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RNA interference (RNAI) is a powerful method for specific gene silencing which may also lead to promising novel therapeutic
strategies. It is mediated through small interfering RNAs (siRNAs) which sequence-specifically trigger the cleavage and subsequent
degradation of their target mRNA. One critical factor is the ability to deliver intact siRNAs into target cells/organs in vivo. This
review highlights the mechanism of RNAi and the guidelines for the design of optimal siRNAs. It gives an overview of studies
based on the systemic or local application of naked siRNAs or the use of various nonviral siRNA delivery systems. One promising
avenue is the the complexation of siRNAs with the polyethylenimine (PEI), which efficiently stabilizes siRNAs and, upon systemic
administration, leads to the delivery of the intact siRNAs into different organs. The antitumorigenic effects of PEI/siRNA-mediated
in vivo gene-targeting of tumor-relevant proteins like in mouse tumor xenograft models are described.
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INTRODUCTION

Altered expression levels of certain genes play a pivotal role in
several pathological conditions. For example, in many can-
cers the upregulation of certain growth factors or growth
factor receptors, or the deregulation of intracellular signal
transduction pathways, represents key elements in the pro-
cess of malignant transformation and progression of normal
cells towards tumor cells leading to uncontrolled prolifera-
tion and decreased apoptosis. Since these processes may re-
sult in the direct, autocrine stimulation of the tumor cell
itself as well as the paracrine stimulation of other cells, in-
cluding the stimulation of tumor-angiogenesis, many novel
therapeutic strategies focus on the reversal of this effect, that
is, the inhibition of these proteins or the downregulation of
their expression. Likewise, several other diseases have been
firmly linked to the (over-)expression of endogenous wild-
type or mutated genes. Taken together, in addition to strate-
gies based on the inhibition of target proteins, for example,
by low molecular weight inhibitors or inhibitory antibodies,
this opens an avenue to gene-targeting approaches aiming at
decreased expression of the respective gene.

The first method to be introduced for the specific inhi-
bition of gene expression was the use of antisense oligonu-
cleotides in the late 1970s [1, 2]. Upon their introduction
into a cell, antisense ODNSs are able to hybridize to their tar-
get RNA leading to the degradation of the RNA-DNA hybrid

double strands through RNAase H, to the inhibition of the
translation of the target mRNA due to a steric or confor-
mational obstacle for protein translation and/or to the in-
hibition of correct splicing. In the early 1980s, the discov-
ery of ribozymes, that is, catalytically active RNAs which
are able to sequence-specifically cleave a target mRNA, fur-
ther expanded gene-targeting strategies [3-5]. Subsequently,
both methods were extensively studied and further devel-
oped with regard to the optimization of targeting efficacies
and antisense-ODN/ribozyme delivery strategies in vitro and
in vivo.

Most recently, another naturally occurring biological
strategy for gene silencing has been discovered and termed
RNA interference (RNAIi). Since RNAI represents a particu-
larly powerful method for specific gene silencing and is able
to provide the relatively easy ablation of the expression of
any given target gene, it is now commonly used as a tool in
biological and biomedical research. This includes the RNAi-
mediated targeting in vitro and in vivo for functional stud-
ies of various genes whose expression is known to be upreg-
ulated as well as the development of novel therapeutic ap-
proaches based on gene targeting.

RNA INTERFERENCE

RNAI is an evolutionarily conserved, sequence-specific, post-
transcriptional gene silencing phenomenon. It is triggered by
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FIGURE 1: Mechanism of RNA interference (RNAi) in mammalian systems. Long double-stranded RNA molecules (dsRNA), which are
expressed from DNA vectors (left red arrow) or directly enter the cell (center red arrow), are processed by the Dicer complex resulting in the
formation of small inhibitory RNAs (siRNAs). Alternatively, to induce RNAi these small 21-23 bp duplexes are directly delivered into the
cell (right red arrow). The siRNAs are incorporated into a nuclease-containing multiprotein complex called RISC, which becomes activated
upon the ATP-dependent unwinding of the siRNA duplex by an RNA helicase. The now single-stranded siRNA guides the RISC complex to
its complementary target mRNA which is then cleaved by the endonucleolytical activity of RISC. While the RISC complex is recovered for
further cycles, the cleaved mRNA molecule is rapidly degraded due to its unprotected RNA ends.

double-stranded RNA molecules as described first in C ele-
gans by Fire et al [6] who then introduced the name RNA in-
terference. These findings also explained earlier observations
in petunias which turned white rather than purple upon the
introduction of the “purple gene” in form of dsRNA [7],
and on gene silencing by antisense oligonucleotides as well
as by sense oligonucleotides in C elegans [8]. Subsequent
studies demonstrated that RNAI, while described under dif-
ferent names (posttranscriptional gene silencing (PTGS), co-
suppression, quelling), is present in most eukaryotic organ-
isms with the response to dsRNA, however, being more com-
plicated in higher organisms.

RNAI relies on a multistep intracellular pathway which
can be roughly divided into two phases, that is, the initia-
tion phase and the effector phase. In the initiation phase,
double-stranded RNA molecules from endogenous or ex-
ogenous origin present in the cell are processed through
the cleavage activity of a ribonuclease III-type protein [9—
12] into short 21-23 nucleotide fragments termed siRNAs.
These effector siRNAs, which contain a symmetric 2 nt over-
hang at the 3’-end as well as a 5'-phosphate and a 3’-
hydroxy group, are then in the effector phase incorporated

into a nuclease-containing multiprotein complex called RISC
(RNA-induced silencing complex) [13]. Several structural
and biochemical studies have shed light on the processing of
double-stranded RNA and the formation of the RISC com-
plex (see, eg, [14] for a recent review). Through unwinding
of the siRNA duplex by an RNA helicase activity [15], this
complex becomes activated with the single-stranded siRNA
guiding the RISC complex to its complementary target RNA.
Upon the binding of the siRNA through hybridization to its
target mRNA, the RISC complex catalyses the endonucle-
olytical cleavage of the mRNA strand within the target site,
which, due to the generation of unprotected RNA ends, re-
sults in the rapid degradation of the mRNA molecule. With
the RISC complex being recovered for further binding and
cleavage cycles, the whole process translates into a net reduc-
tion of the specific mRNA levels and hence into the decreased
expression of the corresponding gene. For an overview of the
RNAIi pathway, see Figure 1.

While from this mechanism it becomes obvious that
siRNA molecules complementary to the target mRNA and
thus being able to serve as a guide sequence for the RISC
complex play a pivotal role in this process, they need not
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be derived from long double-stranded precursor molecules.
Rather, omitting the initiation phase, they can be delivered
directly into the target cell (Figure 1, upper right arrow).

Several studies have led to the development of guidelines
for the generation of siRNAs which are optimal in terms of
efficacy and specificity [12, 16]. This includes the initial defi-
nition of the preferable length (19-25bp) combined with a
low G/C content in the range between 36% and 52% and
the requirement of symmetric 2 nt overhangs at the 3'-end
[16-18]. Later studies on synthetic siRNA molecules, how-
ever, revealed an up to 100-fold higher targeting efficacy in
the case of even longer duplexes (25-30 nucleotides) which
act as a substrate for Dicer and which therefore allow the di-
rect incorporation of the newly produced siRNAs into the
RISC complex [19]. As to be expected, intramolecular fold-
back structures which can result from internal repeats or
palindrome sequences decrease the numbers of functional
siRNA molecules with silencing capability [20]. Additional
silencing-enhancing criteria include an A in position 3 and a
G at position 13 of the sense strand, the absence of a C or G
at position 19 and, most importantly, a U in position 10 of
the sense strand. Since nucleotides 10-11 represent the site
of the RISC-mediated cleavage of the target mRNA, this in-
dicates that RISC is comparable to most other endonucleases
in preferentially cleaving 3" of U rather than any other nu-
cleotide [20, 21]. Furthermore, it was shown more generally
that the thermodynamic flexibility of the positions 15-19 of
the sense strand correlates with the silencing efficacy and that
the presence of at least one A/U base pair in this region im-
proves siRNA-mediated silencing efficacy due to a decreased
internal stability of its 3"-end [20].

Still, different siRNA sequences may display differing effi-
cacies, which suggest additional still unknown criteria for op-
timal siRNA selection and emphasize the influence of target
mRNA accessibility. In fact, several studies also correlate the
siRNA efficacy with the mRNA secondary structure [18, 22—
271].

In conclusion, apart from the selection criteria defined
above, the individual screening of different siRNAs for highly
efficient and specific duplexes, or the pooling of multiple
siRNAs, is the most effective approach to increase siRNA-
mediated targeting efficacy.

For the design of effective siRNAs, several algorithms on
publicly accessible web sites are available (see [28] for re-
view). To reduce the risk of nonspecific (“off-target”) effects
of the siRNAs, a homology search of the targeting sequence
against a gene database is necessary and already incorporated
in some of these web sites. Nevertheless, it has also been
shown that siRNAs may cross-react with targets of limited
sequence similarity when regions of partial sequence iden-
tity between the target mRNA and the siRNA exist. In fact, in
some cases regions comprising of only 11-15 contiguous nu-
cleotides of sequence identity were sufficient to induce gene
silencing [29]. The prediction of these off-target activities is
difficult so far.

An additional mechanism that may lead to nonspecific
effects in vivo relies on the interferon system [30-33] which
is induced when double-stranded RNA molecules enter a cell

activating a multi-component signalling complex. This effect
is particularly true for long dsSRNA molecules and essentially
prevents them from being used as inducers of RNA interfer-
ence in mammalian systems. The development of synthetic
siRNAs [10, 12, 33, 34] largely circumvents this problem
since they seem to be too small. However, some synthetic siR-
NAs do induce components of the interferon system which
seems to be dependent on their sequence [31, 32, 35] as well
as, in the case of in vitro transcribed siRNAs, on the 5" ini-
tiating triphosphate [36]. Thus, strategies to avoid as far as
possible the unwanted interferon response upon application
of siRNAs in vivo will include a design of siRNAs without
known interferon-stimulating sequences, the use of the low-
est possible siRNA dose to still achieve the desired effect and
optimized siRNA delivery methods.

OLIGONUCLEOTIDE DELIVERY SYSTEMS

Based on the known mechanisms of antisense technolo-
gy, ribozyme-targeting or RNAI, small oligonucleotides or
plasmid-based expression vectors can be used to specifically
downregulate the expression of a given gene of interest or of
pathological relevance in vitro. In principle, this also applies
to the in vivo situation leading to novel, potentially relevant
therapeutic approaches.

For the delivery of therapeutic nucleic acids, viral vectors
have been used which have the advantage of high transfec-
tion efficacy due to the inherent ability of viruses to trans-
port genetic material into cells. On the other hand, how-
ever, viral systems show a limited loading capacity regarding
that the genetic material are rather difficult to produce in a
larger scale and, most importantly, pose severe safety risks
due to their oncogenic potential and their inflammatory and
immunogenic effects which prevent them from repeated ad-
ministration [37-40].

In the light of these problems, concerns, and limitations,
nonviral systems have emerged as a promising alternative
for gene delivery. Main requirements are the protection of
their nucleic acid “load” as well as their efficient uptake into
the target cells with subsequent release of the DNA or RNA
molecules and, if necessary, their transfer into the nucleus.
Several strategies can be distinguished, mainly lipofection
and polyfection relying on cationic lipids or polymers, re-
spectively (see, eg, [41-43]).

The efficient protection against enzymatic or nonen-
zymatic degradation is particularly important for RNA
molecules including siRNAs. In fact, while the therapeutic
potential of siRNAs for the treatment of various diseases
is in principle very promising, limitations of transfer vec-
tors may turn out to be rate-limiting in the development
of RNAi-based therapeutic strategies. One approach to solve
this problem is the use of DNA expression plasmids which
encode palindromic hairpin loops with the desired sequence.
Upon transcription and folding of the RNA, the double-
stranded short hairpin RNAs (shRNAs) are recognized by
Dicer and cleaved into the desired siRNAs. Additionally, an
in vitro method has been described recently which is based
on the expression of shRNAs in E coli and their delivery
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via bacterial invasion [44]. While all these different DNA-
based systems offer the advantage of siRNA expression with
a longer duration and a probably higher level of gene silenc-
ing, they still rely on (viral or nonviral) delivery of DNA
molecules and again raise safety issues in vivo. Hence, the di-
rect delivery of siRNAs molecules, derived from in vitro tran-
scription or chemically synthesized, offers advantages over
DNA-based strategies and may be preferable for in vivo ther-
apeutic use.

In the last years, a large body of studies has been pub-
lished which describe different strategies for the systemic
or local application of siRNAs in vivo. Tables 1-3 give an
overview. The probably largest number of papers focuses the
use of unmodified siRNAs (Table 1) whose administration
is often performed IV by hydrodynamic transfection (high
pressure tail vein injection). While this method is widely used
and in some cases led to efficient target gene inhibition in
the liver and, to a lesser extent, in lung, spleen, pancreas,
and kidney, it may suffer from certain technical and prac-
tical limitations at least in a therapeutical setting since it re-
lies on the rapid IV injection of a comparably large volume
(>= 1 ml/mouse/injection, in theory equivalent to a ~ 31
IV bolus injection in man). Alternative strategies for the ap-
plication of naked siRNAs include various delivery routes
which, however, often provide an only local administration
or rely on an administration at least close to the target tissue
or target organ, thus restricting the number of target organs
which may not be relevant for certain diseases. It should also
be noted that several studies described here and below use
rather large amounts of siRNAs and that upon intravenous
injection of siRNAs the liver is the primary site of siRNA up-
take. As an alternative approach for the application of siR-
NAs in vivo, their delivery by liposomes/cationic lipids has
been described. For liposome-based siRNA formulations, a
wide variety of modes of application allowing local or sys-
temic delivery has been used (Table 2). Finally, several other
strategies for local or systemic siRNA administration have
been explored, including chemical modifications of siRNA
molecules, electropulsation, polyamine, or other basic com-
plexes, atelocollagen, virosomes, and certain protein prepa-
rations (Table 3).

An alternative approach relies on the complexation
of unmodified siRNA molecules with a cationic polymer,
polyethylenimine (PEI).

POLYETHYLENIMINES: FROM DNA TRANSFECTION TO
siRNA DELIVERY IN VITRO AND IN VIVO

Polyethylenimines (PEIs) are synthetic polymers available
in branched or linear forms (Figure 2, upper panels) and
in a broad range of molecular weights from <1000 Da to
>1000 kd. Commercial PEI preparations, although labelled
with a defined molecular weight, consist of PEI molecules
with a broad molecular weight distribution [45-47]. PEIs
possess a high cationic charge density due to a protonable
amino group in every third position [48, 49]. Since no quar-
ternary amino groups are present, the cationic charges are
generated by protonation of the amino groups and hence are

dependent on the pH in the environment (eg, 20% at pH 7.4,
see [50] for review). Due to its ability to condense and com-
pact the DNA into complexes, which form small colloidal
particles allowing efficient cellular uptake through endocy-
tosis, PEI has been introduced as a potent DNA transfec-
tion reagent in a variety of cell lines and in animals for DNA
delivery (for review, see [51, 52] and references therein).
In fact, in several studies PEI has been shown to be able
to deliver large DNA molecules such as 2.3 Mb yeast artifi-
cial chromosomes (YACs) [53] as well as plasmids or small
oligonucleotides [48, 54—56] into mammalian cells in vitro
and in vivo. The N/P ratio, which indicates the ratio of the
nitrogen atoms of PEI to DNA phosphates in the complex
and thus describes the amount of PEI used for complex
formation independent of its molecular weight, influences
the efficiency of DNA delivery. A positive net charge of the
complexes, resulting from high N/P ratios, inhibits due to
electrostatic repulsion their aggregation and improves their
solubility in aqueous solutions as well as their interaction
with the negatively charged extracellular matrix components
and thus their cellular uptake [57]. Additionally, the strong
buffer capacity, described by the “proton sponge hypothe-
sis” which postulates enhanced transgene delivery by cationic
polymer-DNA complexes (polyplexes) containing H* buffer-
ing polyamines due to enhanced endosomal Cl~ accumula-
tion and osmotic swelling/lysis [48], seems to be responsi-
ble for the fact that PEI-based delivery does not require en-
dosome disruptive agents for lysosomal escape. This tight
condensation of the DNA molecules as well as the buffer-
ing capacity of PEI in certain cellular compartments like en-
dosomes and lysosomes also protects DNA from degrada-
tion [48, 49, 58, 59]. PEIs have been successfully used for
nonviral gene delivery in vitro and in vivo. While initial
publications showed increased transfection efficacies when
using high molecular weight PEIs [45], more recent stud-
ies demonstrated the advantages of certain low molecular
weight PEIs [47, 60, 61]. The higher transfection efficacy
of low molecular weight PEIs may be due to a more effi-
cient uptake of the resulting PEI/DNA complexes, a better
intracellular release of the DNA and/or lower in vitro cy-
totoxicity as compared to high molecular weight PEI [60—
63]. In fact, a decrease in the molecular weight of the PEI
leads to an increase in complex size which may be favourable
at least for in vitro use [64, 65]. On the other hand, other
PEIs with very low molecular weight (< 2 kd) display little or
no transfection efficacy even at very high N/P ratios which
may be attributed to the fact that a decrease in the molecular
weight of PEI has been shown to translate into an increas-
ingly lower ability to form small complexes [63]. Therefore,
low molecular weight PEIs require higher N/P ratios for op-
timal transfection efficacies as compared to higher molecu-
lar weight PEIs since higher N/P ratios lead to an increase
in compaction with reduced complex sizes and a reduced
tendency of the complexes to aggregate due to hydrophobic
interactions [61, 63, 64]. Nevertheless, while several param-
eters have been extensively studied, some precise determi-
nants for transfection efficacy remain to be elucidated (see
[50, 66] for review). Also, the mechanism of the cytotoxic
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TaBLE 1: Studies based on the direct application of siRNAs to induce RNAI in vivo: administration of unmodified siRNAs.
Administration Target tissue/organ Target gene(s) Target disease/aim of study Reference
Intravenous
Hydrodynamic Liver caspase-8 Fas-mediated apoptosis/
transfection acute liver failure (94]
Hydrodynamic Liver HBsAg Inhibition of HBV replication [95]
transfection
Hydrodynamic Liver HBsAg Inhibition of HBV replication [96]
transfection
Hydrodynamic Liver GFP Downregulation of GFP [97]
transfection
Pulse injection Liver Fas Fulminant hepatitis [98]
High or low Liver Fas Fas downregulation in liver [99]
pressure
Lgrge—volurpez ) Liver mdrla Downregulation of mdrla [100]
high-speed injection
High-volume injection Liver caspase-8, caspase-3 Protection against ischemia/
(with lipiodol) reperfusion injury [101]
Hydrodynamic Liver and limb grafts DsRed2, GFP Downregulation of 102
transfection target genes [102]
Metastatic breast cancer cells CXCR4 Blockage ofbrea}t (103]
cancer metastasis
Hydrodynamic Coxsackievirus/various organs CVB2A Coxsackieviral cytopathogenicity [104]
transfection
Pancreatic adenocarcinoma xenograft CEACAM6 Tumor growth inhibition [105]
Pancreatic adenocarcinoma xenograft EphA2 Tumor growth inhibition [106]
Pancreatic adenocarcinoma xenograft FAK Enhanced gemcitabine 107
chemosensitivity (107]
Hydrodynamic trans- Kidney Fas Renal ischemia-
. . IR [108]
fection (renal vein) reperfusion injury
Hydrodynamic Lung Nucleoprotein, acidic polymerase Influenza virus infections [109]
transfection
Hydrodynamic Pancreas Ins2 Downregulation of the Ins2 gene [110]
transfection
Hydrodypamic Blood-brain barrier Organic anion transporter 3 Brain-to-blood transport [111]
transfection
Other delivery routes
Intraperitoneal Fibrosarcoma xenografts VEGF Tumor growth inhibition [112]
Intraperitoneal Subcutaneous pancreatic carcinoma xenografts bel-2 Growth inhibition [113]
Local injection Optic nerve stump c-Jun, Bax, Apaf-1 Antiapoptosis in retinal 114
ganglion cells [114]
Intratracheal . ini
instillation Lung KC, MIP-2 Acute lung injury [115]
Local into the liver Liver Luciferase Downregulation of cotransfected [116]
luciferase
Subretinal Eye VEGF Ocular neovascularization [117]
Local injection . Mouse joint TNE-« Collagen-induced arthritis [118]
and electroporation
Intradermal Antigen-presenting cells Bak, Bax Cancer vaccine potency [119]
Intranasal Nose after viral infection RSV-P, PIV-P Respiratory viral diseases [120]
Intranasal Lung HO-1 Functional analysis in 21
lung ischemia-reperfusion injury (121]
Intranasal Lung SCV Relief from SARS coronavirus fever [122]
In situ perfusion/ Pancreatic islet — Detection of fluorescing siRNA [123]
Intravenous
Intratumoral Breast carcinoma xenografts RhoA/RhoC Inhibition of tumor growth [124]
Intratumoral Mammary tumor xenografts CSF-1 Inhibition of tumor growth [125]
Intrathecal Brain cation channel P2X3 Chronic neuropathic pain [126]
Renal artery and Kidney TGF-p1 Glomerulonephritis [127]
electroporation
Intratracheal Lung Fas Hemorrhagic shock and sepsis [128]
Stereotactic injection Brain Agouti-related peptide Increased metabolic rate [129]
to hypothalamus
Intrathecal infusion Brain Pain-related cation channel P2X5 Decreased mechanical hyperanalgesia [126]
using mini-osmotic pump
Infusion into the ; i
ventricular system Brain Dopamine transporter Temporal hyperlocomoter response [130]
izrfl‘iiiigﬁlil:? the Brain Serotonin transporter Abngde}’f es:jmt—related (131]
ystem ehavioural response
Intraocular Retinal cells/terminals in supcolliculus APP/APLP2 Alterations of synaptic function [132]
Intraocular Eye VEGFA, VEGFR1, VEGFR2 Inhibition of ocular angiogenesis [133]
Prevention of ocular
Intraocular Eye TGE-beta RII inflammation and scarring [134]
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TaBLE 2: Studies based on the direct application of siRNAs to induce RNAI in vivo: administration of siRNAs based on liposomes/cationic

lipids.

Administration Target tissue/organ siRNA formulation Target gene(s) Target disease/aim of study Reference
Intravenous Liver metastasis Liposomes bel-2 Metastasis [135]

growth inhibition
Intravenous Kidney Liposomes V2R Role of V2R in water/ [136]
sodium homeostasis
Intravenous Subcutaneous tumor DOPC liposomes EphA2 Tumor growth inhibition [137]
xenograft
Intravenous Lung Liposomes caveolin-1 Increase in lung [138]
vascular permeability
Intravenous/intraperitoneal Various Liposomes - Detection of FITC- [139]
labeled siRNA
Intraperitoneal Peritoneal cavity Liposomes IL-12p40 Inflammation [140]
Intraperitoneal Peritoneal cavity Liposomes B-catenin Tumor growth Inhibition [141]
Intraperitoneal Various Liposomes TNE-a Sepsis after (142]
lipopolysaccharide injection
Transurethral Bladder cancer Liposomes PLK-1 Tumor growth inhibition [143]
Local Ear Liposomes GJBR75W Hearing loss [144]
Subcutaneous Subcutaneous prostate Liposomes bdl-2 Tumor growth inhibition [135]
carcinoma xenograft
Local (tracheal grafts) Subcutaneous tracheal grafts Liposomes MIF Decreased formation of [145]
obstructive bronchiolitis
Intracardiac Developing vascular Lipoplexes GFP Downregulation of GFP [146]
network of chicken embryo
Systemic Prostate cancer Cationic cardiolipin liposomes Raf-1 Inhibition of [147]
xenografts tumor growth
Intravenous Subcutaneous breast Cationic cardiolipin analogue c-raf Tumor growth inhibition [148]
cancer xenografts
Intrathecal Spinal cord/ i-Fect (cationic lipid) Delta opioid receptor DELT antinociception [149]
dorsal root ganglia

Intratumoral Subcutaneous HeLa xenograft Cytofectin GSV GFP Downregulation of GFP [150]
Intra-cerebroventricular Brain JetSI (+ DOPE) Luciferase Downregulation of luciferase [71]
Intravaginal Vagina Oligofectamine HSV-2 proteins Protection from HSV-2 infection [151]

effects of PEI complexes is only poorly understood. It may
rely on the formation of large aggregates in the range of up to
2 ym which, when formed on the cell surface, impairs mem-
brane functions finally leading to cell necrosis [60]. Clearly,
there is a trend towards low molecular weight PEIs as rather
nontoxic delivery reagents in vitro and in vivo, which com-
bine high biocompatibility and reduced side-effects thus also
allowing to employ larger PEI/DNA complex amounts with-
out significant cytotoxicity.

More recently, the use of polyethylenimines has been
extended towards the complexation and delivery of RNA
molecules, especially small RNA molecules like 37 nt all-RNA
ribozymes [67-69] and siRNAs [70] (Figure 2). While chem-
ically unmodified RNA molecules are very instable and prone
to rapid degradation, the PEI complexation has been shown
to lead to an almost complete protection against enzymatic
or nonenzymatic degradation. In fact, PEI-complexed siR-
NAs, which are [32P]-labeled for better detection, remain in-
tact in vitro for several hours even in the presence of RNase
A or fetal calf serum at 37°C, while non-complexed siRNAs
are rapidly degraded (Figure 3(a)). This indicates that siRNA
molecules are efficiently condensed and thus fully covered
and protected by PEI Indeed, the analysis of PEI/siRNA

complexes by atomic force microscopy showed the absence
of free siRNAs or siRNA molecule ends and thus confirms
these findings regarding an efficient complexation (Grzelin-
ski et al, submitted). However, while the complex stability
seems to be sufficient for siRNA protection with all PEIs
tested (Werth et al, in press; Aigner et al, unpublished data),
several of these complexes do not show any targeting efficacy
at all. In fact, only when using certain polyethylenimines,
PEI/siRNA complexes are efficiently delivered into target cells
in vitro, where siRNAs are released and display bioactivity
(Figures 1 and 2). In general and as seen before for PEI/DNA
complexes (see above), the transfection efficacy is depen-
dent on the PEI used, also indicating that the siRNA tar-
geting efficiency mainly depends on the endocytotic uptake
of the complex and/or its intracellular decomposition rather
than on the in vitro complex stability. Good results were
obtained with commercially available JetPEI [70] while the
in vivo JetPEI from the same supplier showed only poor
siRNA delivery efficacies [71]. Likewise, a novel low molecu-
lar weight PEI based on the fractionation of a commercially
available polyethylenimine demonstrates high siRNA protec-
tion and delivery efficacies in vitro (Werth et al, in press). Un-
der certain conditions, the PEI/RNA (siRNA or ribozyme)
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TaBLE 3: Studies based on the direct application of siRNAs to induce RNAI in vivo: other strategies of siRNA administration.
siRNA formulation Target tissue/organ Administration Target gene(s) Target disease/aim of study Reference
Chemically modified Liver and jejunum Intravenous apoB Reduction of apoB (152]
and total cholesterol
Chemically modified Liver Intravenous HBV Reduced serum HBV DNA [153]
+ lipid incapsulation
Electropulsation Muscle Intramuscular GFP Downregulation of GFP [154]
Histidine-lysine Breast tumor Intratumoral Raf-1 Breast cancer [155]
complex xenograft
Atelocollagen Subcutaneous prostate Intratumoral VEGEF Tumor growth inhibition [156]
carcinoma xenograft
Atelocollagen Orthotopic germ cell Intratumoral HST-1/FGF-4 Tumor growth inhibition [157)
tumor xenograft in testes
Atelocollagen Bone-metastatic Intravenous EZH2 Inhibition of metastatic (158]
prostate cancer tumor growth
Inactivated HV] Subcutaneous Hela Intratumoral Rad51 Enhancement of cisplatin
suspension xenografts anticancer effect [159]
Protamin-antibody Subcutaneous melanoma Intravenous or c-myc, Tumor growth inhibition [160]
fusion protein xenografts Intratumoral MDM2, VEGF
PEI complexation Subc_utaneous ovarian Intraperitoneal HER-2 Tumor growth inhibition [70]
carcinoma xenografts
PEI complexation Lung Intravenous Influenza Influenza virus infections [74]
virus genes
Nanoplexes Subcutaneous N2A neuroblastoma Intravenous VEGF R2 Tumor growth inhibition (73]
(RGD-PEG-PEI) xenografts
TransIT-TKO Nose after viral infection Intranasal RSV-P, PIV-P Respiratory viral diseases (120]
(polyamine)
Polyamine Myocard Intraperitoneal Heat shock factor 1 Abrogation of HSF- [161]
induced cardioprotection
Virosomes + Peritoneal cavit Intraperitoneal GFP GFP downregulation 162
y p g

cationic lipids

complexes retain their physical stability and biological activ-
ity also after lyophilization ([72] and Werth et al, in press).
Although the PEI transfection is only transient, data from
our lab show that PEI/siRNA effects are stable for at least 7
days (Urban-Klein and Aigner, unpublished results). Finally,
another study has explored the use of siRNA nanoplexes
comprising of PEI that is PEGylated with an RGD peptide
ligand attached at the distal end of the PEIL. Again, siRNA
nanoplexes protect siRNAs against serum degradation and
show in vitro activity [73].

The ultimate goal is the application of siRNAs in vivo
which has been explored in some studies in different mouse
models. Ge et al showed that PEI-complexed siRNAs target-
ing conserved regions of influenza virus genes are able to
prevent and treat influenza virus infection in mice. Upon IV
injection, PEI promoted the delivery of siRNAs into the lungs
where, either given before or after virus infection, siRNA re-
duced influenza virus production in the lungs [74].

Most biological effects of the systemic application of PEI-
complexed siRNAs, however, have been determined in differ-
ent mouse tumor models and by targeting different proteins
which have been shown previously to be tumor-relevant.
This includes the epidermal growth factor receptor HER-2
(c-erbB-2/neu), the growth factor pleiotrophin (PTN), and
vascular endothelial growth factor (VEGF) and its receptor

(VEGF R2), and the fibroblast growth factor-binding protein
FGEF-BP.

The in vivo administration of PEI complexed, but not of
naked siRNAs, through IP or subcutaneous injection resulted
in the detection of intact siRNAs even hours after injection
(Figure 3(b)). Radiolabeled siRNA molecules were found in
several organs including subcutaneous tumors, muscle liver,
kidney and, to a smaller extent, lung and brain. It is impor-
tant to note that the siRNAs were actually internalized by the
tissues as indicated by the fact that blood was negative for
siRNAs (Figure 3(b)).

Overexpression of the HER-2 receptor has been observed
in a wide variety of human cancers and cancer cell lines.
Since HER-2 displays strong cell growth-stimulating and
antiapoptotic effects especially through heterodimer forma-
tion with other members of the EGFR family, its overexpres-
sion has been established as a negative prognostic factor and
linked to a more aggressive malignant behaviour of tumors
(eg, [75]). Consequently, HER-2 qualifies as an attractive tar-
get molecule for antitumoral treatment strategies including
anti-HER-2 antibodies, low molecular weight inhibitors, or
HER-2-specific gene-targeting approaches. In fact, the rele-
vance of HER-2 (over-)expression in tumor growth has been
established in several in vitro HER-2 targeting studies includ-
ing the use of ribozymes [76, 78, 79] or siRNAs [80, 81].
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It was demonstrated that HER-2 reduction in vitro leads,
among others, to the inhibition of cell proliferation and in-
creased apoptosis.

The systemic treatment of athymic nude mice bearing
subcutaneous SKOV-3 ovarian carcinoma tumor xenografts
through IP injection of PEI-complexed HER-2-specific
siRNAs led to marked antitumoral effects as seen by a
significant reduction tumor growth (Figure4) [70]. PEI-
complexed nonspecific siRNAs or HER-2-specific, naked siR-
NAs had no effects. This was paralleled by the detection of
intact HER-2-specific siRNAs in the tumors of the specific
treatment group already 30 min after administration and for
at least 4 h, and by the downregulation of HER-2 on mRNA
and protein levels [70].

Another receptor, VEGF R2, was targeted in a study em-
ploying self-assembling nanoparticles based on siRNAs com-
plexed PEI which is PEGylated with an RGD peptide ligand
attached at the distal end of PEG. While the PEGylation al-
lows steric stabilization and reduces nonspecific interactions
of the complexes, the RGD motif provided tumor selectivity

due to their ability to target integrins expressed on activated
endothelial cells in the tumor vasculature. Upon IV adminis-
tration into mice bearing subcutaneous N2A neuroblastoma
tumor xenografts, a selective tumor uptake and a VEGF R2
downregulation were observed, resulting in decreased tumor
growth and tumor angiogenesis [73].

The receptor ligand, VEGE, is a mitogenic and angiogenic
growth factor stimulating tumor growth and angiogenesis in
several tumors including prostate carcinoma. Thus, it may
represent attractive target molecule for RNAi-based gene-
targeting strategies also bearing in mind the double antitu-
moral effect due to reduction of tumor cell proliferation as
well as tumor angiogenesis. The subcutaneous or intraperi-
toneal injection of VEGF-specific siRNAs complexed with a
novel PEI obtained through fractionation of a commercially
available PEI (Werth et al, in press) resulted in the reduc-
tion of tumor growth due to decreased VEGF expression
levels (Hobel and Aigner, unpublished results). The same
was true for PEI/siRNA-mediated targeting of FGF-BP (Dai
and Aigner, unpublished results), which has been established
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previously as “rate-limiting” for tumor growth and angio-
genesis in several tumors ([82, 83], see [84] for review).
Finally, PEI/siRNA-mediated targeting of pleiotrophin
(PTN) exerted strong antitumoral effects. PTN is a se-
creted growth factor which shows mitogenic, chemotactic,
angiogenic and transforming activity [85-93] and which is
markedly upregulated in several human tumors including
cancer of the breast, testis, prostate, pancreas, and lung as
well as in melanomas, meningiomas, neuroblastomas, and
glioblastomas. The in vivo treatment of nude mice through
systemic subcutaneous or IP application of PEI-complexed
PTN siRNAs led to the delivery of intact siRNAs into sub-
cutaneous tumor xenografts and a significant inhibition of
tumor growth. Likewise, in a clinically more relevant or-
thotopic mouse glioblastoma model with U87 cells growing
intracranially, the injection of PEI-complexed PTN siRNAs

into the CNS exerted antitumoral effects. This establishes,
also in a complex and relevant orthotopic tumor model,
the potential of PEI/siRNA-mediated PTN gene targeting
as a novel therapeutic option in GBM, and further extends
the modes of delivery of PEI/siRNA complexes intrathecal
strategies as employed in the therapy of glioblastomas with
antisense oligonucleotides.

CONCLUSION

Only a few years after their discovery, siRNAs are catching
up with ribozymes and antisense oligonucleotides as efficient
tools for gene targeting in vitro and, more recently, also in
vivo. This includes the exploration of their potential as ther-
apeutics which will lead to the development of siRNA-based
therapeutic strategies. Their ultimate success, however, will



10 Journal of Biomedicine and Biotechnology

160 1
140 1

z Noncomplexed

£ 1201 HER-2 siRNA

X

g 100 1

£

g 80

g 60

E

= 404

PEI-complexed
20 - b HER-2 siRNA
%

o %

0o 2 4 6 8§ 10 12 14

Time after start of treatment (days)

—e— PEI-complexed
—O0— HER-2 specific naked

()

16 18

Tumors

(b)

FIGURE 4: Systemic treatment of mice with PEI-complexed HER-2-specific siRNAs leads to reduced growth of subcutaneous SKOV-3 tumor
xenografts due to decreased HER-2 expression. In [70] athymic nude mice bearing subcutaneous tumor xenografts were injected IP with 0.6
nmoles HER-2-specific naked (open circles) or PEI-complexed (closed circles) siRNAs 2—3 times per week and tumor sizes were evaluated
daily from the product of the perpendicular diameters of the tumors. Mean +/- standard error of the mean (SEM) is depicted and Student’s
unpaired t test was used for comparisons between data sets (**P < .03, ***P < .01). Differences in tumor growth reach significance at day 5
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strongly depend on the development of powerful and feasi-
ble siRNA delivery strategies which need to address several is-
sues including the stability/stabilization of siRNA molecules
while preserving their efficacy and maintaining their gene-
silencing activity, an efficient delivery into the target organ(s)
as well as a sufficiently long siRNA half life in the organ-
ism and particularly in the target organ. Thus, siRNA deliv-
ery strategies must provide siRNA protection and transfec-
tion efficacy, the absence of toxic and nonspecific effects, they
must be efficacious also when using small amounts of siRNAs
and must be applicable in various treatment regimens and in
various diseases even when this requires to overcome biologi-
cal barriers after their administration to reach their target tis-
sue or target organ. The research done on DNA-based gene
delivery, ribozyme-targeting, and antisense technology will
facilitate this process since it already provides a basis of es-
tablished technologies. This is also true for the complexation
of siRNAs with polyethylenimine, which may represent a
promising avenue for siRNA applications in vivo. This may
eventually lead to novel therapeutic strategies.

ABBREVIATIONS

dsRNA, double-stranded RNA,
FGEF-BP, fibroblast growth factor-binding protein,
GFP,

HER-2, human epidermal growth factor receptor-2,

green fluorescent protein,

IP, intraperitoneal,

ODN, oligodeoxynucleotide,

PEI,  polyethylenimine,

PTN, pleiotrophin,

RISC, RNA-induced silencing complex,
RNAi, RNA interference,

siRNA, small interfering RNA,

shRNA, short hairpin RNA.
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