz, J = 7.2,
1.2 Hz), 7.59 (t, 1H, Bz, J = 7.2 Hz), 7.47-7.39 (m, 4H,
Bz, DMT), 7.33 (s, 1H, NH), 7.34-7.27 (m, 7H, DMT),
6.86 (d, 4H, DMT, J =84 Hz), 6.36 (dd, 1H, HI’,
J =96, 52 Hz), 572 (d, 1H, H3, J = 6.0 Hz), 530
(d, 1H, H6, J =52 Hz), 4.22-4.20 (m, 1H, H4"), 3.79
(s, 6H, OCH3), 3.61 (dd, 1H, H5', J = 104, 2.4 Hz), 3.50
(dd, 1H, HY, J = 10.6, 2.6 Hz), 2.75-2.68 (m, 1H, H2'),
2.65 (s, 1H, 5-OH), 2.55-2.50 (m, 1H, H2'), 2.46 (d, 1H,
6-OH, J = 5.2 Hz), 1.08 (s, 3H, CH3); ESI-TOF-MS, calcd
[M + Na]" = 705.2419, found 705.2412.

Deprotection of the isomers of thymidine glycol

Compound 2a, synthesized in the present study, or compound
2b, prepared by the previous method (10), (1.4 mg) was
dissolved in 0.5 M K,CO3/MeOH (0.7 ml). After 2.5 h, the
solution was mixed with 0.5 M sodium phosphate buffer
(pH 5.0, 0.8 ml), and the product was extracted with
chloroform. The organic layer was concentrated in vacuo,
and 80% acetic acid (2.0 ml) was added. After 1 h, the acetic



acid was removed by evaporation and co-evaporation with
water. Water and diethyl ether were added to the residue,
and after concentration, the aqueous layer was analyzed
by HPLC, using an Inertsil ODS-3 column (4.6 X 250 mm,
GL Science) eluted with 0.1 M triethylammonium acetate
(pH 7.0).

Oligodeoxyribonucleotide synthesis

The phosphoramidite building block of (5S,6R)-thymidine
glycol (3), prepared from 2a following the previous report
(11), was dissolved in anhydrous acetonitrile to a concentra-
tion of 0.1 M and was installed on an Applied Biosystems
Model 394 DNA/RNA synthesizer. Nucleoside phosphor-
amidites for ultramild DNA synthesis (Glen Research), as
well as the base-unprotected thymidine phosphoramidite,
were also dissolved in acetonitrile to make 0.1 M solutions
and were installed on the synthesizer. Oligonucleotides were
synthesized on a 1.0 wmol scale, and the reaction time for
the coupling of 3 was prolonged to 5 min. After chain assem-
bly and removal of the 4,4'-dimethoxytrityl (DMT) group at
the 5’ end on the synthesizer, the solid supports containing the
oligonucleotides were treated with 28% aqueous ammonia
(2 ml) at room temperature for 2 h. The resulting ammoniac
solutions were concentrated to dryness on a rotary evaporator
equipped with a vacuaum pump. The residues were dissolved
in triethylamine trihydrofluoride (500 pl, Aldrich), and the
mixtures were kept at 40°C overnight. After desalting on a
NAP-10 column (Amersham Biosciences), the oligonuc-
leotides were analyzed and purified by HPLC, using a
uBondasphere C18 5 um 300 A column (3.9 x 150 mm,
Waters) with a linear gradient of acetonitrile (5-11% for
the 13 and 14mers and 7-13% for the 30mer, 20 min) in
0.1 M triethylammonium acetate (pH 7.0).

Circular dichroism (CD) spectroscopy

The oligonucleotide duplexes shown in Figure 4 were prepared
by heating the mixtures of the two strands (5.0 nmol) in water
(50 ul) at 80°C for 3 min and cooling them to room temper-
ature. The CD spectra of the distamycin A-DNA complexes
were measured at 15°C on a JASCO J-805 spectrophotometer.
The sample solutions (600 pl) contained 2.5 uM each duplex,
500 mM NaCl and 10 mM sodium phosphate (pH 7.0), and
titrations were conducted by adding 1.5 pl aliquots of a
distamycin solution to increase the distamycin/duplex molar
ratio by 0.5.

Surface plasmon resonance (SPR)

Oligonucleotides bearing biotin at the 5’ end were synthesized
using 5’-biotin phosphoramidite (Glen Research), following
the manufacturer’s instructions. Oligonucleotide duplexes
were prepared by heating the mixtures of the lesion-
containing strand (3.0 nmol) and the biotin-linked strand
(2.5 nmol) in water (50 ul) at 80°C for 3 min and cooling
them to room temperarure. Experiments were performed on a
Biacore 2000 system, using streptavidin sensor chips (Biacore
Sensor Chip SA). The duplexes were immobilized at a flow
rate of 5 pl/min with a DNA concentration of 100 nM, using a
buffer containing 10 mM HEPES (pH 7.4), 150 mM NaCl,
3 mM EDTA and 0.005% surfactant P20, and the amount of
the immobilized duplex was 1000 resonance units (RUs). One
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flow cell was left intact and was used as a blank for reference.
The sensorgrams were collected at a flow rate of 20 pl/min,
using a buffer containing 10 mM sodium phosphate (pH 7.0),
500 mM NaCl, 3 mM EDTA and 0.005% Tween-20. All of the
experiments were performed at 15°C to avoid dissociation of
the duplexes.

RESULTS
AD of protected thymidine

We chose the DMT and benzoyl groups for the protection of
the 5’- and 3’-hydroxyl functions, respectively, because phos-
phoramidite building blocks of thymidine glycol for the
oligonucleotide synthesis had been successfully prepared
using these protecting groups (10,11). The AD reaction
using 5'-0-DMT-3'-O-benzoylthymidine (1) as the starting
material (Scheme 1) was very slow. When 5 mol% K,0s0,-2H,0O
and 25 mol% hydroquinine 1,4-phthalazinediyl diether
(DHQ),PHAL were used, following the previous report
(18), three products were detected, but the starting material
still remained after 7 days at room temperature. After puri-
fication of the products on silica gel, the configuration of the
base moiety was determined by NMR spectroscopy. As
described previously (10,11), none of the obtained products
showed a NOESY crosspeak between H6 and H1’, and the
configurations of thymine glycol in the products with and
without an NOE between H6 and H2' were assigned to
(5S8,6R) (2a) and (5R,6S) (2b), respectively. A trans isomer,
which had 5-CH3;-6-OH and 5-OH-H6 crosspeaks in the
NOESY spectra, was also obtained, as reported previously
(18), and the NMR spectra suggested that its configuration
was (55,6S). To confirm the stereochemistry, the cis products
were deprotected and characterized by reversed-phase HPLC.
Typical results are shown in Figure 1. The peaks of (5R,6S)-
thymidine glycol prepared by the previous method (10)
(Figure 1a) and the (5S,6R) isomer synthesized in the present
study (Figure 1b) were separated clearly in the co-injection
experiment (Figure 1c). It should be noted that the peak sep-
aration of the isomers was much improved, as compared
with that in the previous report (11), by using a different
column. The ratio of the (55,6R)-, (5R,65)-, and trans-thymine
glycols produced in the AD reaction was determined from
the "H-NMR spectra of a crude mixture before the separation
of the products. This ratio was 4:2:3, respectively, and the
isolation yield of the (55,6R) isomer was 25%. The lower
stereoselectivity, as well as the slow reaction and the low
yield, could be attributed to the bulky DMT group at the
5" position, which would prevent the complex formation.
The reaction rate and the yield were similar when the benzoyl
group at the 3’ position was changed to the TBDMS group
(data not shown).

Improvement using an ionic liquid as a co-solvent

We tried to improve the reaction rate. First, the concentrations
of the reagents were increased. When 10 mol% K,0s0,4-2H,0
and 50 mol% (DHQ),PHAL were used, all of the starting
material (1) was consumed within 3 days. However, it was
disadvantageous, because the ratio of (55,6R)- and (5R,6S5)-
thymine glycols became 3:2. As an alternative method, we
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Scheme 1. Synthesis of the phosphoramidite building block of (5S,6R)-thymidine glycol. Reagents and conditions: (i) K,0sO4-2H,0, (DHQ),PHAL, K3Fe(CN)g,
K,CO3, CH3SO,NH,, (CH3);COH, H,0, room temperature, 7 days; (i) Na,SO3, 0°C, 30 min; (iii) K,O0sO4-2H,0, (DHQ),PHAL, 4-methylmorpholine N-oxide,
(CH3);COH, H,O, 1-butyl-3-methylimidazolium hexafluorophosphate, room temperature, 2 days; (iv) TBDMS-CI (5 equiv), imidazole, DMF, 37°C, 24 h;
(v) K,CO3, MeOH, room temperature, 2 h; (vi) [(CH3),CH],NP(Cl)OCH,CH,CN, [(CH3),CH],NC,Hs, THF, room temperature, 30 min.

tried to use a room temperature ionic liquid as a co-solvent.
Branco and Afonso (19) reported that I-butyl- or 1-octyl-
3-methylimidazolium hexafluorophosphate could facilitate
the AD reaction and improve the enantiomeric excess.
Among the combinations they tested, we chose 1-butyl-3-
methylimidazolium hexafluorophosphate, 4-methylmorpho-
line N-oxide and PHAL as the co-solvent, the co-oxidant,
and the ligand, respectively, because using this combination
they obtained a good result in the AD reaction of 1-
methylcyclohexene, which was most similar to the thymine
base. In the same way as the previous experiment, 5 mol%
K>0s0,4-2H50 and 25 mol% (DHQ),PHAL were used. The
reaction was monophasic, and the starting material (1) was
consumed within 2 days. TLC analysis showed that the pro-
ducts were the same as those obtained with the conventional
solvent system. These products were roughly purified on silica
gel, and the putative mixture of (5S,6R)-, (5R,65)- and trans-
thymine glycols was analyzed by 'H-NMR spectroscopy.
It was found from the integration values of the methyl signals
that the ratio of these thymine glycols was 4:2:3, respectively,
which was identical with that obtained without the ionic liquid.
Since the starting material was completely consumed in this
case, the products were easily isolated by chromatography on
fine-particle silica gel, and their chemical structures were
identified by 'H-NMR spectroscopy. The yield of the
(5S5,6R) isomer (2a) was improved to 40%. Recycling and
re-use of the catalyst described in the original report (19)
was not tested.

Synthesis of 5S-thymine glycol-containing
oligonucleotides

The phosphoramidite building block of (55,6R)-thymidine
glycol (3) was prepared from the oxidized nucleoside (2a)
in three steps, as described previously (11). The yields of
the TBDMS protection, the 3’-deprotection and the phos-
phitylation were 78, 100 and 76%, respectively. Although
the two stereoisomers of the phosphoramidite (3), due to
the chirality of the phosphorus atom, were separated on silica
gel, as observed in the previous study (11), they were mixed
together before the oligonucleotide synthesis. Using this
building block (3) and nucleoside phosphoramidites bearing

-phenoxyacetyladenine, N*-acetylcytosine, N>-(4-isopro-
pylphenoxy)acetylguanine, and thymine as normal bases,
three oligonucleotides containing 5S-thymine glycol,
d(ACGCGATg*ACGCCA), d(CGCGAATg*TGCGCCC)
and d(CTCGTCAGCATCTTg*CATCATACAGTCAGTG),
in which Tg* represents 5S-thymine glycol, were synthesized
on a DNA synthesizer. The reaction time for the coupling of
the thymidine glycol building block (3) was prolonged to
5 min, and the 1 pumol scale synthesis was carried out.
After chain assembly and removal of the 5'-terminal DMT
group on the synthesizer, the oligonucleotides were cleaved
from the solid support by a treatment with 28% aqueous
ammonia at room temperature for 2 h. The protecting groups
at the base moieties and the internucleotide phosphates were
removed simultaneously by this treatment. The ammoniac
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Figure 1. HPLC analysis of deprotected thymidine glycol. (a) (5R.6S)-
thymidine glycol obtained by the previously reported OsO, oxidation;
(b) (5S,6R)-thymidine glycol obtained in the present study; (¢) a mixture of
(a) and (b).

solutions were evaporated to dryness, and the TBDMS group
was removed by treating the oligonucleotides with triethylam-
ine trihydrofluoride at 40°C for 24 h (22). After desalting on a
disposable gel-filtration column, the oligonucleotides were
analyzed by reversed-phase HPLC, as shown in Figure 2,
and only a single major peak was detected in each case. In
our previous study (11), the TBDMS group was removed with
tetrabutylammonium fluoride, and a relatively large peak of a
byproduct was detected. Analysis of the byproduct by mass
spectrometry suggested that the thymine glycol was converted
to 5-hydroxy-5-methylhydantoin during deprotection, but this
side reaction was prevented in the present study by using
triethylamine trihydrofluoride for the removal of the TBDMS
group. The oligonucleotides were purified by reversed-phase
HPLC, and their molecular weights were confirmed by
MALDI-TOF mass spectrometry, as shown in Figure 3.

Analysis of distamycin A binding to
thymine glycol-containing DNA

One of the oligonucleotides containing the 5S-thymine glycol
was used for a study on the DNA recognition of distamycin A,
which is a natural antibiotic known as a minor groove binder
and can bind to DNA containing the (6-4) photoproduct caused
by UV-irradiation (20). The DNA duplexes used in the present
study contained either of the thymine glycol isomers within
the target site for distamycin A, AATT-AATT (Figure 4).
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Figure 2. HPLC analysis of the crude samples of the 13- (a), 14- (b), and
30mers (c) containing 5S-thymine glycol.

Mismatched duplexes, designated as T-C-14 and Tg*-C-14,
were also tested. The binding of distamycin A was analyzed
by CD spectroscopy, as reported previously (20), and the
positive band induced at wavelengths between 300 and 360
nm upon the addition of distamycin A indicated the drug
binding. Figure SA shows the authentic binding of distamycin
A to its target sequence. An induced CD signal was observed
when the target sequence was disrupted by changing one of the
T-A base pairs into G-C (Figure 5B). However, its intensity
was about one half of that observed for T-A-14, and there was
no isoelliptic point at 305 nm in the spectra for G-C-14. This
pattern of CD spectra was observed for nonspecific binding in
our previous study (20). In contrast, the CD spectra obtained
for the 5R- and 5S-thymine glycol-containing duplexes were
very similar to those for T-A-14 (Figure 5, C and D). The
difference between the thymine glycol isomers was that the
second isoelliptic points from the long-wavelength side were
observed at 275 and 265 nm for the duplexes containing 5R-
and 5S-thymine glycols, respectively. We also analyzed the
distamycin A binding to mismatched duplexes. A duplex con-
taining a T-C mismatch within the target sequence (T-C-14)
showed only weak, nonspecific binding (Figure 5E), but when
thymine glycol was placed opposite cytosine (Tg*-C-14), the
CD spectra resembled the specific binding pattern more
closely (Figure SF).

The binding of distamycin A to the thymine glycol-
containing duplexes was confirmed by SPR measurements.
For this experiment, the thymine glycol-containing
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Figure 3. Analysis of the 13- (A) and 14mers (B) by MALDI-TOF mass spectrometry. Their calculated molecular weights are 3959.70 and 4255.73, respectively.

T-A-14 5 CGCGAA-T-TGCGCCC 3
3 GCGCTT-A-ACGCGGG &'

G-C-14 5 CGCGAA-G-TGCGCCC 3
3" GCGCTT-C-ACGCGGG &'

Tg-A-14 5 CGCGAA-Tg-TGCGCCC 3
3 GCGCTT-A-ACGCGGG &'

Tg"A-14 5 CGCGAA-Tg-TGCGCCC 3
3 GCGCTT-A-ACGCGGG &'

T-C-14 5 CGCGAA-T-TGCGCCC 3
3 GCGCTT-C-ACGCGGG 5'

Tg*C-14 5 CGCGAA-Tg*-TGCGCCC 3
3" GCGCTT-C-ACGCGGG &'

(@]
CH,4
HN =1 OH
Tg: 9
0 N OH

g

Figure 4. Oligonucleotide duplexes used for the analysis of distamycin A
binding. Tg and Tg* represent SR- and 5S-thymine glycols, respectively.
For the SPR measurement, oligonucleotides bearing biotin at the 5’ end were
used as the bottom strand.

oligonucleotides were hybridized to a complementary strand
bearing biotin via a linker at the 5 end, and the resulting
duplexes were immobilized on streptavidin-linked sensor
chips. As shown in Figure 6, sensorgrams indicating the bind-
ing of distamycin A were obtained for the thymine glycol-
containing duplexes, regardless of the configuration at the C5
position, whereas G-C-14 showed no binding in this SPR
experiment. All of the flow cells had essentially the same
amount of immobilized duplexes (1000 RU), and saturation
occurred at 45-50 RU for both of the thymine glycol-
containing duplexes. The dissociation constants calculated
from the SPR data were 2.8 x 107® and 2.6 x 10°® M for
Tg-A-14 and Tg*-A-14, respectively. These values are slightly
smaller than that obtained previously for the (6-4) photo-
product-containing duplex by CD spectroscopy (20).

DISCUSSION

Oxidation of thymine produces thymine glycol, which has two
chiral carbon atoms, C5 and C6. Since epimerization occurs at
the C6 position in an aqueous solution, thymine glycol exists
as either the SR cis—trans pair (SR-thymine glycol) or the 55
cis—trans pair (5S-thymine glycol), in which the cis isomers
predominate (6). Recently, several groups reported that the
stereochemistry of thymine glycol could be distinguished
by proteins. Human DNA polymerase 1, which catalyzes effi-
cient and accurate translesion synthesis (TLS) past a thymine
dimer produced by UV, could efficiently replicate DNA past
5R-thymine glycol, whereas the primer extension was consid-
erably inhibited at 5S-thymine glycol (12). By contrast, human
DNA polymerase ¥, another Y-family DNA polymerase
responsible for TLS, showed efficient and accurate incorpora-
tion opposite 5S-thymine glycol, but it exhibited reduced
fidelity for nucleotide incorporation opposite the SR
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counterpart (13). Among the base excision repair enzymes for
thymine glycol, Escherichia coli endonuclease VIII, mouse
and human NTH1, and human NEIL1 incised DNA containing
5R-thymine glycol more efficiently than that containing the 55
isomer, whereas E.coli endonuclease III preferred 5S-thymine
glycol (14-16).

Oligonucleotides containing a single cis—trans pair of
thymine glycol are important materials in these studies.
One of the authors of the present study developed a method
for incorporating the thymine glycol isomers separately into
oligonucleotides (10,11). However, the synthesis of 5S-
thymine glycol-containing oligonucleotides was not practical,

because the amount of (55,6R)-thymidine glycol, which was
formed by the OsO, oxidation of protected thymidine and was
used for the preparation of the phosphoramidite building
block, was much smaller than that of the (5R,6S) isomer. In
this study, we tried to obtain (55,6R)-thymidine glycol in a
yield sufficient for oligonucleotide synthesis. The Sharpless
AD reaction (17) was examined for this purpose, because this
reaction was previously employed to obtain (55,6R)-thymidine
glycol (18). The major problem in its application to the
oligonucleotide synthesis was that the bulky DMT group
was attached to the 5'-hydroxyl function of thymidine as a
protecting group. Using 5 mol% osmate and 25 mol% ligand,



320 Nucleic Acids Research, 2006, Vol. 34, No. 1

A 30
20
2 10
0
-10
0 500 1000 1500
Time (sec)

0 500 1000 1500
Time (sec)

0 500 1000 1500
Time (sec)

Figure 6. SPR sensorgrams for the interaction of distamycin A with G-C-14
(A), Tg-A-14 (B) and Tg*-A-14 (C). The concentrations of distamycin A are 2,
4, 6, 8, 10, 20 and 30 nM.

the starting material remained after 7 days in the present study,
although the previous report (18) stated that the 5'-TBDMS-
protected thymidine was converted to the products within 72 h,
under the same conditions. Since the increased concentrations
of the reagents resulted in a loss of the preference for the
(5S5,6R) isomer, we tried another method, i.e. the addition
of a room temperature ionic liquid as a co-solvent (19).
This procedure accelerated the reaction rate, probably because
the ionic liquid made the reaction monophasic. The starting
material was consumed within 2 days without changing the
product ratio, and the desired product, (5S,6R)-thymidine
glycol, was isolated easily by column chromatography on
silica gel. Thus, the AD reaction using the ionic liquid as a
co-solvent is a practical, good method to obtain (5S,6R)-
thymidine glycol for oligonucleotide synthesis.

Oligonucleotides containing 5S-thymine glycol were syn-
thesized in the same way as described previously (11), and in
the deprotection process, we confirmed that the use of triethyl-
amine trihydrofluoride for the removal of the TBDMS group
prevented the byproduct formation that had been found in our
previous study (11), as reported by Glen Research [The Glen
Report, Vol. 16, No. 1, page 4 (2003)].

Using the 14mer synthesized in this study,
d(CGCGAATg*TGCGCCC), together with a 14mer contain-
ing SR-thymine glycol in the same sequence context, the bind-
ing of distamycin A to thymine glycol-containing DNA was
analyzed. In our previous study, we found that this compound
could bind to duplexes in which one of the TT sites within its
target sequence, AATT-AATT, was changed to the (6-4) pho-
toproduct, a major UV lesion, although photoproduct forma-
tion alters both the chemical structure of the base moiety and
the local tertiary structure of the duplex (20). We expected that
distamycin A would be able to bind to duplexes containing
thymine glycol for the following reasons: (i) the chemical
structure of (5R,65)-thymine glycol resembles that of the 5
component of the (6-4) photoproduct; (ii)) NMR studies
revealed that thymine glycol is extrahelical in a duplex
(23), and the base stacking is also lost at the (6-4) photoproduct
because the two base rings are linked perpendicularly; and (iii)
the thermodynamic properties of the thymine glycol-
containing duplexes (11) are similar to those of the (6-4)
photoproduct-containing ones (21). If distamycin A recog-
nizes the chemical structure of the damaged base, then
there might be a difference in the binding properties between
5R- and 5S-thymine glycols.

As shown in Figure 5, distamycin A was able to bind to the
duplexes containing thymine glycol. Since a relatively large
signal was induced for G-C-14, used as a negative control in
the analysis by CD spectroscopy, we measured the SPR, which
has been used in recent studies on minor groove binders (24—
26), to distinguish between specific and nonspecific binding. In
this experiment, the duplexes containing SR- and 5S-thymine
glycols yielded binding sensorgrams, whereas no obvious
binding was detected for G-C-14, as shown in Figure 6.
The discrepancy between the CD and SPR methods may
have been caused by the different concentrations of distamycin
A. The dilute solution (up to 30 nM) used in the SPR meas-
urement may have well excluded nonspecific binding.
Although one of the isoelliptic points in the CD spectra
was slightly different between the SR- and 5S-thymine glycols,
the sensorgrams obtained for the S5R-thymine glycol-
containing duplex were indistinguishable from those for the
58 counterpart, and we suppose that the stereochemistry at
the C5 position was not recognized by distamycin A. Besides
the duplexes in which the base opposite thymine glycol was
adenine (Tg-A-14 and Tg*-A-14), distamycin A bound to a
duplex containing cytosine opposite thymine glycol (Tg*-C-
14), whereas specific binding was not observed for the duplex
containing a T-C mismatch (T-C-14). These results suggest
that some property of damage-containing duplexes, rather
than the chemical structure of the damaged base or the
sequence context, is recognized by distamycin A. Based on
the results obtained in this study, as well as those described
previously (20), studies aimed toward elucidating the mech-
anism of damaged DNA recognition by the minor groove
binders are in progress.
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