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Abstract: Background: Over the past few decades, nanotechnology has dramatically advanced; 
from the precise strategies of synthesizing modern nanostructures to methods of entry into the body. 
Using nanotechnology in diagnosis, drug delivery, determining signaling pathways, and tissue 
engineering is great hope for the treatment of stroke. The drug-carrying nanoparticles are a way to 
increase drug absorption through the mouth or nose in treating the stroke. 

Objective: In this article, in addition to explaining pros and cons of oral and intra-nasal 
administration of nanoparticles in the brain ischemia treatment of animal models, the researchers 
introduce some articles in this field and briefly mentioned their work outcomes. 

Methods: A number of relevant published articles 183 were initially collected from three popular 
databases including PubMed, Google Scholar, and Scopus. The articles not closely related to the 
main purpose of the present work were removed from the study process. The present data set finally 
included 125 published articles.

Results: Direct delivery of the drug to the animal brain through the mouth and nose has more 
therapeutic effects than systemic delivery of drugs. The strategy of adding drugs to the nanoparti-
cles complex can potentially improve the direct delivery of drugs to the CNS. 

Conclusion: Despite the limitations of oral and intra-nasal routes, the therapeutic potential of oral 
and intra-nasal administration of nano-medicines is high in cerebral ischemia treatment. 

Keywords: Nanoparticles, stroke, oral, intra-nasal, treatment, CNS, rat. 

1. INTRODUCTION 

 Neurological disorders are a major cause of mortality [1]. 
Among nervous disorders, stroke is one of the main causes 
of death in adults aged 15 years and older. It is also the 
fourth cause of disease and death in the world. Therefore, the 
development of potential therapies for preventing ischemic 
stroke is essential [2-4].  

 Various barriers in the body can play a vital role in the 
accumulation or distribution of nanomaterials. The important 
biological barriers to body defense systems include endothe-
lial dams, cell dams, skin, mucus barriers and Blood-Brain 
Barrier (BBB). The brain is the most sensitive and complex 
organ of the body, protected by a very efficient barrier called 
BBB. This barrier is well suited in protecting the brain 
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against blood contents and its toxic components but the same 
barrier restricts the drug entry in the brain [5-7]. In these 
circumstances, Nanoparticles (NPs) are used for drug deliv-
ery to the brain. Due to the small size of these particles, they 
freely move into the blood vessels and enter the brain tissue. 
These particles are important and new materials having mul-
tiple properties which make them very valuable in order to 
develop drugs in the field of biomedicine in the past two 
decades [8-12]. The importance of nanoparticles in medical 
applications is due to the high chemical and biological stabil-
ity, possibility to combine with both hydrophilic and hydro-
phobic materials and drugs, high carrying capacity, and the 
ability to use various routes such as injection, oral and intra-
nasal delivery [13-21]. After entering the body, nanoparticles 
are distributed in various parts, such as blood cells, liver, 
spleen, kidneys, intestines, thymus, heart, lungs, and brain. 
However, the method of nanoparticle entry to the body di-
rectly affects cellular absorption, pharmacodynamic proper-
ties, and pharmacokinetics. Researches have gained much 
useful information relating to entering nanoparticles in the 
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cells and their cellular mechanisms. It should also be men-
tioned that intracellular mechanisms are more complicated. 
Different types of mechanisms relating to the entrance of 
nanoparticles in cells include endocytosis, membrane flows, 
channels or entry through adhesion reactions. The mecha-
nism of interaction between nanoparticles and living systems 
has particular complexities because they bind and interact 
with biological agents. Cellular uptake probably results in 
some changes in the conformation of proteins, membrane 
interactions and signaling cascades in cells. The small size of 
nanoparticles increases their interaction with cells and bio-
molecules. In some cases, low biocompatibility and high 
toxicity reduce the potentiality of nanoparticle systems in 
devoting a medical and clinical confirmation to them. On the 
other hand, the immune system resists against many 
nanoparticles carrying drugs and exhibits protective reac-
tions such as platelet activation, inflammation, and antibody 
production. The consequences of these reactions are hyper-
sensitivity, thrombosis, hemolysis, and eventually drug re-
moval [22-24]. However, when nanoparticles are in biologi-
cal environments especially in vivo, the process will be com-
plicated and choosing a proper way of entering these parti-
cles into the body is of paramount importance.  

 Unfortunately, many diseases that are treated with nano-
particles are chronic and require frequent, long-term treat-
ment which their intravenous infusion will limit their use. 
Also, in the intravenous injection method, particle size and 
toxicity are two limiting factors; for example, as the particles 
size increases, the intensity of inflammation increases. In this 
method, coarse nanoparticles are trapped by the spleen and 
liver macrophages, and smaller particles are eliminated by 
the renal clearance [25-28]. After intravenous or intraperito-
neal use, nanoparticles are often found high in the liver and 
spleen. Also, they are found less in the lungs, kidneys, brain, 
and heart [29]. Therefore, alternative methods including oral 
and intra-nasal ones are taken into consideration [30-32].  

 Oral delivery is the most commonly used drug delivery 
because it is a non-invasive way for the patient. However, it 
is difficult to achieve the therapeutic concentration required 
for some medications due to its low solubility, short-term 
sustainability and low levels of oral ingestion. In order to 
solve these problems, the nanoparticles can be used to pro-
tect drugs from degradation in the gastrointestinal tract and 
deliver them to the appropriate place [33-35]. Examples of 
these particles are polymeric nanoparticles, solid lipid 
nanoparticles, and nano-crystals, each of which can opti-
mally increase the amount of absorption and the half-life of 
drugs and their stability in the gastrointestinal tract. The ef-
fects of oral administration of these nanoparticles are not 
size-dependent and don’t show significant changes compared 
to intravenous injection in pathophysiological levels [30, 
31]. On the other hand, with oral administration, the tissue 
distribution of particles increases [31]. Oral delivery of cur-
cumin loaded solid lipid (high preferential distribution into 
the brain) [36], rutin-encapsulated chitosan (anti-oxidant) 
[37], panax notoginsenoside-loaded liposomal vesicles (anti-
oxidant activity) [38], resveratrol loaded solid lipid nanopar-
ticles (reducing oxidative stress) [39], and nanoencapsulated 

quercetin (downregulation of iNOS and caspase-3 activities) 
[40] is used for the stroke treatment in animal models. 

 Nose physiology makes it an ideal target for non-invasive 
delivery of local and systemic drugs, especially for proteins 
and low solubility in water drugs, which have low oral 
bioavailability [41]. Since the BBB does not allow the brain 
to enter many drugs in the bloodstream, researchers have 
tried to find ways to bypass this barrier. Direct delivery of 
drugs into the brain has more therapeutic effects than sys-
temic ones. The nasal duct is the fastest and the most direct 
route to the brain. Through this route, the drug passes from 
the BBB via non-invasive manner [32, 42]. Nasal mucosa 
seems to be a target tissue for drug delivery, with many 
benefits compared to the oral route due to its simple and easy 
access, high blood flow, large surface, wet environment, 
porous endothelium and avoiding the first-pass hepatic me-
tabolism [42, 43]. Thus, the strategy of adding drugs to 
nanoparticles and carry this complex to the olfactory epithe-
lium can potentially improve the direct delivery of drugs to 
CNS [43]. Curcumin-loaded nanoparticles and rutin-
encapsulated chitosan ones (both with antioxidant activity) 
[37, 44] improve neurobehavioral activity in this path. 

 Considering the tendency to treat stroke with the help of 
nanotechnology and intravenous infusion limits, this review 
introduces all research articles that have been using the oral 
and intra-nasal pathways for the stroke treatment considering 
nano-medicine in the animal researches. 

2. ORAL ADMINISTRATION OF NANOPARTICLES 
IN STROKE TREATMENT 

 The use of specific systems in the delivery of oral drugs 
and their possible absorption through the intestinal mucosa 
have attracted considerable attention in animal researches 
[45]. However, evaluating the stability of nano-carriers in the 
gastrointestinal fluid is necessary to predict their suitability 
for oral administration [46].  

 The critical parameters in the design of new and effective 
drug delivery systems for oral use are: (1) their stability re-
lated to the digestive fluid. When they are formed of biode-
gradable materials and their sizes are large enough, the sur-
face area required for enzymatic activity is provided (particle 
sizes between 10 and 100 nm are not absorbed through the 
digestive system) [47, 48]; (2) accumulation of particles due 
to the specific conditions of the gastrointestinal tract leads to 
a decrease in the ability of particles to interact with the intes-
tinal mucosa [48]. On the other hand, the adhesion properties 
of nanoparticles have been reported to increase bioavailabil-
ity and to reduce or minimize irregular adsorption [48]. 

2.1. Use of Solid Lipid Nanoparticles (SLNs) in Cerebral 

Ischemia Treatment 

 SLNs are colloid drug carrier nanoparticles with high 
ability to affect the Blood-Brain Barrier (BBB) deeply [49, 
50]. They are typically in the range of 1 to 1,000 nm and can 
be easily absorbed by the brain due to their lipophilic nature. 
Also, the biological nature of SLNs makes them less toxic 
than other polymeric nanoparticles [50]. SLN is usually sta-
ble for up to 3 years, which has a very important advantage 
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over other colloid carriers [51]. These nanoparticles are often 
recommended as systems carrying drugs to the CNS [52].  

 SLN has a significant effect on the delivery of medica-
tion through intra-nasal and oral routes. Particular drug en-
capsulation in SLN can lead to (1) overcoming their lower 
solubility; (2) protecting the body's chemical and physical 
processes such as digestive process; (3) releasing drug 
slowly over the time and; (4) conducting the matter for a 
particular purpose or passing through various biological bar-
riers [52]. 

2.1.1. Evaluating the Curcumin (CUR)-SLN in the Ex-
perimental Pattern of Cerebral Ischemia after oral and 
Intravenous Administration 

 Many oral medications which are transmitted to the sys-
temic circulation via the portal vein are subject to metabo-
lism. In this context, improving the bioavailability and thera-
peutic efficacy of lipid-soluble drugs is possible by incorpo-
rating them into SLN. Positive loaded SLNs made of various 
triglycerides increased the drug's bioavailability by 1.3 to 4.5 
times in intra-duodenal administration [53]. Kakkar et al. 
(2013) have suggested that SLN coated with Tween 80 acts 
as a carrier to deliver curcumin to the brain through the oral 
route in rats. CUR is an anti-oxidant and anti-inflammatory 
molecule that has various applications in the field of neuro-
logical disease. CUR is a yellow chemical substance pro-
duced by some plants. This material can destroy plaque in 
the brain. [54-56]. The region below the curves obtained in 
the blood after oral administration of CUR loaded solid lipid 
nanoparticle (CUR-SLN) was eight times more than that of 
free drugs. However, the concentration of CUR–SLN in the 
brain was 30 times higher than that of free CUR. The ability 
of CUR-SLN to reach the brain is essentially related to the 
small size of the CUR-SLN, that helps bypass the first-pass 
CUR metabolism in the liver. Nonionic surfactants similar to 
lecithin and Tween 80 used in SLN structure increase their 
penetration via intestine due to the high tendency between 
fatty particles and intestinal membrane [52].  

 Kakkar et al. (2013) evaluated CUR-SLN neural protec-
tion potential in bilateral common carotid artery occlusion 
(BCCAO) induced global brain ischemia in rats [36]. In this 
study, oral administration of free solubilized CUR (CUR-S) 
and CUR-SLN (with an average size of 134.6 ± 15.4 nm) at 
concentrations of 25 and 50 mg/kg, began 5 days before 
BCCAO and continued for 3 days after stroke induction. 
Then, behavioral, biochemical and mitochondrial studies 
were performed in the groups. 

 The ratio of an Area under Curves (AUC) after 4 hours of 
oral administration of CUR-SLN in the rats' blood was 8.135 
and 16.4 in the brain. Free CUR is affected by metabolic 
stimulation, resulting in less than 1% oral bioavailability. On 
intravenous administration, the AUC of CUR-SLN in the 
brain was 30.82 times higher than the CUR-S; confirming a 
prolonged circulation of CUR-SLN in both oral and intrave-
nous methods. Treatment with CUR-SLN has significantly 
increased body weight and returned body temperature to the 
normal, while free CUR had no effect on these parameters. 
Ischemia/reperfusion (I/R) injury resulted in increased neu-
rological deficits and decreased muscle strength in the con-
trol group’s onset of BCCAO. Free CUR did not show any 

effect, while the CUR-SLN significantly improved all activi-
ties. CUR-SLN-treated animals showed a significant im-
provement in memory stabilization (there was an improve-
ment of 90% in the cognition of CUR-SLN users) compared 
to I/R injury and CUR-treated rats. I/R damage caused se-
vere oxidative injury in the brain. Treatment with CUR 
showed no significant effect on oxidative stress parameters, 
while CUR-SLN significantly reduced these parameters to 
the control value. Additionally, I/R damage played a signifi-
cant role in shuffling the activity of mitochondrial complex 
enzymes in the rat brain. CUR did not show any effect on 
I/R damage, while the CUR-SLN significantly improved 
their performance [36]. In the present study, improved drug 
levels in the brain may be related to the small size of CUR-
SLN that bypass the primary metabolism of curcumin in the 
liver. Therefore, CUR in the solid-state fatty matrix of SLNs 
not only protects against digestive enzyme degradation but 
also achieves a long circulation time, and its clearance is 
reduced after absorption [36]. 

2.1.2. Reducing the Mitochondrial Oxidative Stress by Oral 
Administration of Resveratrol Loaded SLN in BCCAO 
Stroke Model 

 Resveratrol (RSV) is an antioxidant compound that pro-
tects our body against chronic diseases by removing free 
radicals [57, 58]. RSV is found in blueberry, grape skin, rai-
sins, white currant, red wine, and peanuts [59-61]. Some 
researches have shown that RSV has the ability to improve 
blood vessel contraction and improves blood flow while 
cleaning the walls of the blood vessels, increasing their di-
ameter, decreasing blood pressure, and preventing Vascular 
Dementia (VaD). The processes increasing the oxygen sup-
ply to the body’s cells prevent creating clots in the blood and 
reduce the risk of cardiovascular disease by decreasing in-
flammatory factors and LDL levels [62-64]. Neuroprotective 
effects of RSV have also been proven; for example, it re-
duces mitochondrial disorders caused by specific stressors 
such as brain ischemia [61]. In fact, RSV increases the anti-
oxidant defense system of the brain by up-regulation of mi-
tochondria antioxidant enzymes and reduces the pre-
inflammatory cytokines to maintain the brain's homeostasis 
[65-67]. Although the pharmacokinetic properties of RSV 
are not desirable because of weak solubility, chemical insta-
bility, and rapid metabolism, they reduce its bioavailability 
[68, 69]. Therefore, the arrival of RSV in the brain is limited. 
To overcome these limitations, nano-carriers have been de-
veloped which are able to protect RSV from metabolism and 
degradation. Actually, nanotechnology helps to prevent and 
treat neurodegenerative diseases including oxidative stress 
by antioxidant delivery [70]. Lipid nanoparticles such as 
SLNs with highly stable formulations are a suitable system 
for combining with lipophilic compounds such as RSV [71, 
72]. Encapsulation of RSV in SLN (RSV-SLN) not only 
guarantees its targeting to the brain but also overcomes its 
fast metabolism and low solubility [39]. 

 A group of researchers studied the positive effects of 
RSV-SLN in BCCAO induced VaD model on oral admini-
stration. In their experiment on rats, drug encapsulation effi-
ciency was 91.25%, and the average particle size was 286 
nm. Also, RSV-SLN levels in the brain were 4.5 times 
higher compared with free RSV treated group [39]. How-
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ever, in another study, intra-peritoneal administration of 
RSV-SLN into rats resulted in 6 times higher accumulations 
of RSV in brain tissue as compared with free RSV treatment 
group [73]. 

 Oral administration of RSV-SLNs successfully improved 
cognitive impairment (evaluation of spatial learning and 
memory formation), significantly reduced the generation of 
mitochondrial Reactive Oxygen Species (ROS), significantly 
increased production of antioxidant enzymes and superoxide 
dismutase activity, and significantly reduced hypoxia-
inducible factor 1α (HIF-1α) levels, up-regulation Nuclear 
factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1) levels in the 
cortex, hippocampus, striatum, and the cerebellum of rats 
[39]. Nrf2 is vital for the resistance of neural cells to the oxi-
dative stress caused by stroke. Nrf2 activated by binding to 
the HO-1 gene and some other genes [74]. ROS as a hy-
droxyl inhibitor also results in stabilization of HIF-1α. Thus, 
HIF-1α stability was removed by inhibiting of ROS through 
the RSV. 

2.2. Protective Effects of Core-shell Hybrid Liposomal 
Vesicles Loaded with Panax Notoginsenoside on Global 

Cerebral I/R Injury after Oral Administration 

 Panax Notoginseng (PN) derived from the root of the 
traditional Chinese herb PN, which has activities such as 
improving blood circulation, reducing pain, and decreasing 
the plasma lipid and fibrinogen levels in high-fat rats [75-
77]. Panax Notoginsenoside (PNS) is the main active ingre-
dient of PN with anti-inflammatory effects, anti-oxidant ac-
tivities, synthesis of DNA and protein, modulation emotional 
responses, vasodilator effects and protective effect of 
lipopolysaccharide-induced micro-circulation disorders [78-
80]. However, PNS is absorbed slightly during oral admini-
stration. PNS degradation occurs in the gastric acid envi-
ronment, intestinal metabolism, and liver elimination. PNS is 
a water-soluble substance with a high molecular weight 
which leads to low penetration in the membrane and some 
types of PNSs can aggregate into the micelles. Such accumu-
lation limits the penetration of PNS through the gut cellular 
membrane [81, 82]. To overcome these limitations, 
liposomes are widely regarded as useful carriers for the de-
livery of PNS due to their unique properties such as biode-
gradability, biocompatibility, size variation and surface 
charge [83, 84]. 

 Nanoparticle systems are now widely and successfully 
used to increase the bioavailability of drugs [85, 86]. But, the 
use of nanoparticles is limited to delivering water-soluble 
drugs due to low efficacy in drug encapsulation and quick 
release of the enclosed drugs [16, 85, 87]. To minimize these 
negative effects, Zhang et al. (2012) reported a new liposo-
mal system encapsulating mPEG-PLGA-based nanoparticles 
called core-shell Hybrid Liposomal Vesicles (HLV). They 
loaded PNS into the HLV (PNS-HLV). This hybrid could 
increase the trapping efficiency and delay the release of all 
main components of the PNS to increase its protective ef-
fects during oral administration in rats [38]. Also, PNS-
loaded liposomes (PNS-LP), PNS-NP, and PNS-solution 
were prepared [38, 88]. Oral administration of PNS-HLV for 
10 days prior to the induction of stroke was able to signifi-
cantly decrease brain edema and reduce the infarct volume in 

global cerebral ischemia/reperfusion in comparison to LP, 
PNS-LP, PNS-NP, and PNS-solution. PNS-HLV bioactivity 
was also greater than others in oral administration in experi-
mental rats [38]. Accordingly, HLV has a promising future 
to improve drug bioactivity on oral intake. 

2.3. The Therapeutic Efficacy of Nanoencapsulated 
Quercetin Oral Administration in Combating Ischemia-

reperfusion in Young and Aged Rats 

 Quercetin (QC) is a flavonol that can be found in most 
fruits, vegetables, leaves, and seeds [89]. This compound has 
antioxidant, anti-inflammatory, anti-cancer and cardiac-
protective effects in humans [90, 91]. It is a very powerful 
anti-oxidant and is usually the main ingredient of red and 
orange pigments in various fruits and vegetables [92, 93]. 
The effectiveness of this substance confirms hypertension, 
stroke, heart attack, atherosclerosis and blood clotting [94-
96]. 

 Since it is necessary to introduce exogenous anti-oxidants 
as drugs and free radical scavengers in order to combat 
stroke, QC can be a good candidate. But, QC cannot pass 
through the BBB which is a serious block in CNS therapeu-
tic purposes. Polymeric nanoparticles are proposed to de-
velop a system that can provide such reservoirs of biofla-
vonoid anti-oxidants in the brain for the full protection of the 
neurons against the oxidative onslaught [40]. 

 Ghosh et al. (2013) used polylactide-co-glycolide 
(PLGA) as an effective carrier of the drug due to its various 
benefits, namely long half-life, high drug load carrying ca-
pacity, proper safety, preventing the destruction process, the 
ability to cross the BBB, and various routes of administra-
tion; such as oral path [40, 97, 98]. Their goal was to inves-
tigate the neuroprotective effects of PLGA-nanoparticle en-
capsulated QC against I/R oxidative stress damage in differ-
ent areas of the brain caused by the stroke on oral admini-
stration. In this research, stroke was induced by Middle 
Cerebral Artery Occlusion (MCAO) in both young and aged 
rats. Experimental groups were treated with free QC, empty 
PLGA nanoparticles and nanoparticulated QC (20-50 nm) 
through oral gavage, two hours before induction of stroke. 
The rest of the experimental groups were treated with free 
QC and nanoparticulated QC until the first and third days of 
post-operation, respectively via oral administration [40]. 

 The results of Ghosh et al.'s work showed that brain 
ischemia caused a significant increase in lipid peroxidation, 
a significant decrease in mitochondrial membrane micro-
viscosity, a significant increase in ROS production, also a 
significant decrease in activity of antioxidant enzymes and 
tissue osmolality in the hypothalamus, cerebral cortex, cere-
bellum, and hippocampus of both young and aged rats. In the 
studies about brain regions, hippocampus seems to be the 
worst affected area showing iNOS up-regulation and increas-
ing caspase-3 activity by decreasing the number of neurons 
in hippocampus CA1 and CA3 regions of young and old rats. 
Oral administration of nanoencapsulated QC resulted in 
down-regulation of iNOS decreased caspase-3 activities, 
increased brain tissue osmolality, and increased the number 
of pyramidal neurons from the hippocampal CA1 and CA3 
regions even 72 hours after I/R. Free QC treatment did not 
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significantly improve the mitochondrial membrane micro-
viscosity, while nanoparticulated QC made full protection of 
the mitochondrial membrane in young and aged rats’ brain 
regions [40]. Given the above evidence, the authors sug-
gested that oral treatment with nanoencapsulated QC might 
play an important protective role against I/R damages [40].  

2.4. Oral Treatment of Nanoparticles Containing Puer-
arin-HP-β-CD Inclusion in the rat MCAO Model for Im-

proving the Penetration and Bioavailability of Puerarin 

 Puerarin (PUE) is an isoflavone which was found in 
herbal medicine and widely used in the treatment of 
ischemic stroke in China. Previous studies have shown 
strong antioxidant properties, anti-inflammatory, and anti-
apoptotic effects of this drug. However, its low concentration 
in the brain after oral administration limits the PUE thera-
peutic efficacy. PUE is available with low water and oil 
soluble, and poor bioavailability, which severely restricts 
clinical use. Thus, it is necessary to develop appropriate 
preparation to help it pass through the BBB [99-102]. Re-
cently, attention is given to the role of polymeric nanoparti-
cles as possible brain-targeting drug systems that can in-
crease the concentration and drug release and reduce envi-
ronmental toxicity [86, 103]. Hydroxypropyl beta cyclodex-
trin (HP-β-CD) is often used to increase the water solubility 
of hydrophobic molecules [104, 105]. Cyclodextrins can also 
be considered as enhancers of BBB permeability [106, 107]. 

 A group of researchers designed a nanoparticle contain-
ing PUE–HP-β-CD inclusion complex (100-300 nm) and 
assessed its oral treatment effectiveness in drug delivery to 

investigate the improvement of intercellular communication 
and neurological changes in the rat MACO model. Their 
results showed PUE-nanoparticles have significant anti-
inflammatory and anti-apoptotic effects and enhanced the 
penetration of drug across the BBB. Also, the average size of 
infarction was significantly lower in 3 and 7 days after PUE-
nanoparticle treatment than I/R control and free PUE groups; 
H&E (Haemotoxylin and Eosin) staining showed that the 
brain penetration of inflammatory cells and the neuronal 
pyknosis, karyolysis were significantly decreased in PUE-
nanoparticle treated rats on days 3 and 7. In addition, I/R rats 
treated with PUE-nanoparticles significantly improved corti-
cal EEG power, peak, area, frequency, and valley value on 
days 3 and 7 compared to I/R control and free PUE treated 
groups [108]. 

 According to the above results, oral treatment of PUE-
nanoparticle has therapeutic effects on I/R injury and conse-
quently is precious for clinical purposes. 

3. INTRA-NASAL ADMINISTRATION OF 

NANOPARTICLES IN THE STROKE TREATMENT 

 The olfactory neuro-epithelium is the only CNS region 
that is not protected by the BBB; as a result, it is an exclu-
sive access port for the brain [109]. After nasal administra-
tion, the drug can reach the CNS through three main routes: 
[110] (1) olfactory nerve to the olfactory bulb; (2) trigeminal 
nerve to the olfactory bulb and brain stem; and (3) the vascu-
lar pathway. In the vascular route, the drugs reach into the 
lungs and then enter into the blood circulation; in this path, 
drugs must cross the BBB to reach the CNS (Fig. 1) [111, 112].  

 

Fig. (1). Three main routes of nose access to the CNS [110]. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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 The potential limitations of nose-to-brain transport in-
clude short residence time and irritability mucus reduce 
transmission by increasing the molecular weight of the drug 
and access to limited areas of the brain [113]. By considering 
the large surface area of nose cavity requiring a lower dose 
of the drug, avoiding the hepatic first-pass metabolism, and 
high density of vascular blood vessels in the nasal mucosa, 
the nasal route may be useful for achieving a fast-acting 
treatment [114]. 

 The nanoparticle-based delivery system has many prop-
erties which make them suitable for intra-nasal drug deliv-
ery. The properties such as thermodynamic stability in-
creased drug loading, penetration through biological mem-
branes, and bioavailability [115, 116].  

3.1. Intra-nasal and Intravenous Delivery of Rutin-

encapsulated Chitosan Nanoparticles (RUT-CS-NPs) in 
the Stroke Treatment 

 Rutin (RUT) is a flavonoid glycoside that is found in 
certain herbs and fruits, especially apricots, figs, both black 
and green tea, plums, cherries, grapes, oranges, and grape-
fruits [117]. Pharmacological researches have reported posi-
tive effects of RUT on many diseases and its therapeutic 
potential in several diseases including cerebral ischemia and 
cardiovascular disease. RUT has several properties such as 
antioxidant, anti-inflammatory, and neuroprotection [117, 
118]. In addition, it helps blood circulation and prevents the 
formation of blood clots [119]. 

 Chitosan (CS) is a biocompatible natural polysaccharide 
that is often used as a targeted carrier of drugs for the treat-
ment of neurological disorders [120]. CS and its biodegrad-
able products allow them to perform biological functions at 
the molecular level of the neural cells and BBB permeability, 
which can use these features in stroke treatments [121]. 
Some of these features include the high flexibility in surface 
changes, the ability to bind to different molecules of the 
ligand, and the creation of stable nano-complexes in physio-
logical conditions [122]. 

 Ahmad et al. (2016) prepared RUT-CS-NPs (92.28 ± 
2.96, 199.72 ± 4.48 and 366.85±8.43 nm) via the ionic gela-
tion method for the stroke treatment in rats. RUT-CS-NPs 
were used for brain-drug delivery as well as monitoring the 
pharmacokinetics of the drug targeting efficiency and biodis-
tribution after intra-nasal treatment. Their results showed 
that the particle size has a direct positive relationship with 
the concentration of CS and pH [37]. This effect may be due 
to the more accessible binding site of ionic molecules [123]. 
The first rapid release of the RUT occurred within the first 
hour (29.95%) and the slow release continued for 24 hours. 
Nose-to-brain direct transport percentage values of RUT-CS-
NPs in comparison to free RUT increased from 29.48 ± 1.05 
to 93.00 ± 5.69%, which indicates an increase in brain up-
take of RUT-CS-NPs. Similarly, brain targeting efficiency, 
bioavailability, locomotor activity, and grip strength were 
significantly improved in intra-nasal administration of RUT-
CS-NPs as compared with intravenous administration of 
brain ischemia animals. Furthermore, significant decreases in 
infarct size and improvement of behavioral outcomes were  
observed in the MCAO rat model after intra-nasal admini-

stration of RUT-CS-NPs. Overall, RUT-CS-NP is a non-
invasive, effective, and safe drug delivery system for the 
brain ischemia treatment [37]. 

3.2. Intra-nasal Delivery of PNIPAM Nanoparticles of 
Curcumin, Demethoxycurcumin, and Bisdemethoxycur-

cumin on Rats with MCAO 

 Curcumin (CUR) is a natural polyphenol with antioxidant 
properties. Studies have shown this substance can repair 
brain cells and treat nerve disorders [36, 124]. Although the 
effectiveness of CUR has been tested in a wide range of 
human diseases but has not been confirmed as a therapeutic 
agent due to poor bioavailability, low absorption, rapid 
metabolism, and rapid systemic elimination [125]. To 
overcome its weak pharmacodynamics and its development 
for cerebral ischemia treatment, researchers pretreated MCAO 
rats with Polymeric N-Isopropyl Acrylamide (PNIPAM) 
nanoparticles of CUR, Bisdemethoxycurcumin (BDMC), 
and Demethoxycurcumin (DMC) intra-nasally. PNIPAM 
nanoparticles (CUR, BDMC, and DMC) showed high drug 
loading, gradual release of the drug, reducing unexpected 
systemic effects, and bypassing the BBB. Intra-nasal admini-
stration of these components well ameliorated behavioral 
changes and oxidative stress (In general, the antioxidant 
potential of nano-formulation in this study was CUR > DMC 
>> BDMC). Also, PNIPAM-CUR significantly prevented 
I/R injury compared to the other two groups. Therefore, 
PNIPAM-CUR nanoparticle is a potential neuroprotective 
agent for stroke treatment [44].  

CONCLUSION 

 In this paper, some of the strategies for effective drug 
delivery to the CNS were reviewed. Unfortunately, in the 
field of nano-therapy in oral and smell pathways have only 
been carried out in a few studies. In this paper, we tried to 
outline the results of all of them. 

 Despite the limitations of oral and intranasal routes, the 
therapeutic potential of oral and intranasal administration of 
nano-medicines is higher in cerebral ischemia treatment. The 
advancement and discovery of new nano-medicine with high 
selectivity effects help us to make progress in the effective 
and safe treatment of stroke via these two pathways. 
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