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Metformin is widely used in the treatment of Type 2 DiabetesMellitus (T2DM). However, it is
known to have beneficial effects in many other conditions, including obesity and cancer. In
this study, we aimed to investigate the metabolic effect of metformin in T2DM and its
impact on obesity. A mass spectrometry (MS)-based metabolomics approach was used
to analyze samples from two cohorts, including healthy lean and obese control, and lean as
well as obese T2DM patients on metformin regimen in the last 6 months. The results show
a clear group separation and sample clustering between the study groups due to both
T2DM and metformin administration. Seventy-one metabolites were dysregulated in
diabetic obese patients (30 up-regulated and 41 down-regulated), and their levels
were unchanged with metformin administration. However, 30 metabolites were
dysregulated (21 were up-regulated and 9 were down-regulated) and then restored to
obese control levels by metformin administration in obese diabetic patients. Furthermore,
in obese diabetic patients, the level of 10 metabolites was dysregulated only after
metformin administration. Most of these dysregulated metabolites were dipeptides,
aliphatic amino acids, nucleic acid derivatives, and urea cycle components. The
metabolic pattern of 62 metabolites was persistent, and their levels were affected by
neither T2DM nor metformin in obesity. Interestingly, 9 metabolites were significantly
dysregulated between lean and obese cohorts due to T2DM and metformin regardless of
the obesity status. These include arginine, citrulline, guanidoacetic acid, proline, alanine,
taurine, 5-hydroxyindoleacetic acid, and 5-hydroxymethyluracil. Understanding the
metabolic alterations taking place upon metformin treatment would shed light on
possible molecular targets of metformin, especially in conditions like T2DM and obesity.
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INTRODUCTION

T2DM is a chronic progressive metabolic disease characterized by
insulin resistance and pancreatic β-cell dysfunction due to
uncontrolled hyperglycemia (Chatterjee et al., 2017;
Chaudhury et al., 2017; Goyal, 2020). The prevalence of
T2DM has been increasing steadily worldwide and is
considered a major health concern (Zheng et al., 2018; Goyal,
2020). T2DM is characterized by persistent hyperglycemia, which
consequently leads to microvascular and macrovascular
complications (Goyal, 2020). Even though the predisposition
to T2DM has a strong genetic basis, other factors such as
obesity, physical inactivity, and energy-dense diets are
significant contributing factors in the development of T2DM
(Chatterjee et al., 2017; Zheng et al., 2018).

Obesity is an emerging global chronic health problem
attributed to around 44% of T2DM cases (Fried et al., 2013;
Leitner et al., 2017), with a close relationship between the two
conditions termed “diabesity” (Kurland et al., 2013). Both obesity
and T2DM are associated with insulin resistance and
disturbances in several metabolic pathways (Leitner et al.,
2017; Verma and Hussain, 2017). In addition, obesity results
in a significant increase in plasma free fatty acids, glycerol,
hormones, pro-inflammatory cytokines, and other factors,
which have a pivotal role in developing insulin resistance, the
hallmark of T2DM (Kahn et al., 2006). Therefore, understanding
the complex metabolic changes underlying the pathophysiology
of obesity and T2DM, and how obese individuals develop
diabetes are essential goals for disease prevention and
therapeutic management.

Metformin is a biguanide derivative oral anti-diabetic drug
that has been widely used as a first-line treatment for T2DM with
outstanding safety records. This drug is multifunctional, as it acts
on multiple tissues and targets different pathways. It inhibits
hepatic gluconeogenesis and intestinal glucose absorption and
promotes glucose uptake in the liver and skeletal muscles (Viollet
et al., 2012). These pharmacological effects are mostly mediated
by stimulating the adenosine monophosphate (AMP)-activated
protein kinase (AMPK), an enzyme involved in cellular
regulation of energy homeostasis, as well as lipid and glucose
metabolism (Viollet et al., 2012; Rena et al., 2017). A growing
body of evidence suggests that metformin might enhance obesity-
induced meta-inflammation by affecting resident immune cells in
metabolic organs, including adipose tissue and the liver (Foretz
et al., 2019). Randomized controlled clinical trials have shown
that metformin is associated with weight loss and waist
circumference reduction in obese and overweight diabetic
patients compared to placebo (UK Prospective Diabetes Study
Group, 1998; Diabetes Prevention Program Research Group,
2012). Additionally, metformin is now considered a
bioenergetic drug, as it affects ATP production pathways,
particularly glycolysis and oxidative phosphorylation
(Andrzejewski et al., 2018). Despite its pleiotropic properties,
the precise mechanisms behind metformin mode of action,
especially in obese diabetic patients, are still elusive, and
various metabolic pathways may be involved.

Metabolomics is a comprehensive analytical approach that
identifies changes in metabolites’ levels in a particular biological
system in response to specific stimuli and pathogenesis (Liu and
Locasale, 2017; Jacob et al., 2018). The advances in informatics
tools and analytical instrumentation sensitivity allowed the
detection of subtle alterations in biological pathways to
provide insight into the mechanisms underlying various
physiological conditions and aberrant processes, including
diseases (Al-Qahtani et al., 2020). Regarding T2DM and
obesity, metabolomics has been widely applied in discovering
metabolites biomarkers (Zhang et al., 2017; Urpi-Sarda et al.,
2019) and investigating the altered metabolic pathways in both
conditions (Park et al., 2015; Bagheri et al., 2018). Additionally,
the effect of drugs, including metformin on T2DM and obesity,
was examined in mice with diet-induced obesity and T2DM
(Tomasova et al., 2019), and in patients with T2DM using the
metabolomics approach (Adam et al., 2016). Previous
metabolomics studies have investigated the changes in the
metabolic profile of either T2DM or obesity alone or studied
the effect of metformin selectively on obese or T2DM patients. In
this study, mass spectrometry (MS)-based metabolomics
approach was used to investigate the metabolic changes
associated with long-term metformin administration in human
diabetic patients and how this pattern is affected by obesity.
Identification of significantly changed metabolites among
individual study groups would provide a better understanding
of the underlying molecular mechanisms of metformin mode of
action in T2DM in the presence and absence of obesity. It would
also allow us to demonstrate the obesity-related molecular
changes and understand the dynamics of metabolic processes
involved in humans with obesity and metformin administration.

METHODS

Study Population
This study involved two cohorts; obese and lean (non-obese)
diabetic patients on metformin from two centers: King Faisal
Specialist Hospital and Research Center, and University Diabetes
Center, King Saud University Medical City, King Saud University
Riyadh, Saudi Arabia, and The University of Jordan Hospital,
Amman, Jordan, respectively. The obese cohort included 52
participants divided into 26 obese non-diabetic (control), 16
obese T2DM patients (OT2DM), and 10 obese T2DM patients
taking metformin (1,500 mg/day) for at least 6 months
(OT2DMMet) (Gu et al., 2020). The lean cohort included 49
participants divided into 25 healthy lean control and 24 lean non-
obese T2DM patients taking metformin (1,500 mg/day) for at
least 6 months (LT2DMMet). Diabetic participants were
diagnosed with T2DM for at least 6 months. Patients with
acute or chronic kidney disease, patients with congestive heart
failure, smokers, pregnant female patients, females with
polycystic ovarian syndrome (PCOS), and patients treated
with insulin were excluded from the study. Patients in both
cohorts who were taking any other medication rather than
metformin were excluded from this study.
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Ethics Statement
All procedures performed in this study involving human
participants followed the Declaration of Helsinki’s ethical
standards and the universal international conference on
harmonization-good clinical practice (ICH-GCP) guidelines.
This study was reviewed and approved by the Institutional
Review Board (IRB) at King Faisal Specialist Hospital and
Research Center (KFSHRC) (approval number 2170 013),
Riyadh, Saudi Arabia, Institutional Review Board (IRB) at
King Saud University (approval number E-19-4234 ) and The
University of Jordan Hospital (80/2018/1224) for obese and the
non-obese cohorts, respectively. Written informed consent was
obtained from all participants.

Anthropometric Measurements
The body mass index (BMI) for each participant was calculated as
body weight (in kilograms) divided by the square of body height
(in meters). The BMI was classified into normal (18–24.9 kg/m2),
overweight (25–29.9 kg/m2), obese (30–34.9 kg/m2), and
morbidly obese (>35 kg/m2). Obese and morbid obese
participants were included in the obese group, while healthy
BMI and overweight participants were included in the lean non-
obese group.

Metabolomic Analysis
Samples from the obese cohort were analyzed using Chemical
Isotope Labeling (CIL) (Jacob et al., 2019a). In contrast, the non-
obese cohort samples were analyzed using label-free untargeted
liquid chromatography-mass spectrometry (LC-MS)
(Supplementary Figure S1).

CIL-LC-MS Metabolomic Analysis for the Obese
Cohort
Serum samples were obtained from three groups; obese non-
diabetic (n � 26), obese with T2DM (OT2DM, n � 16), and obese
with T2DM on metformin (OT2DMMet, n � 10) and stored at
−80°C until further metabolomics analysis. A volume of 15 μL
serum was taken out from each sample, and the metabolites were
extracted by protein precipitation with 45 μL of methanol. After
2 h of incubation at −20°C, 45 μL of supernatant was taken out
and dried down, and then mixed with 25 μL water, 12.5 μL
acetonitrile (ACN), 12.5 μL of sodium carbonate/sodium
bicarbonate buffer, and 25 μL 12C-dansyl chloride or 13C-
dansyl chloride (18 mg/ml in ACN) (Supplementary Figure
S1). After vortexing and spinning down, the mixture was
incubated at 40°C for 45 min. Then, 5 μL of 250 mM NaOH
was added to quench the reaction for 10 min at 40°C. After that,
25 μL of 425 mM formic acid in 1:1 ACN/H2O was added to
consume excess NaOH.

In order to minimize variations in the total sample amount of
individual samples using the step-gradient LC-UV method (Wu
and Li, 2012), sample normalization was performed, as described
in our recent publication (Dahabiyeh et al., 2020). Each sample
was labeled by 12C-dansyl chloride and mixed in equal mole
amount with a13C-dansyl chloride pool sample based on the LC-
UV analysis quantification results. The mixtures (2.5 μL
containing 0.86 mmol of labeled metabolites) were analyzed by

a Thermo Scientific Dionex Ultimate 3000 UHPLC System
(Sunnyvale, CA) linked to a Bruker Maxis II quadrupole time-
of-flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA)
using the same chromatography system and MS parameters
described in our previous publication (Dahabiyeh et al., 2020).
The Quality control (QC) sample was prepared by mixing the
12C- and 13C-labeled pooled samples in equal mole amount. A
QC injection was performed every 15 LC-MS sample runs. In
total, there were 14 QC samples injected and analyzed. Peak pairs
with ratio values having > ±25% RSD in the QC samples were
filtered out.

The processed samples were analyzed using a Thermo Fisher
Scientific Dionex Ultimate 3,000 UHPLC System (Sunnyvale,
CA) linked to a Bruker Maxis II quadrupole time-of-flight
(Q-TOF) mass spectrometer (Bruker, Billerica, MA). The LC
column was an Agilent reversed phase Eclipse plus C18 column
(2.1 mm × 10 cm, 1.8 μm particle size, 95 Å pore size), while the
mobile phase A was 0.1% (v/v) formic acid in 5% (v/v) ACN, and
solvent B was 0.1% (v/v) formic acid in acetonitrile. The LC
gradient was: t � 0 min, 20% B; t � 3.5 min, 35% B; t � 18 min,
65% B; t � 21 min, 99% B; t � 34 min, 99% B, with a flow rate of
0.18 ml/min. The MS conditions were as follows: polarity,
positive; dry temperature, 230°C; dry gas, 8 L/min; capillary
voltage, 4,500 V; nebulizer, 1.0 bar; end plate offset, 500 V;
spectra rate, 1.0 Hz.

Bruker Daltonics Data Analysis 4.3 software was first used to
convert MS spectra information into cvs files. An in-house
developed software, IsoMS (Zhou et al., 2014), was used to
process the raw data generated from multiple LC-MS runs by
peak picking, peak pairing, and peak-pair filtering to remove
redundant peaks. IsoMS files from each injection were aligned
together based on the peak’s accurate mass and retention time to
generate the aligned file. The missing peak pair information in the
aligned file was re-extracted from raw data by Zerofill software
(Huan and Li, 2015). Themetabolites were positively identified by
searching against DnsID Library (www.mycompoundid.org)
using retention time and accurate mass (Huan et al., 2015).
Putative identification was performed by searching exact mass
against MyCompoundID library, which contains 8,021 known
human metabolites and 375,809 predicted metabolites (www.
mycompoundid.org) (Li et al., 2013).

Label-free LC-MS Metabolomic Analysis for the Lean
Non-obese Cohort
Serum samples were obtained from two groups; healthy lean (n� 25)
and lean with T2DM taking metformin (LT2DMMet, n � 24) and
stored at −80°C until metabolomics analysis. To 100 μL of a serum
sample, 300 μL of methanol and 10 μL of 2.8 mg/ml DL-o-
chlorophenyl alanine internal standard were added, followed by
vortex mixing for 30 s. The samples were allowed to stand for 1 h at
−20°C, then centrifuged at 12,000 rpm at 4°C for 15min. A volume
of 200 μL of the supernatant was transferred to a vial for LC-MS
analysis. Each aliquot (100 µL) was mixed with 300 µL of cold ACN,
then vortexed for 30 s before analysis. The mixture was centrifuged
for 5min at 15,000 rpm at 4°C The supernatant was dried in a
vacuum concentrator. Dry residue was re-dissolved in methanol/
water in a ratio of (1:1).
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The peak separation of 10 μL of injected sample was
performed by Ultimate 3,000 LC combined with Q Exactive
MS (Thermo Fisher Scientific, CA, United States) and
screened with electrospray ionization (ESI)-MS. The LC
system is comprised of an ACQUITY UPLC HSS T3 (100 ×
2.1 mm 1.8 μm) with Ultimate 3,000 LC. The mobile phase was
composed of solvent A (0.05% formic acid-water) and solvent B
(ACN) with a gradient elution (1–16 min, 95–5% A; 16–18 min,
5%A; 18–19 min, 5–95%A; 19–20 min, 95–95%A). The flow rate
of the mobile phase was 300 μL/min. The column temperature
was maintained at 40°C, and the sample manager temperature
was set at 4°C. Mass spectrometry parameters in ESI+ and ESI−
modes were kept as follows: heater temperature 300°C; sheath gas
flow rate, 45 arb; aux gas flow rate, 15 arb; sweep gas flow rate, 1
arb; spray voltage, 3.0 kV; capillary temperature, 350°C; S-Lens
RF level, 30%.

The raw data were acquired and aligned using the compound
discoverer software (Thermo Fisher Scientific, United States)
based on the m/z value and the ion signals’ retention time.
The chemical structures of metabolites were identified
according to online databases such as the Human Metabolome
database (www.hmdb.ca), Metlin (www.metlin.scripps.edu), and
the Mass Bank (www.massbank.jp) using the data of accurate
masses and MS/MS fragments.

Statistical Analysis
MetaboAnalyst version 3.0 (McGill University of Montreal, Montreal,
QC, Canada) was used to process theMS data from both cohorts. The
raw data was normalized to the sample total median to ensure all
samples were normally distributed, log-transformed, and Pareto
scaled. A univariate analysis using a volcano plot was performed
for each binary comparison to identify significantly differentially
expressed metabolites based on a fold-change criterion of greater
than 1.5 or less than 0.67 with a false discovery rate (FDR) adjusted
p-value less than 0.05. The x-axis, on the volcano plot, represents the
fold change (FC) between two comparison groups, while the y-axis
represents the p-value. Multivariate analysis (partial least square-
discriminant analysis (PLS-DA)) was carried out to identify any
clustering or separation between the compared data sets.

For statistical analysis among the groups, analysis of variance
(ANOVA) using post-hoc Tukey’s analysis method, with
multiplicity-adjusted p-values, for each comparison was used.
This type of analysis seemed best to reduce the probability of
making a type 1 error since it supports the testing of pairwise
differences due to the unequal group sizes among the experimental
and the control groups, as seen in our cohorts. Pearson similarity
testing, and Venn diagram presentations to develop Metformine,
and diabetes related metabolic patterns were performed using
Multiple Professional Profiler (MPP) software (Agilent In, CA).

RESULTS

Clinical Characteristics and Demographics
of the Study Population
The clinical features and demographic data of the study
population, including the two cohorts, are presented in

Table 1. The majority of OT2DMMet and LT2DMMet groups
were females. While more than half of the OT2DM were males.
However, there was no significantly difference in gender between
the study groups. In addition, lean cohort individuals had better
diabetic parameters, i.e., lower HbA1c% and BMI compared to
OT2DMMet in the obese cohort. On the other hand, the overall
lipid profile for the LT2DMMet group showed higher values of
HDL compared to the obese cohort.

The Overall Metabolomic Analysis and
Comparisons of the Obese Cohort Groups
Initially, the metabolic changes associated with metformin
administration in patients with T2DM and how these changes
would be affected by obesity were identified using the LC-MS
approach. The different groups of the obese cohort’s metabolic
profiles were compared using PLS-DA to examine group
clustering and separation. In contrast, the volcano plot was
used to investigate the significantly up- or down-regulated
metabolites. False discovery rate (FDR)-corrected p-values
(y-axis) and fold change (FC) (x-axis) thresholds of 0.05, and
1.5 (0.67), respectively, were applied.

The PLS-DA score plot of T2DM was built by comparing
obese vs. OT2DM groups from the obese cohort (T2DM panel,
Figure 1A). The PLS-DA score plot revealed a clear separation
and grouping between these two groups (Q2 � 0.885, R2 � 0.992),
reflecting that T2DM itself has a significant effect on the dynamic
of metabolic processes in obese patients. The volcano plot (T2DM
panel, Figure 1B) showed a significant change in the levels of
several metabolites, of which 459 metabolites were up-regulated,
and 166 were down-regulated in the OT2DM group (identified
and unidentified).

Metforminmetabolomic pattern in obese diabetic patients was
examined through a PLS-DA comparison between OT2DM vs.
OT2DMMet groups from the obese cohort. As shown in the
metformin panel of Figure 1C, evident separation of the
compared groups was noted in the PLS-DA score plot (Q2 �
0.686, R2 � 0.983), indicating that metformin administration as
well has a significant effect on the dynamic of metabolic processes
in obese diabetic patients. A total of 107 metabolites (identified
and unidentified) were significantly dysregulated of which 78
were up-regulated, and 29 were downregulated in obese diabetic
patients on metformin as shown in metformin panel, volcano
plot, Figure 1D.

T2DM Metabolic Changes in Obesity
A panel of 305 features was commonly identified in the binary
comparisons between the study groups. The metabolic pattern
associated with T2DM in obesity was built based on the
identified features extracted from the comparison between
obese vs. OT2DM groups (T2DM-dependent, Figure 2A).
Metformin responsive features (n � 68) were identified from
the comparison between OT2DM vs. OT2DMMet groups
(Met-dependent, Figure 2A), and were excluded from the
analysis. Considering T2DM metabolic panel (n � 134), the
features that were irresponsive to metformin (n � 89), were
identified (Metformin-independent, Figure 2A). These
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metformin-independent metabolites were changed as an effect
of T2DM but not metformin treatment. Their fold change was
analyzed (cutoff 1.5), as shown in Figure 2B, and 40 and 45
metabolites were found to be up- and down-regulated,
respectively, in T2DM compared to obese groups (Figures
2C,D). Metabolite levels in human serum are highly sensitive
to certain parameters such as age, BMI, and low-density
lipoprotein-cholesterol (LDL-C) (Jacob et al., 2019b). In this
study, age, BMI, and LDL-C were considered confounders, and
the values of these confounders were integrated into the
metabolomics dataset. After excluding the confounders-
based metabolites from the up- and down-regulated
metabolites, 30 and 41 metabolites resulted, respectively, as
demonstrated in Figures 2E,F. These dysregulated
metabolites’ identity as an effect of T2DM in obesity and
their levels in different study groups are shown in
Figures 2G,H.

Metabolic Changes of Metformin
Administration in Obese Diabetic Patients
The effect of metformin administration on metabolites in obese
diabetic patients was investigated based on comparing OT2DM
vs. OT2DMMet groups from the obese cohort. The T2DM
metabolic pattern (n � 134) that has been generated from the
ANOVA comparison between the obese and OT2DM
(Figure 2A) was overlapped with metformin responsive
features (n � 68) (Metformin-dependent panel, Figure 3A).
After fold change analysis (cutoff >1.5, and <0.67), 30 and 14
metabolites were up- and down-regulated due to metformin
administration in T2DM, respectively. Further filtration,
considering identified features which were affected by T2DM
and metformin (Supplementary Figure S2), showed that only 28
(out of 30) and 9 (out of 14) metabolites were up- and down-
regulated in OT2DM and then returned to obese group
comparable levels by metformin administration in the obese
diabetic patients (Figures 3B,C). Additionally, the

confounders-based metabolites were overlapped and removed
from G30 and G14, to result in 21 and 9 metabolites that were up-
and down-regulated due to metformin administration in
OT2DM, respectively (Figures 3D,E). The identity of these
dysregulated metabolites (G21 and G9) and their levels in
different study groups are presented in a heatmap format
(Figures 3F,G).

An investigation on metformin administration alone, without
the effect of T2DM, on the obesity metabolic pattern, was also
considered. As shown in Figure 4A, 17 metabolites were
statistically significant due to metformin administration in
obese diabetic patients. The metabolic pattern of these
metabolites considering fold change trend, cutoff >1.5, and
<0.67, indicated that 5 metabolites were up-regulated, while 12
metabolites were down-regulated in the OT2DMMet group,
(Figure 4B). After excluding the confounders-based
metabolites, the identified metabolites were reduced to have
only 10 total metabolites responsive to metformin
(Figure 4C). Among these metabolites, 2 (out of 5) and 8 (out
of 12) metabolites were up- and down-regulated as an effect of
metformin in obese diabetic patients (Figure 4D).

Metabolites That Are Irresponsive Neither
to T2DM nor to Metformin Administration in
Obese Diabetic Patients
The metabolites which neither perturbed with T2DM nor
metformin in the obese cohort were considered in this analysis.
As shown in Figure 4A, comparing groups of obese vs. OT2DM and
groups of OT2DM verses OT2DMMet, resulted in extracting 132
metabolites, whichwere uncommon between T2DMandmetformin
(T2DM and Met-independent). These 132 metabolites showed a
persistent metabolic pattern as an effect of both T2DM and
metformin administration. After applying the fold change
filtration (cutoff >1.5, and <0.67), only 113 metabolites were
found as independent entirely on the effect of either T2DM or
metformin administration (Supplementary Figure S3A).

TABLE 1 | The clinical characteristics and demographic data of the study population.

Cohort Obese cohort (n = 52) Lean non-obese cohort (n = 49)

Obese (n = 26) OT2DM (n = 16) OT2DMMet (n = 10) Lean (n = 25) LT2DMMet (n = 24)

Mean SD Mean SD Mean SD Mean SD Mean SD

Age (y) 34.6 11.9 49.4† 12.1 48.5† 10.9 48.6 6.08 60.3* 8.51
Gender (F/M) (17/9) - (4/12) - (7/3) - (13/12) - (15/9) -
BMI (kg/m2) 38.9 8.90 32.7† 7.61 43.2‡ 9.32 25.1 1.95 26.2* 1.76
Glucose (mM) 5.35 0.56 10.18† 4.99 9.89† 3.96 - - 9.0 5.5
HbA1c (%) 5.3 1.72 8.71† 2.82 8.8† 1.79 - - 7.11* 1.62
LDL (mmol/L) 3.09 0.79 3.55 0.72 2.50‡ 0.76 - - 2.36 0.70
HDL (mmol/L) 1.20 0.25 1.01 0.21 1.05 0.29 - - 1.43* 0.38
Trig. (mM) 1.18 0.56 2.01† 1.04 1.55 0.54 - - 1.39 0.63
Insulin (mU/L) 10.07 6.59 8.07 8.72 7.46 2.84 - - - -
HOMA-IR 2.14 1.56 3.03 2.59 3.21 1.20 - - - -

BMI, body mass index; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance; LDL, low-density lipoprotein;
LT2DMMet, lean type 2 diabetic on metformin; OT2DM, obese type 2 diabetic; OT2DMMet, obese type 2 diabetic on metformin; SD, standard deviation; Trig., Triglycerides. Results are
presented as Mean ± S.D.; †p < 0.05 vs. obese subjects; ‡p < 0.05 vs. OT2DM; *p < 0.05 vs. OT2DMMet.
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Considering the confounders-based metabolites, 113 metabolites
were reduced to have only 62 (Supplementary Figure S3B).

Metabolites That Have Been Affected by
T2DM andMetformin Regardless of Obesity
Status
As mentioned in the previous sections, the metabolic pattern of
metformin administration was investigated in the obese diabetic
cohort considering the BMI as a confounding factor. However, to
investigate the effect of bothmetformin and T2DMon themetabolite
levels regardless of other obesity features (i.e., insulin resistance),
comparisons were carried out considering groups from obese and
lean non-obese cohorts. Volcano plot analysis between obese vs.
OT2DMMet groups resulted in 109 significantly dysregulated
metabolites. Among these metabolites, 61 were up-regulated, and

48were down-regulated inOT2DMMet compared to the obese group
(Figure 5A). Additionally, another volcano plot analysis between
healthy lean vs. lean non-obese diabetic on metformin (LT2DMMet)
groups from the lean non-obese cohort revealed that the levels of 222
metabolites were significantly altered. Among these metabolites, 114
were up-regulated, and 108 were down-regulated in LT2DMMet
compared to the healthy lean group (Figure 5B).

Considering the confounders-based metabolites, the
dysregulated metabolites in OT2DMMet compared to the
obese group were reduced to (51 up-regulated (out of 61) and
30 down-regulated (out of 48)) (Figures 5C,D). Furthermore,
overlapping G109 from the obese cohort with G222 from the lean
non-obese cohort, resulted in 12 metabolites, which were
highlighted in the venn diagram as common and significant
metabolites between the two cohorts using moderate t-test
(p-value <0.05, Fold change≥ 1.5 or �<0.67). After considering

FIGURE 1 |Metabolomics profile of the study population (A)Obese vs. obese diabetic patients (OT2DM) metabolomics profile was evaluated using PLS-DA analysis, the
clusters of both groupswere clearly separated (Q2� 0.885, R� 0.992) (B)Volcanoplot of obese vs.OT2DMgroups shows the significantly changedmetabolites. 459metabolities
were up-regulated and 166 were down-regulated in OT2DM group with fold change and FDR adjusted p-value at the cut-off 1.5 (or 0.67), and (0.038, respectively (C) Obese
diabetic (OT2DM) vs. Obese diabetic taking metformin (OT2DMMet) metabolomic profile was evaluated using PLS-DA analysis, the clusters of both groups were clearly
separated (Q2 � 0.686, R2 � 0.983) (D) Volcano plot of OT2DM vs. OT2DMMet group shows levels of 107 metabolites were significantly different as of metformin, 78 were
upregulated and 29were down-regulated in obese diabetic patients takingmetformin. The fold change and FDRadjustedp-value at the cut-off 1.5 (or 0.67) and 0.05, respectively.
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FIGURE 2 |Metabolic pattern of T2DM effect on metabolites that are irresponsive to metformin administration in obesity (A) Venn diagram illustrates the extraction
of 89 metabolite (G89) that were significantly dysregulated due to diabetes but not metformin effect (metformin-independent) (B) Venn diagram shows the breakdown of
the G89 (Met-independent) after applying the fold change cutoff 1.5, where 40 and 45 metabolites were up and downregulated in diabetes, respectively (C) 40 (G40)
metabolites were up regulated as of T2DM and their levels were unchanged after metformin administration (D) 45 (G45) metabolites were down regulated as of
T2DM and their levels were unchanged after metformin administration (E, F) Venn diagrams demonstrate the exclusion of the confounders-based metabolites from G40
and G45, which were reduced to G30 and G41, respectively (G, H) Heat maps of the identified features (G30 and G41) that were either upregulated or down regulated,
respectively, after excluding the confounder-based metabolites as of T2DM effect in obesity.
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FIGURE 3 | Metabolic changes of metformin administration in obese diabetic patients (A) Venn diagram illustrates the filtration of the significant metabolites for
T2DM (G134) (Obese vs. OT2DM groups), and metformin (G68) (OT2DM vs. OT2DMMet groups) based on the fold change trend (cutoff >1.5, and <0.67) (B) 28
metabolites have been upregulated as of diabetes and returned to obese comparable levels after metformin administration (C) Levels of another 9 metabolites were
downregulated in T2DM and returned to obese comparable levels after metformin administration (D,E) Venn diagrams demonstrate the exclusion of the
confounders-basedmetabolites fromG28 andG10, which were reduced to G21 andG9, respectively (F, G)Heat maps of the identified features (G21 andG9) that were-
upregulated and down-regulated, respectively, after excluding the confounder-based metabolites as of T2DM effect in obesity and return to initial condition after
metformin administration.
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the confounders-based metabolites, 9 metabolites remained out
of 12. These 9 metabolites were affected by T2DM andmetformin
regardless obesity status. The identity of these metabolites and
their regulation pattern due to metformin administration and
T2DM effects in the two cohorts are presented in Table 2.

DISCUSSION

This study aimed to use the LC-MS-based metabolomics approach to
investigate the metabolic pattern of long-term metformin
administration in diabetic patients and how this pattern becomes
affected in obesity, particularly since most diabetic patients on
metformin are obese. Our results show a clear group separation
and sample clustering between the study groups due to T2DM and
metformin administration. This observation represents the significant
effect of these combined conditions on the dynamic of metabolic
processes in obesity. Investigating the T2DM metabolic pattern in
obesity revealed that 30 and 41 metabolites were up- and down-
regulated, respectively, in T2DM. The levels of these total 71
metabolites were unchanged with metformin intake, indicating that
they are probably related to dysregulated pathways associated with
T2DM or to its complications. The effects of confounder parameters
(i.e., age, BMI, and LDL-C), were excluded; therefore, these
dysregulated metabolites are mostly independent of body weight.
However, they might be influenced by other obesity-related features

such as insulin resistance, hormones, and pro-inflammatory cytokines.
Most of the up-regulated metabolites, as an effect of T2DM, were
dipeptides containing branched amino acids (BCAAs) in their
structure (i.e., prolyl-leucine, prolyl-isoleucine, prolyl-valine, leucyl-
alanine, and valyl-arginine). Several previous studies have reported a
strong positive correlation between the levels of a number of amino
acids, including BCAAs and obesity-associated insulin resistance and
the risk of developing T2DM (Newgard et al., 2009; Wang et al., 2011;
Chen et al., 2016; Guasch-Ferré et al., 2016; Ho et al., 2016; Chen et al.,
2019). Amino acids and theirmetabolites are an important regulator of
insulin secretion and sensitivity (Newgard, 2012). They also play a
crucial role in glucose metabolism, particularly gluconeogenesis, and
tricarboxylic acid (TCA) cycle by regulating the substrate availability
(Menge et al., 2010). Several possible mechanisms might underlie the
dysregulation of these amino acids’ levels and theirmetabolites in obese
diabetic patients, including changes in gene expression of the enzymes
involved in their catabolic pathways or protein synthesis and insulin
signaling pathways (Roberts et al., 2014; Guasch-Ferré et al., 2016).

In this study, aliphatic amino acids such as arginine, serine, and
glycine were downregulated in T2DM. Different metabolomic
investigations have consistently reported a negative correlation
between the levels of some aliphatic amino acids and insulin
sensitivity and T2DM (Menge et al., 2010; Ha et al., 2012; Wang-
Sattler et al., 2012; Floegel et al., 2013b). However, so far, there is no
exact mechanism explaining this reverse correlation. One proposed
mechanism is related to insulin resistance. It has been suggested that

FIGURE 4 | Metabolic pattern of metformin administration effect on metabolites that are not changed with T2DM in obesity (A) Venn diagram illustrates the
extraction of 17 metabolite that were non-significant as of T2DM (T2DM-independent), as well as 132 metabolites that are irrespective neither to T2DM nor to metformin
administration (T2DM andMet-independent) (B) Fivemetabolites (G5) wereup regulated, and 12 (G12) were down regulated as of metformin administration only and their
levels were unchanged as of T2DM (FC cutoff is 1.5) (C) Venn diagram demonstrates the exclusion of the confounders-based metabolites from G17 (D) Heat map
for the metabolites that were either upregulated (G2) or down regulated (G8) after excluding the confounder-based metabolites as of metformin administration in obese
diabetic patients.
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insulin resistance might reduce glycine level by inducing
δ-aminolevulinic acid synthase 1 (ALAS1) that produces 5-
aminolevulinic acid from glycine (Wang-Sattler et al., 2012;
Roberts et al., 2014). Another proposed mechanism is related to
oxidative stress associatedwith diabetes, which increases the demand
for glutathione and decreases circulating glycine, as it acts as a
precursor of glutathione (Ferrannini et al., 2013; Roberts et al., 2014).

Moreover, our results show that serine is down-regulated
in T2DM, indicating a possible alteration in its metabolic
pathway. Serine is a non-essential amino acid synthesized
from 3-phosphoglycerate (3PGA), an intermediate of the
glycolytic pathway (Ma et al., 2018). The final production
of serine amino acid requires glutamic acid, which is reduced
in T2DM patients (Ma et al., 2018). In addition, serine could
be synthesized from glycine, which is another non-essential
amino acid (Haufroid and Wouters, 2019), indicating that
these amino acids’ metabolic pathways are connected.

Among the up-regulated metabolites in T2DM is creatine,
which is produced from arginine. A non-enzymatic breakdown of
creatine results in creatinine formation, a well-known measure
for kidney function (Post et al., 2019). Therefore, the observed
down-regulated arginine levels in T2DM might be explained by
the high demand for its conversion to creatine.

The results indicate that 30 metabolites were dysregulated in
obese diabetic patients (21 were up-regulated, and 9 were
downregulated) and restored to obese control levels after
metformin administration. Two possible explanations for such
a pattern of these metabolites. First, these identified metabolites
are mostly sensitive to metabolic pathways related to both T2DM
and metformin since their levels were changed in the two
conditions, but in a reverse manner. Secondly, these
metabolites might be altered in the case of T2DM, and then
metformin administration adjusts the affected pathways in
T2DM. For example, evidence linked the increase in glutamate
and glutamate-to-glutamine ratio with insulin resistance and the
incidence of T2DM (Cheng et al., 2012; Roberts et al., 2014;
Arneth et al., 2019; Chen et al., 2019). However, others did not
report an association with diabetes (Floegel et al., 2013a). In this
study, several glutamine-containing dipeptides (i.e., Glutaminyl-
Glutamine, Glutaminyl-Glutamic acid, Glutamyl-Glutamine,
Tyrosyl-Glutamine, Glutamyl-Lysine, Glutamyl-Tyrosine) as
well as glutathionyl-L-cysteine were significantly up-regulated
in T2DM, and then returned to obese comparable levels after
metformin administration. This might suggest an effect of
metformin on the γ-glutamyl cycle. Existing evidence suggests
that metformin affects glutamine metabolism. In vitro studies

FIGURE 5 | Significant metabolites that are common between obese and lean cohorts (A) Volcano plot pf obese vs. OT2DMMet groups from the obese cohort
shows the significantly changed metabolites. A total of 109 metabolites (G109) were significant, (G61) down-regulated after metformin administration in obese diabetic
patients compared to obese non-diabetic participants, the fold change and FDR-adjusted p-value at the cutoffs were 1.5 and <0.05, respectively (B) Volcano plot of lean
healthy vs. LT2DMMet groups from the lean cohort shows that a total of 222metabolites (G222) were significant between compared groups, where (G114) were up
regulated and (G108) were down regulated after metformin administration in lean non-obese diabetic patients compared to healthy lean, with fold change and FDR
adjusted p-value at the cut-off 1.5 and 0.05, respectively, (C, D) Venn diagrams demonstrate the exclusion of the confounders-based metabolites from G61 and G48,
where the metabolites were reduced to G51 andG30, respectively (E) Venn diagram shows that 12metabolites are common between obese and lean non-obese cohort
using moderate t-Test.
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have shown that metformin has an inhibitory effect on
glutaminase (GLS) activity in tumor cells (Ampuero et al.,
2012; Saladini et al., 2019). Glutaminase enzyme mediates
glutamine deamination and subsequent glutamate production,
converted to α-ketoglutarate, an intermediate of the TCA cycle,
and thus provides an alternative energy source to glucose in cells
(Roberts et al., 2014). However, there is no evidence on
metformin’s effect on glutamine metabolism or the γ-glutamyl
cycle in human metabolic disorders. Taken together,
dysregulation of glutamine derivative metabolites as an effect
of metformin in obese diabetic patients needs further
investigation since the present evidence was from in vitro
studies on cancer cells.

Furthermore, in obese T2DM patients, the level of 10 metabolites
was dysregulated only after metformin administration. These
metabolites are most likely related to the metformin mode of
action or its side effects in the body. It has been suggested that
metformin can create metabolic stress in cells by inhibiting the
respiratory chain complex I of the mitochondria and partially by
inhibiting NADH dehydrogenase (Madiraju et al., 2014; Rena et al.,
2017; Vial et al., 2019). Consequently, this would lead to some
metabolic disruptions, including decreased NADH oxidation,
reduction in TCA flux, and levels of its metabolites
(Andrzejewski et al., 2018; Vial et al., 2019). Interestingly, none
of the identified downregulated metabolites in the metformin-
treated obese T2DM group was a direct TCA metabolite.

On the other hand, among the down-regulatedmetabolites in the
metformin-treated obese T2DM group are those of the urea cycle,
i.e., citrulline, and homoarginine, which is themethylene homologue
of arginine. These findings imply that metformin might influence
amino acids’ metabolic pathways involved in urea production and
ammonia elimination in obesity. In line with our findings, previous
metabolomics studies indicated that metformin administration is
associated with reduced serum levels of urea cycle metabolites in
humans with and without diabetes (Irving et al., 2015; Brandmaier
et al., 2015; Adam et al., 2016; Rotroff et al., 2016). However, the
exact explanation for decreasing these metabolites after metformin
administration remains elusive (Farriol et al., 2001).

The metabolic pattern of 62 metabolites was persistent and the
levels of these metabolites were affected by neither T2DM nor
metformin in obesity. These metabolites are most probably
independent entirely from the pathways involved in both T2DM

and metformin. They are mostly related to the presence of other
factors, such as obesity and insulin resistance. In another metabolic
analysis, we investigated the specific metabolic effect of insulin
resistance in diabetic patients, and we have detected several
dysregulated metabolites ( (Gu et al., 2020).

This study also revealed that 9 metabolites were significantly
dysregulated between lean and obese cohorts. The metabolic
pattern of these metabolites was changed in the metformin-treated
group compared to the untreated group regardless obesity status.
These identified metabolites are mostly independent on BMI and
other obesity features, i.e., insulin resistance, as they are common
between the two cohorts. The regulation of these 9 metabolites levels
was the same in both cohorts except for 5-hydroxyindoleacetic acid. It
was up-regulated in ODMMet and down-regulated in LDMMet
compared to untreated groups in both cohorts. The exact
explanation for this pattern is unknown, but several factors might
be involved. 5-hydroxyindoleacetic acid is the primary metabolite of
serotonin, and its serum or urinary levels reflect the serotonin levels in
the body. It has been indicated that the serotoninmetabolism pathway
might be altered in T2DM and obesity (Matsuoka et al., 2016; Martin
et al., 2017). Plasma levels of 5-hydroxyindoleacetic acid were
increased in diabetic patients who had lower plasma levels of
tryptophan, indicating serotonin’s catabolism to 5-
hydroxyindoleacetic acid is increased when the plasma tryptophan
level is low in diabetes (Matsuoka et al., 2016).

Regarding the effect of metformin on the serotonin’s
metabolism pathway, it has been found that metformin
interacts with proteins that are involved in the intestinal
disposition of serotonin and histamine (Yee et al., 2015).
Metformin inhibits serotonin and histamine uptake in the
intestine through interaction with amine transporters
(organic cation transporters (OCT1), OCT3, and serotonin
transporter (SERT)) in a dose-dependent manner (Yee et al.,
2015). Therefore, it has been suggested that metformin
modulates the intestinal or systemic serotonin levels, which
contributes to the gastrointestinal side effect of metformin
(Yee et al., 2015). Overall, obesity status appeared to modify
the metabolic effect of metformin and T2DM on the
serotonin’s catabolism pathway.

In the current study, L-arginine and guanidoacetic acid
were among the down-regulated metabolites in metformin-
treated diabetic groups in both obese and lean cohorts.

TABLE 2 | Common metabolites between obese and lean models and their metabolic pattern as an effect of metformin and T2DM.

Metabolite ID HMDB ID Obese
cohort FC¥ (p-value)

Lean
cohort FC¥ (p-value)

L-Arginine HMDB0000517 ↓2.08 (6.36E-5) ↓1.65 (9.89E-3)
Guanidoacetic acid HMDB0000128 ↓2.39 (2.61E-8) ↓2.18 (2.21E-5)
5-Hydroxyindoleacetic acid HMDB0000763 ↑2.0 (2.47E-4) ↓2.07 (9.22E 05)
L-Proline HMDB0000162 ↑1.98 (1.05E-5) ↑1.63 (1.16E-02)
Taurine HMDB0000251 ↓1.62 (1.5E-4) ↓1.89 (7.67E-4)
L-Alanine HMDB0000161 ↑1.67 (0.00045) ↑1.85 (1.26E-3)
Citrulline HMDB0000904 ↓1.65 (0.004) ↓2.05 (1.15E-4)
5-Hydroxymethyluracil HMDB0000469 ↓2.25 (3.31E-6) ↓2.35 (1.71E-6)
Salicylic acid HMDB0001895 ↑1.52 () ↑1.61 (1.46E-2)

FC: Fold change ↑: up-regulated or ↓: down-regulated in the metformin-treated group compared to diabetic untreated in both cohorts.
¥ Regulation in metformin treated group compared to untreated in both cohorts.
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Guanidoacetic acid is involved in numerous amino acids’
metabolic pathways, including; arginine, glycine, serine,
threonine, and proline. Limited studies have investigated
the metabolic pattern of arginine and guanidoacetic acid
regarding conditions such as metformin administration,
T2DM, or obesity. In a cohort of healthy subjects, elevated
serum level of guanidoacetic acid was associated with
hyperinsulinemia, higher total homocysteine, and higher
body fat percentage (Ostojic et al., 2018), which all are
features of obesity and T2DM. Therefore, future studies are
required to investigate metformin’s effect on the pathways that
involve arginine and guanidoacetic acid in obesity.

In addition, the levels of taurine, citrulline, and 5-
hydroxymethyluracil (HMU) were also decreased, while levels
of L-proline, L-alanine, and salicylic acid were increased in the
metformin-treated diabetic group in both obese and lean cohorts.
The existing evidence on the effect of metformin on the amino
acids’ levels in T2DM is conflicting. Some studies have reported
an increase in the levels of BCAAs and aromatic amino acids
(AAAs) after metformin administration in subjects with a high
risk of developing T2DM (Walford et al., 2013). Moreover, the
effect of metformin on the BCAAs and AAAs levels was found to
be more pronounced in insulin-resistant subjects (Walford et al.,
2013). Interestingly, metabolomic studies of obesity and
metabolic syndrome have shown an increase in alanine levels
(Libert et al., 2018). Furthermore, the metabolic signature in
obese subjects is marked with a significant increase in the serum
levels of amino acids, including alanine (Rangel-Huerta et al.,
2019). Metformin is believed to inhibit gluconeogenesis in the
liver (Rena et al., 2017). Subsequently, metformin intake would
increase gluconeogenic substrate such as alanine, which is in
concordance with our findings. Recent metabolomic analysis of
mouse embryonic fibroblast (MEF) cells treated with metformin
showed that metformin significantly reduced the TCA and
affected several amino acids’ metabolism, bypassing AMPK
(Yan et al., 2019). Of these amino acids are up-regulated
hypotaurine (precursor of taurine) and downregulated proline
(Yan et al., 2019), inconsistent with our findings in humans
treated with metformin.

Finally, in this study, serum samples from the obese and the
lean non-obese cohorts were analyzed using CIL-LC-MS and LC-
MS, respectively. Although the use of the two platforms in the
analysis may appear to be a limitation, the results showed the
detection of significant meaningful changes in several
metabolites’ levels. Moreover, recruiting lean T2DM patients
was challenging in this study; since most of T2DM patients
are overweight or obese. Despite these limitations, considering
different groups from the two cohorts, including obese, healthy
lean, obese and lean diabetic with and without metformin intake,
enabled us to carry out several comparisons to extract the
significant changes in the identified metabolites’ patterns.

CONCLUSION

Understanding the metabolic alterations taking place upon
metformin treatment would shed light on possible molecular

targets of metformin, especially in conditions like T2DM and
obesity. These conditions by themselves contribute to the
perturbation of several metabolic pathways in the body. The
present study has revealed significant changes in different
metabolites; some were specific for metformin and T2DM
regardless of obesity. This data would facilitate metabolomic
analysis to establish a metformin sensitivity profile in humans
and consequently identify patients who would be most sensitive
and responsive to metformin treatment regardless of obesity.
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