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1 Pilot study

1.1 Adjustment of the EDAN system
The EDAN system had to be adjusted to the individual needs of the participants. Figure 1
depicts all three participants sitting in the wheelchair. P-A and P-C were able to sit in the
wheelchair with the existing seat cushions. In the case of P-B, a special seat shell had to be
inserted into the EDAN system.

P-A P-B P-C

Fig. 1: Participants sitting in the individually adjusted EDAN system with an electromyography-based interface. While P-A
and P-C could use the existing cushions, for P-B a special seating shell was used for her to be able to sit in the system.

1.2 Details about experimental procedure
In total 6 sessions were executed with P-A and P-B and 5 with P-C. To keep the time in which
they sat in the wheelchair short and in order to not create too much cognitive strain, a session
duration was limited to a maximum of 3 hours. Due to limited sitting capabilities in the case
of P-A and P-B, the sEMG-sensor placement and training of the interface were done while
participants were lying in bed next to the system. Afterwards, the participants were transferred
into the wheelchair by a qualified caretaker. These preparations (including sensor placement,
training of the interface, transfer to the wheelchair) had to be performed at the beginning of
each session. This resulted in an effective session time of about 1.5 hours per session.
For P-A, the individual sessions were organized as shown in Table 1.

Session 1 Adjustment of the wheelchair and electrode placement.
Session 2 Familiarization with the interface and the system, lying next to the system.
Session 3 Familiarization with the interface and the system, lying next to the system.
Session 4 Familiarization with the system, while sitting in the wheelchair and performing tasks of daily living.
Session 5 Performing tasks of daily living using the whole system.
Session 6 Performing tasks of daily living using the whole system.

Table 1: Individual sessions of P-A
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Session 1 Adjustment of the wheelchair and electrode placement.
Session 2 Familiarization with the interface and the system, lying next to the system.
Session 3 Familiarization with the interface and the system, lying next to the system.
Session 4 Performing tasks of daily living using the whole system, lying next to it.
Session 5 Familiarization with the system, while sitting in the wheelchair.

Table 2: Individual sessions of P-B

The initial plan for P-B was to follow the same schedule as P-A. However, the unexpected
unavailability of qualified caregivers precluded a transfer into the wheelchair, resulting in
only one out of the five sessions with P-B sitting in EDAN. Thus, a total of only five sessions,
including one session sitting in EDAN, was possible for P-B. The individual sessions of P-B
were organized as shown in Table 2. The individual sessions of P-C were organized as shown
in Table 3.

Session 1 Adjustment of the wheelchair and electrode placement.
Session 2 Familiarization with the interface and the system, sitting in the wheelchair.
Session 3 Familiarization with the interface and the system, sitting in the wheelchair.
Session 4 Performing a Fitts’ Law Test as well as tasks of daily living using the whole system.
Session 5 Performing tasks of daily living using the whole system.

Table 3: Individual sessions of P-C

1.3 Additional results
To evaluate the overall performance of the hybrid interface and to detect directional differ-
ences, a 3D Fitts’ Law Test with 32 goals was conducted in P-C’s fourth session. Given that
motions in the x-y-plane were commanded from the joystick while vertical z-motions origi-
nated from the sEMG signals, we separated the goal positions in 2 equally sized bins split at
the median of z-motion required to reach the target. Goals with higher z-component resulted
in an Index of Performance (IP) – also called throughput – of 0.69, while goals having lower
Z-component lead to an IP of 0.84. Figure 2 shows the results of a 3D Fitts’ Law Test done by
participant P-C. An illustration is given showing the desired end effector (EE) motion as well
as the actual EE movement done by P-C. The additional table shows the respective motion
time for the four different distances and index of difficulty (ID). The index of difficulty and
index of performance (IP) of the Fitts’ Law Test are defined as in [1].

2 The EDAN system
EDAN uses Shared Control Templates (SCT) to support during a range of tasks of daily
living. At the time of the experiments, the system could support with the following tasks:
grasping, placing, pouring and drinking with a bottle, grasping, placing and drinking with a
mug, opening and closing a drawer, opening a fridge, and opening and driving through a door.
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Movements of the EE during the Fitts’ Law test for 32 goals, shown
as blue circles.

D [m] ID MT [sec]
0.16 1.87 2.52
0.24 2.32 2.88
0.32 2.66 3.96
0.4 2.94 4.57

The motion time MT shows the aver-
age time to reach a target with a specific
distance D and the calculated index of
difficulty ID.

Fig. 2: Results for the Fitts´ Law Test in 3D done by P-C using the hybrid interface. Left: EE movements; Right: motion time
per ID.

The hardware design of the system includes a commercially available wheelchair
equipped with an 8-axis version of the DLR Light Weight Robot III and a DLR-Clash
hand. The wheelchair is controlled via the proprietary R-NET interface, through which
forward-backward and rotational velocity commands can be sent with an analog signal.

The system is equipped with a Linux-based real-time computer (Intel I7 4-Cores), which
runs the low-level control software. Another Linux-based computer (Intel I7 8-Cores) is used
for the high-level control software. Object detection and localization is performed on a Nvidia
Jetson TX2 embedded GPU in combination with an ASUS Xtion RGB-D Camera. Processes
for the DLR-Clash hand were computed on an additional Intel-based embedded computer.
An overview of the individual software modules is provided in the following.

2.1 User interfaces
2.1.1 sEMG-based Interface

Both participants P-A and P-B have spinal muscular atrophy in an advanced state, which
severely inhibits their motion capabilities. SMA leads to the death of motor neurons in the
spinal cord resulting in a progressive amyotrophia. For P-A, the remaining movement of the
thumb and index finger allows the use of a personalized micro 2-Degrees of Freedom (DoF)
joystick. However, the residual muscular activity is not sufficient for vertical motion, hence
not allowing the use of a 3-DoF joystick. Participant P-B lost most voluntary movement in
her fingers (except for minor motions of the index finger) which prevents the use of a joystick
at all. She uses a 2-DoF chin joystick to move her wheelchair in daily life. This interface does
not provide continuous 3D control. Both participants used the 3D sEMG-based interface with
an additional sEMG-based trigger to continuously control the motion of the robot arm in task
space.
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Fig. 3: Schematic overview of the signal processing pipeline for the sEMG-based interface. Sensor placement: participants P-A
and P-B with their individual sensor placements. Data acquisition: process of converting the sEMG-signals to digital signals. Feature
Processing: using a sliding window of 150 samples to calculate the four time-domain features. Gaussian Process (GP) Regression:
training procedure to get a GP-based decoder using three labeled training sets. EDAN: the robotic system to be controlled.

Fig. 4: Schematic overview of the hybrid interface. The training procedure is identical to the sEMG-based interface. For command-
ing, the x-,y-components originate from the Joystick, while the z-component is decoded from sEMG-signals. These combined signals
are then applied to 3D robot control.

Participant P-C is affected by muscular dystrophy resulting in very limited arm and hand
function. However, P-C has enough motor capability left to use a regular 2-DoF joystick to
control a motorized wheelchair in everyday life. To make use of his remaining hand function,
P-C used a hybrid interface, consisting of a 2-DoF joystick with additional control signals
extracted from sEMG for the third DoF and the binary trigger signal.

Sensor placement
Up to eight Trigno® wireless electromyography sensors from the company Delsys were
attached to the arm of the participants using a double-sided adhesive medical tape. Electrodes
positions along the arm were individually and manually selected to allow for the recording
of the participants remaining voluntary muscle contractions. In the case of P-A and P-C, the
main sensor used for the trigger signal was placed on the skin of the left arm, which optimized
the precision of the sEMG-based trigger. Due to progressed amyotrophy these places were
very selective and positions were marked for following sessions. In the case of P-C, the acti-
vation strategy changed during session 3, which led to a changed sensor placement in session
4 and 5. Individual sensor placement can be found in Table 4.
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Sensor # P-A P-B P-C
1 Flexor digiti minimi Thenar Extensor digitorum
2 Thenar Flexor digiti minimi Triceps
3 Biceps brachii Flexor carpi radialis Extensor digitorum (left)
4 Extensor indicis Extensor carpi ulnaris Brachioradialis
5 Flexor digitorum Biceps brachii Extensor carpi ulnaris
6 Trapezius Triceps brachii Flexor carpi radialis
7 Thenar (left) Deltoid —
8 Biceps brachii Sternocleidomastoid —

Table 4: Final sEMG-sensor placement for all participants. The listed sensor locations refer to the
muscles of the right arm which are anatomically closest to the location of the sensor. Marked with ’(left)’
refers to sensors placed on the left arm. Due to severe muscular atrophy actual muscles that have been
recorded may differ from this list.

Data processing
Acquired raw sEMG-signals were locally amplified within the sensors and transferred to the
Delsys Trigno® base station. An analog-to-digital converter of the company Beckhoff was
used to digitize the ±5 V analog signal from the base station into a 12-bit signal at a rate
of 1 kHz. A linux real-time computer received the data via EtherCAT, where the signal was
further processed at 1 kHz. In a first processing step, a bias is subtracted from the sEMG data-
stream in order to remove the DC component of the sEMG signal. The data of the sensors
is prepossessed using the time-domain features introduced by Hudgins et al. [2], including
sEMG-amplitude, slope sign-change, zero-crossing-rate and waveform-length.

All features were calculated online with a sliding window of 150 samples on each sEMG-
channel. A schematic overview of the signal processing can be found in Figure 3.

Training procedure
Training data was gathered before calculating a prediction model. Muscle signals are mea-
sured for 5 seconds while the arm is at rest (without voluntary muscle activity). This data is
used to calculate the baseline noise, which is subtracted from the sEMG data-stream. Further-
more, this recording allowed identification of an individual activity threshold to distinguish
between rest and voluntary activation, which was used for the remaining training procedure.
The calculation of the threshold was based on a binary search. For details see [3].

In total, 3 DoFs i.e. six directions were decoded with the interface. Therefore, participants
were asked to provide muscle activity which they intended to associate with motions along the
cardinal axes: upward, downward, leftward, rightward, forward, and backward. One training
dataset included 2000 samples of activity per direction as well as 1000 samples of pause
(rest state) in between. This data was labeled with the respective direction or as “not active”.
The desired direction was announced by a computer voice. Muscular activity was recorded
as soon as the activity threshold was exceeded and the robot gave feedback by moving in the
respective direction. The recording of each direction took approximately 2 seconds and a full
training cycle was performed in less than 30 seconds. Four training cycles were recorded at
the beginning of each session out of which the last three were used for training the models.
Additionally, one dataset was recorded to train the classifier for the sEMG-based trigger. For
this data set, the participants were asked to give 5 impulses of muscular activity associated
with the trigger, alternating with pauses in muscle activity.
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Decoding with Gaussian process regression
Gaussian process regression was used in order to decode the continuous velocity commands
u(t) for robot control. The pyGP library [4] was utilized, which is based on the implemen-
tation of [5]. Three independent GPs were calculated, i.e. one GP for ±x, one for ±y, and
one for ±z, respectively. With individual models, a command can be a linear combination of
the estimated command along each axis, i. e. motions in any direction are possible, not just
along the x-,y-,or z-directions. The activity threshold allowed the participants to stop robot
motion, as the GP output was only applied when the threshold was exceeded, otherwise the
robot position was kept static.

Hybrid interface
The initialization of the hybrid interface was conducted similarly to that of the full 3D inter-
face: all three DoFs were recorded and trained with the predictive model, whereas just one of
them (the z-component) was used as input to the system, see Figure 4. Nevertheless, training
was executed in all directions (while giving usual joystick commands in x- and y-direction),
to record muscle signals which occurred during these directions and label them as zero for
the z-component.

2.1.2 Feedback Provider: Tablet

A tablet mounted on the wheelchair displays a Graphical User Interface (GUI) with all the
relevant information to the user. Figure 5 shows the GUI displayed to the user and its different
components (A-F).

By operating the head-switch, the user can cycle through the activation of the different
devices, including the tablet. By selecting the tablet, its view changes and the user can choose
between the different control schemes like shared control or direct control. Furthermore, a
list of all possible tasks based on the current world model status is provided. The user can
start one of these by selecting it, even if it is not the most likely task according to the task
inference. The sEMG-based interface used to control the robot serves in the same manner to
control the tablet: the x- and y-components of the control command are used to select items,
while the sEMG-based trigger serves as a click to select the highlighted item, e. g. control
schemes or tasks.

2.2 Software Coordination
EDAN’s software is coordinated by an event-based finite state machine. There are various
types of system states that need to be coordinated: which device the user wants to control
(‘tablet GUI’, ‘arm’, ‘wheelchair’, or ‘nothing’), the interpolator used (frame, velocity), the
control mode of the wheelchair (with or without whole-body control, only translations or
rotations), the active task, etc. The various combinations of those control modes form the
high-level states the EDAN robot can be in. The user can change theses states by selecting a
task on the tablet or completing the execution of a task like releasing an object. Processes can
as well change those states, e. g. the task inference starting shared control support for pick
using the frame interpolator once close enough to a pick-able object.
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Fig. 5: The GUI, which was displayed on a tablet. A: Device controlled by the user, cycled through by operating the head-switch:
‘robot control’, ‘tablet’, ‘wheelchair control’, or ‘nothing’ (user commands have no effect to the system). Furthermore, [WB] is
highlighted if the whole-body control scheme is active. B: Active control scheme (direct or shared). C: Decoded commands. The
green circle provides information if the activity threshold is exceeded to allow a control input. D: Additional tabs used to display the
list of control schemes, the list of tasks, and expert information not needed by the participants. E: World model visualization; shown
is the RGB-camera stream augmented with the localized objects instantiated in the world model. Different colors highlight different
states of the objects, like green which highlights the target object of the current task. F: Information regarding the current task and
states; shown is the active task as well as the current state of the task.

2.3 Real-Time Processes
2.3.1 Whole-Body Cartesian Impedance Control

Assistive robotic systems in daily support scenarios are exposed to constant physical interac-
tion with the environment. Thus, an exchange of interaction forces between the robotic system
and the surrounding environment is expected. Accordingly, a compliant behavior at the robot
EE is desirable, which can be achieved by active control. The EDAN system features a reac-
tive whole-body control that allows coordination between the mobile base (the wheelchair)
and the robotic arm. This facilitates the execution of tasks beyond the kinematic reachabil-
ity of the manipulator, e.g. opening a door. To ensure passive physical interaction with the
environment we command the joint torques to realize Cartesian impedance behavior as

τ = τ imp + τ null + τ g(q), (1)

where τ imp is the generated torque to actively realize the Cartesian impedance at the
EE, the term τ null achieves a null space secondary task, and τ g(q) stands for the gravity
compensation component. The Cartesian impedance control action can be formulated as
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τ imp =− JT (q)(Kxx̃(q) +Dxẋ)

x̃(q) =f(q)− xd

ẋ(q) =J(q)q̇.

The mapping f(q) : ℜn → ℜ6 encodes the forward kinematics while xd ∈ ℜ6 denotes the
desired task-space position and orientation. The Cartesian stiffness and damping are repre-
sented by the positive definite matrices Kx,Dx ∈ ℜ6×6, respectively. The controller relies
on the low-level torque control loops to realize the desired impedance. However, the torque
dynamics are assumed to be much faster such that one can obtain the desired impedance
behavior [6, 7].

In our framework of hierarchical whole-body control, the elbow position is regulated to
obtain a specific position in the nullspace of the arm. This desired elbow position is accessible
from the higher-level software and can thereby be defined for individual states of an SCT-
skill. This is used to keep the elbow in an outward position when manipulating objects, or
to achieve a more compact configuration of the system (in term of overall system width), for
instance when passing through a door. The control action τ null is realized in the null space of
the main EE task as

τ null = −NJe(q)
Tf e.

Here, the task-space null space projector is denoted by N ∈ ℜn×n, and Je(q) ∈ ℜ6×n and
f e ∈ ℜ6 are the elbow Jacobian matrix and control wrench, respectively. Similar to the main
EE task mentioned previously, the robot elbow control action is calculated to realize a desired
Cartesian stiffness and damping such that f e = (Kex̃e +Deẋe) at the elbow location xe.

2.3.2 Platform Motion Control

The actuation signals that are applied to the mobile base (wheelchair) are calculated by intro-
ducing an additional virtual spring of which the deflection depends on the EE boundaries. As
shown in Figure 6 these boundaries are defined in a line or arc w.r.t the mobile base and can be
parameterized by [xmin; rx], [ymin; ymax]. Two non-linear functions h1(xE , yE) and h2(yE)
are defined to create the activation area of the wheelchair motion as

h1(xE , yE) =


√

x2
E + y2E − rx , if

√
x2
E + y2E ≥ rx

xE − xmin , if xE < xmin

0 , else

and

h2(yE) =


yE − ymax , if yE ≥ ymax

yE − ymin , if yE < ymin

0 , else

where xE and yE are two components from the EE position w.r.t. the manipulator base frame
W . As a result, the virtual motion activation boundaries move with the mobile platform,
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Fig. 6: Schematic illustration of the whole-body Cartesian impedance control. The coordinate frames used by the system are
highlighted. K is the camera frame, F a static frame in the environment, C the center of the wheelchair, W the base of the robotic
manipulator, E the EE frame, Ed the desired EE frame.

such that a behavior transparent to the user is achieved. The commanded platform forces are
obtained via a potential function as

τ b = KWB

[
h1(xE , yE) 0

0 h2(yE)

]

where KWB ∈ ℜ2×2 is a diagonal stiffness matrix. Once the boundaries are exceeded a
potential starts to build from the wheelchairs virtual spring KWB that results in commanded
forces to the platform as visualized in Figure 6. The potential is generated by the output of
the function h1(xE , yE) in the forward and backward directions and h2(yE) is applied to the
rotational direction. During whole-body control tasks the user can give Cartesian velocity
commands to the EE without explicitly considering the wheelchair motion. Moreover, the
parameters of the platform motion generation functions can be adapted online based on the
state of a task to ensure reachability of the arm. Additionally, τ b can be combined from
different sources, for example with an external force observer to specify interaction safety
thresholds [8] or avoid collisions with the environment.

The commanded platform forces are transformed to the required velocities ηd through an
admittance interface as

Madmη̇d +Dadmηd = τ b + τ ext
b .

The desired mobile base behavior can be specified using the parameters Madm, Dadm which
are the virtual platform inertia and damping of the admittance interface, respectively. The
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generalized external forces τ ext
b are obtained using the external joint torques to realize whole-

body impedance causality. Furthermore, a lower-level proportional-integral controller is used
to realize the desired velocity of the wheelchair. The actual base velocity is obtained from the
wheelchair odometry model as a function of wheel velocities.

2.3.3 Virtual Workspace Boundaries

Based on functional requirements the user has to be located in the workspace of the robot,
e.g. in order to bring a filled drinking container to their mouth. For a safe application, we
generate a virtual environment to restrict the workspace of the manipulator to prevent direct
contact between user and manipulator.

This virtual environment generates virtual obstacle forces that are converted to joint
torques and can be added to the control scheme. We therefore extend Equation 1 with τ d,VE,
which is the desired joint torque resulting from the virtual environment:

τ = τ imp + τ null + τ d,VE + τ g(q).

The virtual environment consists of planes, spheres and cylinders which mark zones the robot
shall not enter, specifically adjusted for each user. In case of penetration of the workspace
boundary, the Cartesian EE velocity ẋ, the current EE pose x and the pose resulting from the
projection of x on the surface of the virtual environment xd,VE can be used to calculate a
workspace boundary wrench fVi as

fVi = KVi(x− xd,VE) +DViẋi.

Given N workspace boundary wrenches, the resulting torque τ d,VE generated by the
virtual environment for the workspace limits is defined as

τ d,VE =

N∑
i=1

JTfVi.

Additional workspace boundaries for other parts of the robot structure are defined by using
the forward kinematics and the corresponding Jacobian matrix of the respective joint of the
manipulator.

2.3.4 Velocity Integration

When using the direct control scheme, the user input u is treated as a velocity command
applied at the EE. Dependent on the current subset of DoFs to be controlled, this velocity
command is either integrated to the translational or rotational component of the EE pose.
In case of grasp selection, the user command is treated as a joint velocity command that is
applied to the joint configuration of the robotic hand. The user input u ∈ ℜ3, u ∈ [−1, 1]3
is a unit-less vector which is multiplied with the defined maximum control velocities ktrans,
krot and kgrasp for translational, rotational or grasping motion, respectively.

ẋd = ku,

10



with k ∈ [ktrans, krot, kgrasp]

In order to also account for the workspace limits at the desired position and velocity level,
we define the desired position xd as

xd =

∫ t

0

[ẋd − c(fV, ẋd)].

The state-dependent vector c(fV, ẋd) accounts for hitting workspace limits by stopping
translational integration of the decoded velocity signal if such a boundary is hit and the
velocity direction points towards the wall:

c(fV, ẋd) =

{
−fV·ẋd

∥fV∥∥ẋd∥
fV

∥fV∥ , if − fV · ẋd > 0

0 , else

where fV =
∑

fVi is the workspace boundary wrench generated by the virtual
environment.

2.3.5 Frame Interpolation

When using the direct control mode, continuity of the robot’s desired pose is ensured from the
integration process. This property is not given, when using our shared control approach. From
a Shared Control Template, a desired pose XSCT ∈ SE(3) for the EE is calculated online at
a rate of 30Hz, which can not be immediately applied to the Cartesian impedance controller
running at a rate of 1kHz. Instead, we utilize a frame interpolation module that follows two
objectives: one, continuously follow a target pose that is provided at a comparably low rate;
two, ensure limits in the translational and rotational velocity of the resulting trajectory.

To achieve this, the frame interpolator calculates a linear interpolation towards the current
SCT desired frame XSCT. This is trivial to achieve for the translational component. For the
rotational component, spherical linear interpolation in the quaternion representation [9] is
used. Linear interpolation allows for a straightforward integration of a velocity limit through
adjustment of the interpolation time Tm. In order to prevent the robot from moving faster
than the source signal, we define the final interpolation time Tq = max(Tm,Ts) where Ts =
1/30Hz is the sample time of the shared control module.

This piece-wise linear interpolation results in discontinuities in the velocities of the result-
ing trajectory. In order to create a smooth trajectory, which can be used as input to the
Cartesian impedance controller, a second order filter is applied. More details on the frame
interpolator approach is available in [10].

2.4 World Modeling
The world modeling pipeline is summarized in Figure 7 and involves multiple components
including an Object Database storing object specific knowledge, an Object Detector to find
the relevant object in the image and for class categorization, and an Object Localization for
precise 6D pose estimation. After this, an Anchoring algorithm assigns symbolic tags to spe-
cific instances, which are instantiated in a World State Representation (WSR) process. More
information of these modules is provided in the following subsections.
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Fig. 7: Components of EDAN’s world modeling module. Right: shown the Object Data Base (ODB) [11].

2.4.1 Object Database

The Object DataBase (ODB) was first introduced in Leidner et. al. [11]. It stores any object
information that is available to the robot a priori, including attributes (like color, mass or
length), frames (like the tip of a bottle expressed in the origin frame of this bottle), robot
properties (like grasp configurations), SCTs (stored as yaml files) and 3D models.

An important property of the ODB is its object oriented paradigm: physical objects (like
EDAN’s red mug) are derived from abstract classes (like mug, which itself derives from
container). This enables a polymorphism feature. As a concrete example, the same SCT

(releasing a cylindrical container) can be inherited by different objects (a red mug and a
lab bottle) and instantiated with different properties and frames [11].

Fig. 8: EDAN perception pipeline. Example of the processing of an image with three object: a microwave, a red mug, and a bottle,
with two different algorithms for pose estimation.
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2.4.2 Object Detection

To be able to assist users in manipulating their environment, objects have to be identified and
localized from the surroundings perceived by the robot, see also Figure 8. To do so, EDAN
uses a RGB-D camera. Detection of the object is done from the ODB with an object detector,
namely a fine-tuned RetinaNet with a ResNet 50 backbone and pretrained weights from the
COCO dataset [12].

Let’s denote P the inputs (RGB images from camera data) and Y the outputs (sets of
object classes and their 2D bounding boxes), and define the object detector as a function
Mθ : P → Y with parameters θ. For robustness, images of the objects of interest in a real
scene were collected and annotated, denoted by (pi,yi)

Q
i=1. Q was around several hundreds

(for a total of a dozen of objects) and can be tuned depending on the desired detection perfor-
mance. With this annotated data set, the object detector was fine-tuned by optimizing on the
parameters θ:

θ⋆ = argmin
θ

1

Q

Q∑
i=1

L(Mθ(pi),yi)

where L(·) is a loss function measuring the distance between predictions and ground truth
outputs, which can be a cross entropy loss for classification or a mean square loss for
regression.

As lightning conditions and object size can affect performance, we leveraged data aug-
mentation and anchor-size optimization [13], which handle objects of different sizes better, to
boost the performance. Furthermore, we attempted to replace real images of the training data
– which require manual labeling – with synthetic counterparts to reduce the annotation efforts
on preparing the training data set. The synthetic images were realized by recent advances
of realistic image synthesizers [14] in combination with existing 3D object models. Having
observed the sub-optimal performance due to the sim-to-real gap, we further took an initial
step to devise a novel pipeline with Bayesian active learning to bridge the gap [15]. This
saved annotation efforts for a subset of household objects used in the experiments such as the
bottle, the red mug, the drawer handle and the door handle. Photo-realistic synthetic image
generation worked due to these objects possessing 3D CAD models with faithful textures.

2.4.3 Object Localization

Once an object has been detected and its class identified, its 6D pose is estimated. First, the
cropped depth data from the bounding box detection is converted into point cloud data. This
point cloud data is then treated as the target of a registration method: the Iterative Closest
Points (ICP) algorithm [16].

The source point cloud is created by loading the corresponding 3D object model from the
ODB based on the predicted object class. The ICP algorithm then computes the rigid body
transformation between the source and target point clouds, from which the pose of the object
expressed in camera coordinate can be computed. To improve the matching precision, the
ratio of outliers in the target point cloud is reduced by a series of operations such as plane
segmentation and Euclidean clustering.

An alternative method dealt with tiny or thin objects like handles which rest on a verti-
cal plane and yield undesirable performance with ICP. The vertical plane is estimated with
the RANSAC algorithm [17] and the orientation of the object inferred based on the plane’s
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normal. The position of the object is then computed from the 3D coordinates of the point
cloud.

2.4.4 Anchoring

Anchoring is defined by Coradeschi and Saffiotti as “the problem of connecting, inside an
artificial system, symbols and sensor data that refer to the same physical objects in the exter-
nal world” [18]. In the case of a mobile agent like EDAN, symbolic objects must retain
consistence and persistence after robot actions: the anchoring process decides if after moving
the wheelchair, an object seen from a different viewpoint is the same as before moving, or a
different instance. Similarly, an object temporarily hidden by the manipulator keeps the same
identifier.

To do so, an internal state tracks all localized objects, taking into consideration wheelchair
odometry. A minimal distance is required between two anchored objects. In case of required
arbitration (two different categories seen in the last few seconds with a similar pose for exam-
ple), the quality of the pose as well as the number of detections in the last 5 seconds is taken
into consideration. New detections of already anchored object update the object pose, while
previously-known symbolic states, like a filled bottle status, can be maintained. If an object
is new, an instance of its class is created in the WSR with a unique name. Finally, all existing
world model objects not implicated in a task that are not perceived after 5 seconds are deleted
from the WSR.

2.4.5 World State Representation

The WSR, also introduced by Leidner et. al. [11], contains the aggregated world model of
the robot. As seen in Figure 7, it contains a list of all anchored objects and their tags, as well
as their previously-known properties and the robot’s belief in their current locations. It also
keeps track of the symbolic properties of the objects. For example, after a grasping action, the
red mug would obtain a predicate (grasped red mug edan arm).

The WSR serves as the information source for all other components in the shared control
architecture. It is queried by other components like the Task Inference and the Shared Control
Templates processes.

2.5 Task Inference
The task inference provides two functionalities: the first is identifying which shared control
task can be executed based on the current world state; the second is automatically activating
support once a task is likely enough. We make use of Planning Domain Definition Language
(PDDL) to have skills with preconditions and effects, affecting the semantic state of the world.
At 10 Hz, we evaluate which tasks are associated to the objects currently instantiated in the
world, then select those with valid preconditions. The resulting list is displayed on the tablet
GUI, from which the user can select at any time.

For each possible task, a distance from the EE to the target of the task, e.g. to the origin
frame of the respective object is computed. Furthermore, the Active Constraints (ACs) of
the first SCT-state are monitored by the task inference algorithm. As soon as the computed
distance to the task is below a certain threshold as well as the ACs are fulfilled to a certain
level, the task will start automatically.
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2.6 Shared Control Templates
Assistance through shared control is implemented with SCTs [19]. SCTs help users move a
robotic manipulator EE in task space to accomplish tasks. A template encodes how the user
can move a target EE pose, which is tracked by the controller described in 2.3.5. The encoding
constrains the user commanded velocity of the EE, as well as its pose.

A template is defined as a finite state machine. Therein, a state is a structure composed
of robot parameters, PDDL effects, Input Mappings (IMs), and Active Constraints. Robot
parameters can for example be the joint configuration of the tool, impedance controller param-
eters or thresholds for whole-body-control. We detail in the following subsections IMs, ACs
and state transitions.

2.6.1 Input Mapping

An IM maps user velocity commands u to the EE velocity ẋsct. Multiple IMs can be used con-
secutively, iteratively applying their displacements on xsct during one time step. We denote
Xsct the homogeneous transformation representation of xsct.

Formally, at each time step, an IM m first computes a displacement δT :

mapm : ℜn, SE(3)→ SE(3)

u(t) 7→ δT

then applies it on the desired pose of the EE:

displacem : SE(3), SE(3)→ SE(3)

Xsct(t− 1), δT 7→X im(t),

with user command u ∈ ℜn, n ∈ [[1, 6]] (n = 3 in this work). A displacement can be applied
either in the local frame of reference, here the EE: displacem(Xsct, δT ) = XsctδT or the
wheelchair frame of reference: displacem(Xsct, δT ) = δTXsct.

To compute displacements, we make use of a Euler angle representation, adequate for
the small rotations in a displacement. The most elementary IM is a 1-to-1 mapping, where
each user input DoF controls one task space DoF. This can be computed with: mapm =
euler to matrix(Au),A ∈ ℜ6×n, with euler to matrix a function to convert from a Euler
representation to a homogeneous matrix representation and A a matrix with at most one
element per line and per column.

An IM might not be directly computed on the EE, but can be applied on feature frames
Ff , e. g. at the tip of a grasped bottle. Those feature frames can be static frames w. r. t. the
EE, typically properties of a grasped object, saved in the Object Database. They can also be
dynamically computed, e. g. at the tip of a bottle always pointing towards a target object. See
Algorithm 1 for the implementation of an IM example using a 1-to-1 mapping.

A 1-to-1 mapping is not always the most intuitive manner to control a robot, in particular
as soon as rotations are controlled by the user. For example, in the current implementation of
pour, a scalar product is computed with 2 user input DoFs to control the tilting around the
tip of a grasped bottle. Other features like dead-zones can also be used. This can provide a
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Algorithm 1 Input Mapping

Input: User input u, Xsct(t− 1), Input Mapping IM
Output: Displaced target EE pose X im(t)

1: F f ← IM.compute feature frame(Xsct(t− 1))
2: // Compute transform from F f to Xsct(t− 1)
3: Ff

TXsct ← F f
−1Xsct(t− 1)

4: // Compute displacement
5: δT ← euler to matrix(Au)
6: // If Local: Apply local displacement to the feature frame
7: F displaced ← F fδT
8: // Update target EE pose from the new feature frame
9: X im(t)← F displaced

Ff
TXsct

10: return X im(t)

reduction of the number of controlled DoF w. r. t. the dimension of the user input, make the
IM more intuitive for the user, and adapt to user preferences.

2.6.2 Active constraints

An AC restricts the space of permissible poses in task space. Complementary to an IM which
applies on velocities, an AC acts on positions.

An AC m is implicitly defined by its projection function:

projectm : SE(3)→ SE(3)

X im(t) 7→Xac(t),

Multiple ACs can be active within the same state, and are applied iteratively. As with IM
models, an AC can be applied on feature frames Ff . Changes on Ff are then reflected back
on a new Xac pose, cf Algorithm 2.

Algorithm 2 Active Constraint

Input: X im(t), Active Constraint AC
Output: Constrained target EE pose Xac(t)

1: Xac ←X im(t)
2: F f ← AC.compute feature frame(Xac)
3: Ff

TXac ← F−1
f Xac

4: // Apply constraints on the feature frame
5: F projected ← AC.projectm(F f )
6: // Update target EE pose from feature frame
7: Xac ← F projected

Ff
TXac

8: return Xac
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An AC can for example constrain the EE position within a plane, or within a cone to
guide the EE towards a grasp frame, or set the EE orientation based on the EE position when
grasping a cylindrical object.

Some constraints can be represented by either an IM or an AC: for example, moving along
a circle. Assuming that at t0 the EE is already located on the circle, an IM can be defined as
the tangent direction along this circle. With an ideal discretization, this will restrict the user to
only move along this circle. However, one could also allow free motion with the IM, then use
an AC to project Xac onto the circle. The resulting set of poses the EE can get to is the same
in both cases: there is no unique template definition. In practice, the choice of constraining
via IMs or ACs depends on the resulting intuitiveness of use and the complexity required to
define the template.

2.6.3 Finite State Machine

An SCT consists of multiple states, described above. Together with transitions, they form a
finite state machine. There is a defined start state q0 for when the task is started and there can
only be one active state at a time, described in [20]. The state machine additionally defines a
distinct end state qend. If this state is reached, the execution of a task finishes.

Transitions cause a state change within an SCT, if a corresponding event is triggered.
Events can be spatial conditions, for example the crossing of a certain threshold of some
measure, like the Euclidean distance from EE to an object. It can also be crossing a threshold
of force interaction, e. g. creating contact with a drawer, or sensor values such as a time-of-
flight sensor in the EE detecting the presence of an object, before closing the fingers. Temporal
conditions as events are seldom used, to allow the user to execute a task at their own rhythm.

2.6.4 Trajectories of tasks execution

Fig. 9: End effector measured trajectories for the tasks open drawer, pick and pour executed by the participants. The different
states of the finite state machine of the used shared control template are shown.

An illustration of the result of an SCT execution is shown in Figure 9. The participants
could for example select the approach angle to pick objects or pour, as well as the tilt angle
when pouring; see also the attached videos.
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