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ABSTRACT
◥

Activating receptor-tyrosine kinase rearranged during transfec-
tion (RET)mutations and fusions are potent drivers of oncogenesis.
The recent FDA approvals of highly potent and selective RET
inhibitors, selpercatinib and pralsetinib, has altered the therapeutic
management of RET aberrant tumors. There is ample evidence of
the role of RET signaling in certain cancers. RET aberrations as
fusions or mutations occur in multiple cancers, however, there is
considerable phenotypic diversity. There is emerging data on the
lack of responsiveness of immunotherapy in RET-altered cancers.

Herein, we review the registrational data from the selective RET-
inhibitor trials, and comprehensively explore RET alterations in
pan-cancer adult malignancies and their co-alterations. These
co-occuring alterations may define the future of RET inhibition
from specific selective targeting to customized combination ther-
apies as data are rapidly emerging on both on-target and off-target
acquired resistance mechanisms. Fascinatingly, oncogenic RET
fusions have been reported tomediate resistance to EGFR inhibition
and KRASG12C inhibition.

Introduction
The RET gene is a proto-oncogene encoding for a receptor

tyrosine kinase with three domains: extracellular, transmembrane,
and intracellular (1). It was initially implicated in the pathogenesis
of sporadic mutations found in papillary thyroid cancer (PTC) and
germline mutations in multiple endocrine neoplasia syndromes 2A/
B (2–4). More evidence suggests the role of RET in the development
of other sporadic cancers through the activation of the MAPK,
PIK3CA, and phospholipase C-g pathways (Fig. 1; refs. 5, 6). RET
rearrangements cause unregulated expression of the RET/PTC
oncoprotein subsequently leading to constitutively activate the RET
tyrosine kinase (5, 7).

Prior to the advent of selective RET inhibitors, treatment of
RET-altered cancers relied on multikinase inhibitors like vandetanib
and cabozantinib with secondary RET activity. Given the off-target
side effects such as hypertension, rash, and diarrhea arising from

inhibition of VEGFR2 and other kinases, patients could not tolerate
these drugs for extended durations, which led to dose reductions
and drug discontinuations. Selpercatinib (RETEVMO) and pralse-
tinib (GAVRETO) were designed as highly potent and selective RET
inhibitors to avoid the off-target toxicities. Rapid clinical translation
and registrational trials have led to FDA approval of these drugs.
Selpercatinib is FDA-approved for RET fusion-positive metastatic
non–small cell lung cancer (NSCLC), RET-mutant medullary thy-
roid cancer (MTC), and RET fusion-positive metastatic thyroid
cancer (8, 9). In the NSCLC trial, the objective response rate (ORR)
for untreated MTC patients was 85% (n ¼ 39) and in previously
treated MTC patients 64% (n ¼ 105; ref. 8). In the thyroid-cancer
trial, the ORR for untreated patients was 73% (n ¼ 88) and 69%
(n ¼ 55) for previously treated patients (9). Similarly, pralsetinib is
also FDA-approved for patients with metastatic RET fusion-
positive NSCLC and RET-mutant MTC, and RET fusion-positive
metastatic thyroid cancer (10, 11). In the pralsetinib NSCLC trial,
the ORR for treatment-na€�ve RET fusion-positive patients was 70%
(n ¼ 27) and for previously treated patients was 61% (n ¼ 87;
refs. 10, 12). In the MTC cohort ORR was 71% in treatment-na€�ve
and 60% in patients previously treated with cabozantinib or van-
detanib or both (12).

Previous efforts have analyzed over 30,000 cell-free DNA
(cfDNA) patient samples and reported that activating RET altera-
tions occur in 0.5% of cancer patients (13). Other efforts looking at
over 4,000 samples, found that RET aberrations were present in
1.8% of diverse cancers (14). Roughly 43% to 71% (15–18) of
sporadic MTCs harboring mutations in RET have been previously
targeted with multikinase inhibitors (19). Additionally, 20% of
sporadic papillary thyroid carcinomas harbor RET alterations
(20, 21). Fusions in RET are found in NSCLC at a rate of roughly
1% to 2% (14). These efforts have led to the development of specific
RET inhibitors, which have yielded meaningful clinical benefit for
patients with advanced cancers (22–24). Large-scale analysis of
nearly 100,000 patient-tumor samples in this study has shown that
there may be utility in studying the effects of these and other RET
inhibitors in patients with advanced cancers. This analysis also
revealed genes that may be found to be co-altered in RET-aberrant
cancers, which may lend itself potentially to combination treatment
strategy approaches.
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RET and the Hallmarks of Cancer
Like most oncogenes, aberrant RET mediates the ‘sustained pro-

liferative signaling’ directed towards enhancing the cell division
required for tumor formation (25–27). However, despite this ability
aberrant RET signaling is not oncogenic in all cell types. In cell types
where oncogenesis is observed there is a growing appreciation that
RET’s impact actually extends beyond the simple enhancing cellular
proliferation, targeting additional “hallmarks” either directly or
through targeting of cell-specific intracellular networks (COSMIC.
RET and Hallmarks of Cancer, COSMIC project. 2021; Available from:
https://cancer.sanger.ac.uk/cosmic/census-page/RET). While a com-
prehensive examination of potential mechanisms involved in all RET-
associated cancers has not been performed, it is important to recognize
examples where they exist. The role(s) of aberrant RET activation in
the development of MTC have been broadly studied (28). Germline
activating mutations of RET are associated with MTC, the primary
tumor component of MEN2 (2). A similar role for RET is found in
sporadicMTC through somaticmutation (28). There is correlative and
in vitro evidence suggesting RET has roles in the 5 additional hall-
marks: evading growth suppressors, resisting cell death, enabling
replicative immortality (29), induction of angiogenesis (30), and
activating invasion and metastasis (Fig. 2; refs. 29, 31–36). Roles for
RET in themore recently proposed ‘emerging hallmarks’ and ‘enabling
characteristics’ remain to be more directly examined, but at least early
reports suggests RET-driven cancers (both MTC and NSCLC) have a
low tumor-mutational burden and characterized by lower PD-L1

expression (37, 38). In addition studies have shown modifications of
tumor microenvironment associated to RET-familial MTC/multiple
endocrine neoplasia 2 and –associated oncoproteins (39) Herein, it is
highly possible that RET-driven cancers are biologically ‘cold’ (40).
Thus, the impact of RET on oncogenesis goes well beyond simply
enhancing cell proliferation. Therefore, inhibition of RET is expected
to have a broader impact on those tumor cells that employ aberrant
RET activation for functions beyond proliferative signaling.

Clinical Data
As discussed previously, the current landscape of RET inhib-

itors includes selpercatinib and pralsetinib, which were granted
accelerated approval by the FDA in 2020. Selpercatinib is approved
for adult patients with metastatic RET fusion-positive NSCLC.
It is also approved for adult and pediatric patients ≥12 years of
age with advanced or metastatic RET-mutant MTC who require
systemic therapy.

In the first 105 consecutively enrolled patients with RET fusion-
positive NSCLC who had previously received at least platinum-based
chemotherapy, selpercatinib showed an objective response of 64%
(95% CI, 54–73) and a median duration of response duration of
response (DoR) of 17.5 months (8). Within the 39 previously-
untreated patients, the ORR was 85% (95% CI, 70–94), 90% of the
responses ongoing at 6 months. This study also demonstrated the
evidence for intracranial activity of selpercatinib with 11 patients with
central nervous system (CNS) metastasis showing an objective
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Figure 1.

RETgene alterations and role on other cancer-causing pathways. RETmutations are seen as germline events in hereditaryMENsyndrome and somatic RETmutations
are seen in sporadic MTC. RET fusions are seen in NSCLC, papillary thyroid cancer, and many other cancers.
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intracranial response of 91%. LIBRETTO-001 trial results also con-
firmed its CNS activity. In 22 patients with measurable intracranial
disease at baseline, CNSORRwas 82% (95%CI, 60–95), including 23%
with complete responses (41, 42).

Similarly, a real-world retrospective analysis of 50 patients from
27 centers across 12 countries with RET fusion-positive NSCLC were
treated with selpercatinib (https://journals.sagepub.com/doi/full/
10.1177/17588359211019675). In this population, the ORR was 68%
(95% CI, 53–81) with a median progression-free survival (PFS) of
15.6 months (95%CI, 8.8–22.4) and a disease-control rate of 92% (26).
Of note in the 8 patients with measurable brain metastatic disease, the
intracranialORRwas 100% (26). Thesefindings are congruentwith the
large-scale international reported studies. Among RET-altered thyroid
cancers, selpercatinib led to an ORR of 69% (55%–81%) among 55
consecutively enrolled patients who had previously received vande-
tanib and/or cabozantinib with a 1-year PFS rate of 82% (69–90%;
ref. 9). Furthermore, among the 88 treatment-na€�ve patients with
RET-mutant MTC ORR was 73% (95% CI, 62%–82%) and 1-year
PFS 92% (95%CI, 82–97). In the subset of RET fusion-positive patients
(n¼ 19), ORRwas 79% (95%CI, 54–94%) and 1-year PFS in 64% (95%
CI, 37–82; ref. 9). Intracranial activity in RET-mutant thyroid cancer
has been demonstrated as well (43).

Hypersensitivity reactions to selpercatinib in patients with RET
fusion-positive NSCLC following immune checkpoint inhibition
(ICI) is an adverse event of special interest. It is defined as a
constellation of events in the initial treatment weeks: maculopap-
ular rash, often preceded by fever, with associated arthralgias or
myalgias followed by thrombocytopenia and/or AST/ALT increase
(common) and/or blood pressure decrease, tachycardia, and/or
creatinine increase (less common). About 11% (17/152) in previ-
ously treated patients with ICI and 3% (5/177) in ICI-na€�ve patients
were found to have treatment-related hypersensitivity reactions,
with most patients being successfully treated with dose modification
and concomitant steroids (44).

Pralsetinib has been granted accelerated approval for adult patients
with metastatic RET fusion-positive NSCLC. This was based on the
results of a multicenter, open-label, multi-cohort ARROW clinical
trial, which showed that among 87 patients with RET fusion-positive
NSCLC (previously treated with platinum-chemotherapy), an ORR of
53% (95% CI, 50%–71%), with a complete response (CR) rate of
6% (11). The median time to first response was 1.8 months, with a
medianDoRnot reached, after amedian follow-upof 12.9months (11).
The median PFS was 17.1 months (95% CI, 8.3–22.1) with a median
overall survival (OS) that was not reached (11). Notably, in all patients
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Hallmarks of RET alterations in cancer. In cell types where oncogenesis is observed there is a growing appreciation that RET’s impact actually extends beyond the
simple enhancing cellular proliferation, targeting additional “hallmarks” either directly or through targeting of cell-specific intracellular networks.
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with measurable intracranial metastases shrinkage of tumor was seen.
Furthermore, among 27 treatment-na€�ve patients, ORR was found to
70% (50%–86%), with a CR rate of 11%. The median DoR was
9.0 months with a median follow-up of 10.2 months (11). In treat-
ment-na€�ve patients, the median PFS in was 9.1 months and OS was
not reached (11).

An update on the clinical activity of pralsetinib in other
RET fusion-positive solid-tumor types other than NSCLC (16
PTC, 1 undifferentiated thyroid, 3 pancreatic, 3 colon, 6 others)
showed an ORR of 75% (9/12) with median DoR of 14.5 (range,
3.7–16.8) months, and 67% of responding patients continuing
treatment (10).

Lastly, pralsetinib use in RET-mutant MTCs for patients with
prior cabozantinib and/or vandetanib, the ORR was 60% (95% CI,
46%–73%) and CR rate of 2% (12). The median time to first
response was 3.7 months and the median DoR was not reached,
with median follow-up of 11.2 months (12). The median ongoing
response was 6 months was 92% (95% CI, 82–100; ref. 12). In
treatment-na€�ve RET-mutant MTCs, the ORR was 71% (95% CI,
48%–89%) and CR rate of 5% (12). The median time to first
response was 5.6 months and the median DoR was not reached,
with median follow-up of 10.8 months (12). The median ongoing
response was 6 months was 93% (95% CI, 81–100) (12). The median
PFS and OS in both subsets of patients were not reached (12). The
ORR for patients with RET fusion-positive thyroid cancer was 89%
(95% CI, 52–100), with median time to first response of 1.9 months
(12). The duration of response was not reached with median
follow-up of 9.5 months (12). The median PFS and OS were not
reached in these patients, as well (12).

Acquired Resistance Mechanisms to
RET Inhibition

Despite the exciting efficacy data, long-term RET inhibitor activity
can be hampered by acquired resistance as with other tyrosine kinase
inhibitors (TKI). Although selective RET inhibitors are effective
against most RETmutants and the gatekeeper RETV804Mmutations,
there is emerging data on nongatekeeper mutations as resistance
mechanisms. RET G810 solvent front mutations found on circulating
tumor DNA and patient-xenograft model analysis in patients with
disease progression on selpercatinib have been described (45).
Although these solvent front mutations are significant, they occur at
relatively lower frequencies as studied on analysis of posttreatment
tissue and/or plasma biopsies of 18 patients with RET fusion-positive
who received an RET-selective inhibitor (45). However, more impor-
tantly, the majority of the resistance was found to be driven by RET-
independent resistance such as acquired MET or KRAS amplification.
Thus, it is clear that next-generation RET inhibitors developed must
have potency against RET resistance mutations and maintain activity
against RET gatekeeper mutations.

Another novel resistance mechanism that has been reported is that
in a patient with RET fusion-positive high-grade neuroendocrine
carcinoma who was being treated with selpercatinib who initially
responded to therapy (46). At 10 months of treatment with selperca-
tinib and now presumed progression, NGS of a progressing lesion was
sent for analysis revealing a novel NTRK3 fusion in addition to the
RET fusion (46). Preclinical models showed resistance to NTRK3-
expressing cells to selpercatinib (46). This reveals another potential
mechanism for resistance to selective RET inhibition, which could
hypothetically be overcome by adding an NTRK inhibitor agent such
as larotrectinib or entrectinib (46).

Furthermore, given the co-alterations, combination strategies may
be used effectively to overcome resistance in these patients. Rosen and
colleagues demonstrated that increased MET overexpression in RET
fusion-positive tumor cells causes resistance to selpercatinib (47).
Subsequently, they showed that this could be overcome partially by
combining selpercatinib with crizotinib in patients who developed
MET amplification as a resistance mechanism to selpercatinib with
responses lasting as long as 10 months (47). These data suggest the
potential for combination therapies of targeted agents to overcome
resistance pathways.

RET Cancers and Immunotherapy
The role of ICI in RET-altered cancers has also been of interest.

In 74 patients with RET-mutated NSCLC, PD-L1 expression was
absent or below 50% in over 80% (n ¼ 21/26) tumors (37). In
addition, tumor mutation burden (TMB) was also significantly
lower (P < 0.0001) in RET-altered tumors than in RET wild-type
samples (37). In the patients who did receive ICI, which included
pembrolizumab, nivolumab, atezolizumab, durvalumab, or ipilimu-
mab with nivolumab, there were no objective responses (37). These
patients also had no association between PD-L1 expression, TMB,
and PFS (37).

These findings are further corroborated in a case series of 2 patients
with NSCLC (48). One of the patients initially received an ICI and had
significant clinical deterioration before starting pralsetinib (48). After
initiation of pralsetinib in this patient, the patient had an improvement
in all of the metastatic sites and primary NSCLC (48).

Similarly, 70 patients with RET-altered cancers were analyzed for
responsiveness to immunotherapy in a single institutional study froma
large clinical trials unit (49). This study found that approximately 78%
of patients had PD-L1 expression was absent or below 50% and in the
15 patients with TMB analyzed all were TMB-low (49). Among all
patients who received ICI had a significantly shorter time to treatment
discontinuation (TTD; 18.0 vs. 5.2months, P¼ 0.00045; ref. 49). In the
29 patients withNSCLCwho received ICI theTTDwas shorter, but did
not reach statistical significance (9.3 vs. 3.4 months, P¼ 0.16; ref. 49).

In another study where 16 of 551 patients had RET-altered NSCLC
all patients received either pembrolizumab or nivolumab (50). The
ORR for the patients with RET-alterations was 6% where 75% of the
patients had disease progression (50). This study showed poor survival
for patients with RET-altered NSCLC receiving single-agent ICIs with
median PFS of 2.1 months and median OS of 21.3 months (50).

An additional study of 59 patients with RET-fusion NSCLC
reported the ORR to ICI to be 7.7% in 13 patients where 11 of the
13 patients had no response. The median PFS in patients with RET-
fusion NSCLC who received ICI was 2.1 months and the median OS
was 12.4 months (51).

Further, in a study of 233 patients with RET fusion-positive NSCLC
64 patients had received ICI (52). This study found that TTD for
frontline ICI in these patients was median 5.8 months and as second-
linemedian TTDwas 5.1months (52). This appears to be similar to the
previous findings and limited utility of single-agent ICI in patients with
RET-altered NSCLC.

These studies share a common theme of lack of response and clinical
benefit seen in patients with RET-altered cancers receiving single-
agent ICIs. There also appears to beminimal to no concern for patients
with RET-altered cancers to experience hyperprogression of disease
from ICIs, despite lack of clinical benefit (53, 54). It is unclear if upon
progression of disease on a selective RET inhibitor tumor-genomic
landscape and proteomic landscape may change in regard to PD-L1
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and TMB expression, but with lack of evidence there remains to be no
derived benefit from using ICI in patients with RET-altered cancers.

RET Cancer and co-occuring
Alterations

Ninety-six thousand, three hundred and twenty-four samples from
89,754 patients available from American Association for Cancer
Research (AACR) Project Genie database version 8 (55) were analyzed
for the prevalence of RET fusions, mutations, and copy-number
alterations in diverse cancer types accessed July 21, 2020. The muta-
tions were further characterized by the tissue of origin, mutations
(excluding fusions), and fusions. Fusions inNSCLCwere also analyzed
to see if there was an association with other co-altered genes, and
Benjamini–Hockberg Procedure was applied to eliminate the false
discovery rate (56). Analysis of amplification within all tumors was
conducted and stratified by copy-number variants.

In the 96,324 tumor samples analyzed, there were 2,706 (2.81%)
RET alterations within the cohort. The median age at the time of
sequencingwas 61 years old, with 52,579 (54.6%) samples fromwomen
and 43,635 (45.3%) from men [110 (0.1%) unknown genders]. There
were 56,382 (58.5%) samples from primary tumors, 24,204 (25.1%)
samples from unspecified metastasis sites, 4,798 (5.0%) from distant-
organ metastasis, 1,379 (1.4%) from lymph node metastasis, 1,279
(1.3%) from local recurrence, and 8,282 (8.6%) unknown.

There were 223 (0.23%) fusions, 1,689 RET mutations found
(1.75%) in 21 tumor histologies, and 794 (0.82%) RET amplifications
identified. These amplifications were most commonly in breast cancer
(n ¼ 143), NSCLC (n ¼ 104), and endometrial cancer (n ¼ 84;
Supplementary Table S1). The mutations were composed of 1,541
(1.60%) missense mutations, 78 (0.08%) truncating mutations, 70
(0.07%) frame-shift mutations. The RET missense mutations were
found most abundantly in NSCLC (n ¼ 355), colorectal cancer (n ¼
292), melanoma (n ¼ 236), and thyroid cancer (n ¼ 127; Fig. 3A,
Supplementary Table S2).

In this cohort, 54.3% of RET fusions were found in patients with
NSCLC (n ¼ 121), with papillary thyroid cancer (n ¼ 53) being the
next most abundant tumor type with 22.8% of RET fusions (Fig. 3B).
Breast cancer (n¼ 8), colorectal cancer (n¼ 7), esophagogastric cancer
(n ¼ 6), and carcinoma of unknown primary (n ¼ 5) were the other
tissues that had RET fusions.

In addition, 121 of the NSCLC tumors with RET fusions had
significantly co-altered KRAS (n ¼ 2; adj. P ¼ 1.38E-09), SETD2
(n¼ 22; adj. P¼ 4.60E-09), PVRL4 (n ¼ 3; adj. P ¼ 0.000169), EZH1
(adj. P ¼ 0.00772; n ¼ 3), and RRAGC (n ¼ 2; adj. P ¼ 0.00772).
Further, there were strong associations with RET fusions and TP53
alterations (n ¼ 45; adj. P¼ 0.0634), BCL2L12 alterations (n¼ 1; adj.
P ¼ 0.0638), and EGFR alterations (n ¼ 13; adj. P ¼ 0.0893).

RET and Resistance Mechanisms and
RET as Resistance Mechanism

Despite the deep and durable responses that patients have had from
RET inhibitors various on-target and off-target resistancemechanisms
are emerging (57). In patients with RET-fusion NSCLC and RET-
mutated MTC, mutations within the RET gene were implicated in
resistance to selpercatinib (45). Specifically, RET mutations G810R,
G810S, and G810C in the solvent-front domain were found in the
patients who progressed on selpercatinib and these findings were
validated in a xenograft model (45).

In another cohort of patients who progressed on selpercatinib,MET
amplifications were identified as causing resistance (47). Interestingly,
in these patients the addition of crizotinib, a MET inhibitor, was
sufficient to overcome this resistance and provide for response (47).
The combination of RET inhibitorswith aMET inhibitor or employing
a TKI that targets both alterations may be beneficial in these
patients (58–60).

A unique feature of the FDA-approved RET inhibitors, selperca-
tinib and pralsetinib, is that their mechanism of wrapping around the
tyrosine kinase which allows them to evade resistance of gatekeeper
mutations. In doing so however, this leaves the drugs susceptible to
nongatekeeper mutations as resistance mechanisms. The mutations
that were identified included RET V738A, RETY806C/N, and
RETG810C/S, which were located within the b-2 strand, solvent front,
and hinge regions of the kinase domain (61).

Additional studies have found recurrent mutations in the solvent-
front part of the kinase domainwith resistancemutations in RETG810
residue and MET amplifications. Interestingly, in the patients with
identified MET amplifications, there were no concomitant mutations
in RET domain and theMET amplifications were the only implicated
cause for resistance further strengthening the notion that MET
inhibition could overcome this resistance mechanism (62).

Distinguishing variousmechanisms for resistance to RET inhibitors
allows for the ability to find and develop drugs to overcome the
resistance. Resistance mechanisms for RET inhibitors include both
on-target and off-target alterations, some ofwhich can be targetedwith
other therapeutics.

Interestingly, acquired RET fusions have been implicated as a
resistance mechanism to EGFR inhibitor–targeted therapy with osi-
mertinib. Moreover, it was also demonstrated preclinically and clin-
ically that dual inhibition with EGFR and RET with osimertinib and
pralsetinib can overcome the resistance mechanism and may be a safe
and effective treatment strategy for such patients (63). Fascinatingly,
activating RET M918T mutation and oncogenic CCDC6-RET fusion
were reported as acquired resistance mechanism to KRAS G12 C
inhibition (64). Combination therapy strategies using RET inhibition
to overcome these unique resistance mechanisms may be required.

Conclusions
NSCLC and thyroid cancer contribute to the majority of cases

with RET fusions and RET mutations where patients have clinically
meaningful benefit from selective RET inhibition–directed therapy.
Beyond NSCLC and thyroid cancer while RET fusions comprise an
infrequent event (0.23%) within multiple malignancies, RET muta-
tions occur in approximately 2% of tumors. It is unclear whether
these mutations are clinically significant and actionable. However,
the addition of two FDA-approved treatments may provide value to
select patients whose tumors harbor some actionable mutations. In
patients harboring RET fusions, selective RET inhibition has
already shown clinical benefit in case reports and the basket cohorts
of the selective RET trials (65, 66).

The presence of significantly co-altered genes within RET fusion-
positive NSCLC samples may also provide insight into future direc-
tions in overcoming treatment resistance and a combination approach
to improve outcomes in this patient population (58, 59, 61). It will also
be important to follow the significance of RET amplifications regard-
ing response to RET inhibition for various cancers. Roughly 6% ofRET
amplifications were found in samples defined as carcinoma of
unknown primary (CUP), which have previously been shown to
benefit from tumor-agnostic treatment strategies (67). For example,
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the addition of either selpercatinib or pralsetinib to treatment com-
bination could play a role in improving outcomes for patients with
CUP.

The identification of highly targetable genomic events within
cancers and the ability for novel agents to inhibit the consequence

of the genomic insult has proven to be beneficial in a multitude of
tumor histologies. The presence of RET alterations within a diverse
cohort of tumors aswell as co-alteredmutations inRET fusion-positive
NSCLC may further inform rational treatment strategies and clinical
trial design.
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Figure 3.

A, Distribution of RET aberrations (excluding fusions) in AACR Genie database. Distribution of frequency of RET alterations in AACR distributed by tumor histology,
correlates with Supplementary Table S2.B,Distribution ofRET fusions in AACRGenie database. Distribution of frequency of RET fusions in AACR distributed by type
of fusion.
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