

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-[(E)-1-(2-Hydroxyphenyl)ethylidene]pyrazine-2-carbohydrazide

Shahid Hameed,^a Mushtag Ahmad,^{a,b} M. Nawaz Tahir,^c* Muhammad Israr^d and Muhammad Anwar^d

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, ^bMedicinal Botanic Centre, PCSIR Laboratories Complex, Peshawar, Pakistan, ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and ^dDepartment of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 7 August 2013; accepted 7 August 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.138; data-to-parameter ratio = 13.4.

The title compound, C₁₃H₁₂N₄O₂, crystallized with two independent molecules (A and B) in the asymmetric unit. Molecule *B* is planar to within 0.044 (3) Å for all non-H atoms, while molecule A is slightly twisted, with a dihedral angle of $6.29 (4)^{\circ}$ between the mean planes of the pyrazine-2carbohydrazide and 1-(2-hydroxyphenyl)ethanone moieties (r.m.s. deviations = 0.0348 and 0.0428 Å, respectively). S(5)and S(6) ring motifs are formed in both molecules due to the presence of intramolecular $O-H\cdots N$ and $N-H\cdots N$ hydrogen bonds. In the crystal, molecules A and B are linked by a $C-H \cdots O$ hydrogen bond. They stack along the *a*-axis direction, forming columns with π - π interactions involving inversion-related pyrazine and benzene rings [centroidcentroid distances = 3.5489 (13)-3.8513 (16) Å].

Related literature

For a related crystal structure and other studies, see: Hameed et al. (2013). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data C13H12N4O2 $M_r = 256.27$

Triclinic, $P\overline{1}$ a = 7.1767 (7) Å

•		
organic	comp	ounds
o game	comp	o anao

4821 independent reflections 2608 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.048$

b = 10.1743 (10) Å c = 17.1150 (17) Å $\alpha = 86.172 (3)^{\circ}$ $\beta = 85.275 (2)^{\circ}$ $\gamma = 80.963 (4)^{\circ}$ $V = 1228.2 (2) \text{ Å}^{3}$	Z = 4 Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.28 \times 0.23 \times 0.20 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD	19042 measured reflections

Bruker Kappa APEXII CCD diffractometer

Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\min} = 0.973, T_{\max} = 0.981$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$vR(F^2) = 0.138$	independent and constrained
S = 1.00	refinement
821 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
61 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···N1	0.82	1.82	2.537 (2)	145
$N2 - H2A \cdots N3$	0.80(2)	2.26(2)	2.654 (3)	111.5 (17)
$O3-H3A\cdots N5$	0.82	1.82	2.534 (3)	145
N6-H6···N7	0.80(3)	2.21(3)	2.628 (3)	113 (3)
$C3-H3\cdots O3^{i}$	0.93	2.59	3.403 (3)	146

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan, and also thank the Higher Education Commission (HEC) of Pakistan for financial support. MA is grateful to the Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories of Pakistan for financial support through out his study leave.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2634).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hameed, S., Ahmad, M., Tahir, M. N., Shah, M. A. & Shad, H. A. (2013). Acta Crvst. E69, 01141.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, o1419 [doi:10.1107/S1600536813022137]

N'-[(E)-1-(2-Hydroxyphenyl)ethylidene]pyrazine-2-carbohydrazide

Shahid Hameed, Mushtaq Ahmad, M. Nawaz Tahir, Muhammad Israr and Muhammad Anwar

1. Comment

The title compound was prepared in continuation of our interest in the synthesis of compounds containing the moiety pyrazine-2-carbohydrazide (Hameed *et al.*, 2013).

The title compound crystallized with two independent molecules (A and B) in the asymmetric unit, Fig. 1. In molecule A, the 1-(2-hydroxyphenyl)ethanone (C1—C8/O1) moiety and the pyrazine-2-carbohydrazide moiety (C9–C13/N1–N4/O2) are almost planar with r.m.s. deviations of 0.0348 Å and 0.0428 Å, respectively. They are inclined to one another by 6.289 (44)°. In molecule B, similar groups (C14—C21/O3) and (C22—C26/N5—N8/O4) are planar with r.m.s. deviations of 0.0111 and 0.019 Å, respectively, and are inclined to one another by only 0.305 (21)° *i.e.* almost coplanar.

There exist strong intramolecular N—H····N and O—H···N hydrogen bonds in each molecule (Table 1 and Fig. 1) forming S(5) and S(6) ring motifs (Bernstein *et al.*, 1995).

In the crystal, molecules A and B are linked by a C—H···O hydrogen bond (Table 1 and Fig. 2). They stack along the a axis direction forming columns with π - π interactions involving inversion related pyrazine and benzene rings. The centroid-to-centroid distances are 3.5489 (13) Å [Cg1— $Cg2^{i}$], 3.6289 (13) Å [Cg1— $Cg2^{ii}$], 3.7738 (16) Å [Cg3— $Cg4^{iii}$], and 3.8513 (16) Å [Cg3— $Cg4^{iv}$], where Cg1, Cg2, Cg3 and Cg4 are the centroids of rings (C10/N3/C11/C12/N4/C13), (C1—C6), (C23/N7/C24/C25/N8/C26) and (C14—C19), respectively [symmetry codes: (i) = -x, -y, -z; (ii) = -x+1, -y, -z; (iii) = -x, -y+1, -z+1; (iv) = -x+1, -y+1, -z+1].

2. Experimental

The title compound was prepared by the condensation of an equimolar ratio of pyrazine-2-carbohydrazide (0.50 g, 3.6 mmol) and 1-(2-hydroxyphenyl)ethanone (0.45 ml, 3.6 mmol) in methanol by stirring well and then refluxing of 5 h. The resulting reaction mixture was allowed to cool over night. The precipitated solid was filtered, washed with petroleum ether and recrystallized from chloroform in petroleum ether and then dried under reduced pressure over $CaCl_2$ to give colourless prisms.

3. Refinement

The H-atom of the amide and one of the methyl groups were refined with $U_{iso}(H) = 1.2U_{eq}(N)$ and $= 1.5U_{eq}(C-methyl)$. The other H-atoms were positioned geometrically (C–H = 0.93 - 0.96 Å, O–H = 0.82 Å) and refined as riding with $U_{iso}(H) = x \times U_{eq}(C,N,O)$, where x = 1.5 for hydroxy and methyl H atoms and = 1.2 for other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Figure 1

View of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bonds are shown as dashed lines (see Table 1 for details).

Figure 2

The crystal packing diagram of the title compound, viewed along the a axis. The various hydrogen bonds are shown as dashed lines (see Table 1 for details).

N'-[(*E*)-1-(2-Hydroxyphenyl)ethylidene]pyrazine-2-carbohydrazide

Crystal data	
$C_{13}H_{12}N_4O_2$	a = 7.1767 (7) Å
$M_r = 256.27$	b = 10.1743 (10) Å
Triclinic, $P\overline{1}$	c = 17.1150 (17) Å
Hall symbol: -P 1	$\alpha = 86.172 (3)^{\circ}$

Cell parameters from 2608 reflections

 $\theta = 1.2 - 26.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Prism, colourless

 $0.28 \times 0.23 \times 0.20$ mm

19042 measured reflections

4821 independent reflections

 $\theta_{\max} = 26.0^\circ, \ \theta_{\min} = 1.2^\circ$ $h = -8 \rightarrow 8$

2608 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.048$

 $k = -12 \rightarrow 12$

 $l = -21 \rightarrow 21$

 $\beta = 85.275 (2)^{\circ}$ $\gamma = 80.963 (4)^{\circ}$ $V = 1228.2 (2) Å^{3}$ Z = 4 F(000) = 536 $D_{\rm x} = 1.386 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 Å$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.00 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.973$, $T_{max} = 0.981$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.050$ H atoms treated by a mixture of independent $wR(F^2) = 0.138$ and constrained refinement S = 1.00 $w = 1/[\sigma^2(F_0^2) + (0.0537P)^2 + 0.2363P]$ 4821 reflections where $P = (F_0^2 + 2F_c^2)/3$ 361 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ direct methods Extinction correction: SHELXL97 (Sheldrick, Secondary atom site location: difference Fourier 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0083 (12) map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates ar	d isotropic or	equivalent isotropic	displacement	parameters	$(Å^2)$
----------------------------------	----------------	----------------------	--------------	------------	---------

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4150 (3)	0.07549 (16)	-0.16151 (9)	0.0602 (7)	
O2	0.2080 (2)	-0.19271 (16)	-0.05633 (10)	0.0582 (6)	
N1	0.2781 (2)	0.04641 (18)	-0.02111 (10)	0.0372 (6)	
N2	0.2155 (3)	-0.04221 (18)	0.03446 (11)	0.0398 (7)	
N3	0.0878 (2)	-0.20255 (18)	0.14825 (12)	0.0456 (7)	
N4	0.0423 (3)	-0.46305 (19)	0.11955 (14)	0.0545 (8)	
C1	0.4198 (3)	0.2026 (2)	-0.14404 (14)	0.0421 (8)	
C2	0.4732 (3)	0.2888 (3)	-0.20396 (15)	0.0561 (10)	
C3	0.4803 (3)	0.4192 (3)	-0.19149 (17)	0.0604 (11)	

C40.4368 (3)C50.3875 (3)C60.3735 (3)C70.3094 (3)	0.4658 (2) 0.3803 (2)	-0.11752 (17)	0.0560 (10)
C50.3875 (3)C60.3735 (3)C70.3094 (3)	0.3803 (2)		
C6 0.3735 (3) C7 0.3094 (3)		-0.05687 (14)	0.0448 (8)
C7 0.3094 (3)	0.2475 (2)	-0.06741 (13)	0.0358 (7)
	0.1610 (2)	-0.00190 (12)	0.0352 (7)
C8 0.2827 (3)	0.2063 (2)	0.08019 (13)	0.0515 (9)
C9 0.1834 (3)	-0.1606 (2)	0.01156 (14)	0.0382 (8)
C10 0.1186 (3)	-0.2501 (2)	0.07671 (13)	0.0371 (8)
C11 0.0343 (3)	-0.2871 (3)	0.20495 (16)	0.0561 (10)
C12 0.0136 (3)	-0.4158 (3)	0.19042 (17)	0.0573 (10)
C13 0.0928 (3)	-0.3772 (2)	0.06276 (15)	0.0469 (9)
O3 0.2432 (3)	0.48626 (18)	0.34993 (10)	0.0754 (8)
O4 0.1729 (3)	0.7739 (2)	0.48091 (12)	0.0870 (9)
N5 0.2460 (3)	0.5031 (2)	0.49687 (11)	0.0491 (7)
N6 0.2206 (3)	0.5847 (2)	0.55841 (12)	0.0557 (8)
N7 0.1834 (3)	0.7165 (2)	0.68710 (12)	0.0550 (8)
N8 0.0968 (3)	0.9941 (2)	0.68391 (16)	0.0754 (10)
C14 0.2858 (3)	0.3535 (3)	0.36491 (14)	0.0500 (9)
C15 0.3115 (4)	0.2738 (3)	0.30127 (15)	0.0617 (11)
C16 0.3510 (4)	0.1389 (3)	0.31072 (17)	0.0671 (11)
C17 0.3662 (4)	0.0795 (3)	0.38440 (19)	0.0747 (11)
C18 0.3421 (4)	0.1569 (3)	0.44851 (16)	0.0682 (11)
C19 0.3018 (3)	0.2958 (2)	0.44095 (13)	0.0454 (8)
C20 0.2773 (3)	0.3760 (3)	0.51033 (13)	0.0496 (9)
C21 0.2897 (7)	0.3111 (4)	0.5907 (2)	0.104 (2)
C22 0.1843 (4)	0.7184 (3)	0.54528 (16)	0.0556 (10)
C23 0.1605 (3)	0.7897 (3)	0.62001 (15)	0.0502 (9)
C24 0.1623 (4)	0.7838 (3)	0.75194 (15)	0.0633 (10)
C25 0.1216 (4)	0.9200 (3)	0.74989 (18)	0.0689 (11)
C26 0.1158 (4)	0.9267 (3)	0.61878 (17)	0.0693 (11)
H1 0.36890	0.03550	-0.12340	0.0900*
H2 0.50520	0.25780	-0.25390	0.0670*
H2A 0.202 (3)	-0.031 (2)	0.0805 (13)	0.0480*
H3 0.51450	0.47650	-0.23300	0.0720*
H4 0.44080	0.55450	-0.10880	0.0670*
H5 0.36250	0.41190	-0.00680	0.0540*
H8A 0.27220	0.13110	0.11640	0.0770*
H8B 0.16950	0.27020	0.08570	0.0770*
H8C 0.38940	0.24660	0.09110	0.0770*
H11 0.01000	-0.25890	0.25590	0.0670*
H12 -0.02200	-0.47180	0.23230	0.0690*
H13 0.11150	-0.40420	0.01150	0.0560*
H3A 0.23690	0.52440	0.39100	0.1130*
	0.557 (3)	0.6029 (15)	0.0670*
H6 0.234 (4)	0.31340	0.25090	0.0740*
H6 0.234 (4) H15 0.30140			
H6 0.234 (4) H15 0.30140 H16 0.36760	0.08720	0.26720	0.0810*
H6 0.234 (4) H15 0.30140 H16 0.36760 H17 0.39280	0.08720 -0.01280	0.26720 0.39120	0.0810* 0.0900*
H6 0.234 (4) H15 0.30140 H16 0.36760 H17 0.39280 H18 0.35300	0.08720 -0.01280 0.11540	0.26720 0.39120 0.49840	0.0810* 0.0900* 0.0820*
H6 0.234 (4) H15 0.30140 H16 0.36760 H17 0.39280 H18 0.35300 H21A 0.250 (6)	0.08720 -0.01280 0.11540 0.367 (4)	0.26720 0.39120 0.49840 0.628 (3)	0.0810* 0.0900* 0.0820* 0.1560*

supplementary materials

H21C	0.210 (6)	0.246 (4)	0.597 (2)	0.1560*	
H24	0.17570	0.73700	0.80020	0.0760*	
H25	0.11100	0.96230	0.79690	0.0820*	
H26	0.09830	0.97380	0.57080	0.0830*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U^{23}
01	0.0827 (13)	0.0529 (11)	0.0456 (11)	-0.0117 (9)	0.0008 (9)	-0.0108 (9)
O2	0.0818 (12)	0.0506 (10)	0.0459 (11)	-0.0196 (9)	-0.0032 (9)	-0.0089 (9)
N1	0.0369 (10)	0.0324 (10)	0.0419 (11)	-0.0046 (8)	-0.0035 (8)	0.0004 (9)
N2	0.0458 (11)	0.0354 (11)	0.0388 (12)	-0.0082 (8)	-0.0029 (9)	-0.0019 (10)
N3	0.0471 (11)	0.0425 (12)	0.0472 (13)	-0.0096 (9)	-0.0004 (9)	-0.0001 (10)
N4	0.0479 (12)	0.0366 (12)	0.0775 (17)	-0.0067 (9)	-0.0032 (11)	0.0063 (12)
C1	0.0404 (13)	0.0423 (14)	0.0440 (15)	-0.0061 (10)	-0.0073 (10)	-0.0003 (12)
C2	0.0533 (16)	0.0713 (19)	0.0426 (16)	-0.0109 (13)	-0.0040 (12)	0.0079 (14)
C3	0.0508 (16)	0.066 (2)	0.066 (2)	-0.0227 (13)	-0.0113 (14)	0.0253 (16)
C4	0.0527 (15)	0.0438 (15)	0.075 (2)	-0.0178 (12)	-0.0159 (14)	0.0102 (15)
C5	0.0430 (13)	0.0397 (14)	0.0530 (16)	-0.0082 (10)	-0.0080 (11)	-0.0020 (12)
C6	0.0310 (11)	0.0341 (13)	0.0418 (14)	-0.0024 (9)	-0.0072 (9)	0.0012 (10)
C7	0.0321 (11)	0.0322 (13)	0.0409 (14)	-0.0008 (9)	-0.0061 (9)	-0.0049 (10)
C8	0.0696 (16)	0.0409 (14)	0.0450 (15)	-0.0124 (12)	-0.0007 (12)	-0.0045 (12)
C9	0.0372 (12)	0.0332 (13)	0.0449 (15)	-0.0032 (10)	-0.0080 (10)	-0.0054 (11)
C10	0.0305 (11)	0.0331 (13)	0.0468 (15)	-0.0021 (9)	-0.0048 (10)	-0.0005 (11)
C11	0.0584 (16)	0.0580 (17)	0.0517 (17)	-0.0135 (13)	0.0022 (12)	0.0015 (14)
C12	0.0470 (15)	0.0517 (17)	0.071 (2)	-0.0116 (12)	0.0003 (13)	0.0166 (15)
C13	0.0451 (14)	0.0353 (14)	0.0600 (17)	-0.0040 (11)	-0.0044 (12)	-0.0044 (13)
03	0.1333 (18)	0.0556 (12)	0.0381 (11)	-0.0212 (11)	0.0008 (11)	-0.0001 (9)
O4	0.148 (2)	0.0666 (13)	0.0462 (13)	-0.0209 (13)	-0.0017 (12)	0.0016 (11)
N5	0.0622 (13)	0.0506 (13)	0.0357 (12)	-0.0122 (10)	0.0009 (9)	-0.0085 (10)
N6	0.0763 (15)	0.0575 (15)	0.0338 (12)	-0.0110 (11)	-0.0004 (11)	-0.0090 (12)
N7	0.0584 (13)	0.0605 (14)	0.0467 (14)	-0.0059 (10)	-0.0033 (10)	-0.0146 (12)
N8	0.0934 (19)	0.0602 (16)	0.0776 (19)	-0.0186 (13)	-0.0074 (15)	-0.0238 (15)
C14	0.0542 (15)	0.0568 (17)	0.0399 (15)	-0.0139 (12)	0.0040 (11)	-0.0066 (13)
C15	0.0750 (19)	0.071 (2)	0.0413 (16)	-0.0182 (15)	0.0036 (13)	-0.0133 (14)
C16	0.0650 (18)	0.080 (2)	0.058 (2)	-0.0068 (15)	-0.0027 (14)	-0.0279 (17)
C17	0.092 (2)	0.0533 (17)	0.077 (2)	0.0073 (15)	-0.0161 (17)	-0.0223 (17)
C18	0.087 (2)	0.0600 (19)	0.0557 (18)	-0.0001 (15)	-0.0147 (15)	-0.0041 (15)
C19	0.0470 (14)	0.0497 (15)	0.0397 (15)	-0.0068 (11)	-0.0023 (11)	-0.0055 (12)
C20	0.0567 (15)	0.0554 (17)	0.0361 (14)	-0.0074 (12)	-0.0025 (11)	-0.0026 (12)
C21	0.194 (5)	0.072 (3)	0.0387 (19)	0.002 (3)	-0.011 (2)	0.0014 (17)
C22	0.0675 (17)	0.0532 (18)	0.0481 (18)	-0.0152 (13)	-0.0005 (13)	-0.0078 (14)
C23	0.0532 (15)	0.0532 (16)	0.0468 (17)	-0.0140 (12)	-0.0013 (12)	-0.0101 (13)
C24	0.0668 (17)	0.075 (2)	0.0491 (17)	-0.0044 (14)	-0.0086 (13)	-0.0206 (15)
C25	0.0684 (19)	0.076 (2)	0.066 (2)	-0.0119 (16)	-0.0047 (15)	-0.0304 (18)
C26	0.091 (2)	0.0570 (19)	0.063 (2)	-0.0200 (15)	-0.0050 (15)	-0.0071 (16)

Geometric parameters (Å, °)

01—C1	1.353 (3)	C11—C12	1.382 (4)
О2—С9	1.219 (3)	C2—H2	0.9300
01—H1	0.8200	С3—Н3	0.9300
O3—C14	1.349 (3)	C4—H4	0.9300
O4—C22	1.207 (3)	С5—Н5	0.9300
O3—H3A	0.8200	C8—H8B	0.9600
N1—N2	1.364 (3)	C8—H8C	0.9600
N1—C7	1.290 (3)	C8—H8A	0.9600
N2—C9	1.350 (3)	C11—H11	0.9300
N3—C11	1.327 (3)	C12—H12	0.9300
N3—C10	1.335 (3)	C13—H13	0.9300
N4—C13	1.329 (3)	C14—C15	1.384 (4)
N4—C12	1.323 (4)	C14—C19	1.398 (3)
N2—H2A	0.80 (2)	C15—C16	1.359 (4)
N5—N6	1.367 (3)	C16—C17	1.367 (4)
N5—C20	1.286 (4)	C17—C18	1.377 (4)
N6-C22	1.351 (4)	C18—C19	1.397 (4)
N7—C24	1.328 (3)	C19—C20	1.469 (3)
N7—C23	1.334 (3)	C20—C21	1.489 (4)
N8—C25	1.324 (4)	C22—C23	1.497 (4)
N8—C26	1.334 (4)	C23—C26	1.380 (4)
N6—H6	0.80 (3)	C24—C25	1.369 (4)
C1—C6	1.414 (3)	C15—H15	0.9300
C1—C2	1.374 (4)	C16—H16	0.9300
С2—С3	1.367 (4)	C17—H17	0.9300
C3—C4	1.376 (4)	C18—H18	0.9300
C4—C5	1.369 (3)	C21—H21A	0.88 (5)
C5—C6	1.395 (3)	C21—H21B	0.91 (4)
С6—С7	1.468 (3)	C21—H21C	0.94 (4)
С7—С8	1.496 (3)	C24—H24	0.9300
C9—C10	1.484 (3)	C25—H25	0.9300
C10—C13	1.374 (3)	С26—Н26	0.9300
C101H1	109.00	С7—С8—Н8А	109.00
C14 - 03 - H3A	110.00	N3_C11_H11	119.00
N2_N1_C7	120 53 (18)	C12-C11-H11	119.00
N1N2C9	118 47 (18)	N4-C12-H12	118.00
C10-N3-C11	115.47(10) 115.5(2)	C11—C12—H12	119.00
C12 - N4 - C13	115.5(2) 115.0(2)	C10-C13-H13	119.00
C9 N2 H2A	116.0(2)	N4—C13—H13	119.00
N1—N2—H2A	124.6 (15)	C15-C14-C19	120.1 (3)
N6-N5-C20	119.58 (19)	03 - C14 - C15	117.3 (2)
N5—N6—C22	120.3 (2)	03-C14-C19	122.6 (2)
C23—N7—C24	115.9 (2)	C14—C15—C16	121.5 (3)
C25—N8—C26	115.2 (2)	C15—C16—C17	119.8 (3)
C22—N6—H6	117 (2)	C16—C17—C18	119.7 (3)
N5—N6—H6	123 (2)	C17—C18—C19	122.0 (3)
01—C1—C2	117.5 (2)	C18—C19—C20	120.9 (2)

C2—C1—C6	120.1 (2)	C14—C19—C18	116.9 (2)
O1—C1—C6	122.37 (19)	C14—C19—C20	122.2 (2)
C1—C2—C3	121.3 (2)	N5-C20-C21	123.2 (3)
C2—C3—C4	120.0 (3)	N5—C20—C19	116.0 (2)
C3—C4—C5	119.4 (2)	C19—C20—C21	120.8 (3)
C4—C5—C6	122.5 (2)	O4—C22—N6	124.0 (3)
C1—C6—C5	116.7 (2)	O4—C22—C23	123.9 (3)
C1—C6—C7	122.37 (18)	N6—C22—C23	112.0 (2)
C5—C6—C7	120.9 (2)	C22—C23—C26	120.6 (2)
N1—C7—C6	115.00 (18)	N7—C23—C22	117.8 (3)
C6—C7—C8	121.04 (18)	N7—C23—C26	121.6 (2)
N1—C7—C8	123.96 (19)	N7—C24—C25	122.0 (3)
O2—C9—N2	123.4 (2)	N8—C25—C24	122.9 (3)
O2—C9—C10	122.60 (19)	N8—C26—C23	122.4 (3)
N2C9C10	114.0 (2)	C14—C15—H15	119.00
N3—C10—C13	122.1 (2)	C16—C15—H15	119.00
C9—C10—C13	120.3 (2)	C15—C16—H16	120.00
N3—C10—C9	117.61 (18)	C17—C16—H16	120.00
N3—C11—C12	121.8 (3)	C16—C17—H17	120.00
N4—C12—C11	122.9 (3)	C18—C17—H17	120.00
N4—C13—C10	122.7 (2)	C17—C18—H18	119.00
С3—С2—Н2	119.00	C19—C18—H18	119.00
С1—С2—Н2	119.00	C20—C21—H21A	113 (3)
С2—С3—Н3	120.00	C20—C21—H21B	111 (2)
С4—С3—Н3	120.00	C20—C21—H21C	109 (2)
C3—C4—H4	120.00	H21A—C21—H21B	111 (4)
С5—С4—Н4	120.00	H21A—C21—H21C	106 (4)
C4—C5—H5	119.00	H_{21B} C_{21} H_{21C}	107 (4)
С6—С5—Н5	119.00	N7—C24—H24	119.00
H8A—C8—H8B	110.00	C25—C24—H24	119.00
H8A—C8—H8C	109.00	N8—C25—H25	119.00
C7—C8—H8C	109.00	C_{24} C_{25} H_{25}	119.00
C7—C8—H8B	109.00	N8-C26-H26	119.00
H8B - C8 - H8C	110.00	C^{23} C^{26} H^{26}	119.00
	110.00	023 020 1120	119.00
C7—N1—N2—C9	1796(2)	C1—C6—C7—N1	-7.5(3)
$N_{2} = N_{1} = C_{2} = C_{6}$	-179 11 (18)	C1 - C6 - C7 - C8	173.0(2)
$N_2 - N_1 - C_7 - C_8$	05(3)	C_{5} C_{6} C_{7} C_{8}	-85(3)
N1 - N2 - C9 - O2	0.2(3)	N_{2} C9 C10 N3	42(3)
$N_1 = N_2 = C_2 = C_2$	179 11 (18)	$N_2 = C_9 = C_{10} = C_{13}$	-175.6(2)
$C_{11} = N_{3} = C_{10} = C_{9}$	-178.49(19)	02 - C9 - C10 - N3	-177.0(2)
$C_{11} = N_3 = C_{10} = C_{13}$	170.49(19) 1.2(3)	02 - C9 - C10 - C13	33(3)
C10 - N3 - C11 - C12	1.2(3)	N_{3} C_{10} C_{13} N_{4}	-25(3)
$C_{10} = N_{3} = C_{11} = C_{12}$	0.0(3)	C_{0} C_{10} C_{13} N_{4}	2.3(3)
$C_{12} = N_4 - C_{12} - C_{11}$	1.8(3)	$N_{3} = C_{10} = C_{13} = N_{4}$	-11(4)
C_{12} N_{7} C_{13} C_{10} C_{10} C_{10} N_{5} N_{6} C_{22}	-1788(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1(4) -1787(2)
$N_{20} = 103 = 100 = 0.22$	170.0(2)	$C_{10} = C_{14} = C_{15} = C_{10}$	1/0.7(3)
$N_{0} = 10 = 0.20 = 0.19$	-0.7(4)	$C_{19} - C_{14} - C_{19} - C_{10}$	1785(2)
N5 N6 C22 O4	-0.4(4)	03 - 014 - 019 - 010	-12(2)
10J - 100 - 0.22 - 0.4	0.4 (4)	03 - 014 - 019 - 020	-1.5 (5)

N5—N6—C22—C23	179.8 (2)	C15—C14—C19—C18	-0.6 (3)
C24—N7—C23—C22	179.6 (2)	C15—C14—C19—C20	179.5 (2)
C24—N7—C23—C26	-0.6 (4)	C14—C15—C16—C17	-0.1 (4)
C23—N7—C24—C25	-0.7 (4)	C15—C16—C17—C18	-0.3 (4)
C26—N8—C25—C24	-0.5 (4)	C16-C17-C18-C19	0.1 (4)
C25—N8—C26—C23	-0.8 (4)	C17—C18—C19—C14	0.3 (4)
O1—C1—C6—C5	178.8 (2)	C17—C18—C19—C20	-179.8 (2)
O1—C1—C6—C7	-2.6 (3)	C14-C19-C20-N5	-2.1 (3)
C2-C1-C6-C7	177.9 (2)	C14—C19—C20—C21	178.2 (3)
O1—C1—C2—C3	179.5 (2)	C18—C19—C20—N5	178.1 (2)
C2-C1-C6-C5	-0.8 (3)	C18—C19—C20—C21	-1.7 (4)
C6—C1—C2—C3	-0.9 (3)	O4—C22—C23—N7	-177.6 (3)
C1—C2—C3—C4	1.2 (4)	O4—C22—C23—C26	2.6 (4)
C2—C3—C4—C5	0.3 (3)	N6-C22-C23-N7	2.2 (3)
C3—C4—C5—C6	-2.1 (3)	N6-C22-C23-C26	-177.6 (2)
C4—C5—C6—C7	-176.4 (2)	N7—C23—C26—N8	1.4 (4)
C4—C5—C6—C1	2.3 (3)	C22—C23—C26—N8	-178.8 (2)
C5—C6—C7—N1	171.1 (2)	N7—C24—C25—N8	1.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
01—H1…N1	0.82	1.82	2.537 (2)	145
N2—H2A…N3	0.80 (2)	2.26 (2)	2.654 (3)	111.5 (17)
O3—H3 <i>A</i> …N5	0.82	1.82	2.534 (3)	145
N6—H6…N7	0.80(3)	2.21 (3)	2.628 (3)	113 (3)
C3—H3···O3 ⁱ	0.93	2.59	3.403 (3)	146

Symmetry code: (i) -x+1, -y+1, -z.