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Abstract: The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can
be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog
conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in
different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different
types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug,
decreased the magnitude of Ih’s Hys(V) activated by triangular Vramp, while dexmedetomidine, an
agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih.
Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih’s Hys(V) strength,
which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated
biphenyl compound, decreased Ih’s Hys(V). Cell exposure to lutein, a xanthophyll carotenoid,
resulted in a reduction of Ih’s Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102,
isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular
Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively
decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was
found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by
long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by
triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct
loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide,
or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further
addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current.
Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting
the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators
on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected
to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or
in vivo.

Keywords: voltage-dependent hysteresis; hyperpolarization-activated cation current; erg-mediated
K+ current; M-type K+ current; L-type Ca2+ current; persistent Na+ current; small-molecule modulators

1. Introduction

Previous electrophysiological measurements with voltage-clamp maneuvers have
used rectangular waveforms with varying durations of command voltages to evoke dif-
ferent types of voltage-gated ionic currents in attempts to evaluate the quasi-steady-state
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relationship of current versus voltage in specified ionic currents. However, recent investiga-
tions have revealed that through efficient data acquisition with digital-to-analog conversion,
the voltage-clamp protocol with different waveforms (e.g., triangular ramp voltage (Vramp))
can be specifically designed and exploited, and as whole-cell configuration was established,
the voltage protocol can be thereafter applied to the tested cells. As a result, the non-linear
relationship of current trace versus membrane potential (i.e., voltage-dependent hysteresis
(Hys(V)) can be activated. Such voltage dependence of different ionic currents can shift to
either negative or positive potentials following activation, displaying a behavior analogous
to that of ferromagnetic materials [1,2]. Of note, the Hys(V)’s phenomenon residing in differ-
ent types of transmembrane ionic currents has been viewed to be linked to conformational
changes in the voltage sensor of the channel specified, and it has been also demonstrated to
play an essential role in influencing the electrical behaviors of variable excitable cells [2].

In this review article, we intended to demonstrate that several intriguing small
molecules interact with different types of transmembrane ionic currents to alter the behavior
of Hys(V). The non-equilibrium Hys(V) properties residing in different types of ionic currents
were mostly activated by the upright or inverted isosceles-triangular Vramp through digital-
to-analog conversion. The ionic currents involved include hyperpolarization-activated
cation current (Ih), erg-mediated K+ current (IK(erg)), M-type K+ current (IK(M)), L-type Ca2+

current (ICa,L), and persistent Na+ current (INa(P)) (Table 1). The Hys(V) occurrence induced
during triangular Vramp is thought to reflect that a mode shift during channel activation
may exist since the voltage sensitivity of the gating charge movement relies on the previous
state (conformation) of the channel involved [2]. Several small-molecule modulators have
been found to regulate the Hys(V) strength occurring in different types of ionic currents
(Table 1).

Table 1. Summary in the perturbations of the known small-molecule modulators on voltage-
dependent hysteresis (Hys(V)) behavior occurring in different types of ionic currents present in
excitable cells (e.g., pituitary GH3 lactotrophs).

Associated Ionic Currents Small Molecules

hyperpolarization-activated cation
current (Ih)

pirfenidone, oxaliplatin, lutein,
dexmedetomidine, honokiol

erg-mediated K+ current (IK(erg)) UCL-2077, SM-102, isoplumbagin, plumbagin

M-type K+ current (IK(M)) remdesivir, QO-58

L-type Ca2+ current (ICa,L) zingerone

persistent Na+ current (INa(P))
esaxerenone, tefluthrin, t-butyl hydroperoxide,

mirogabalin, and dapagliflozin

2. Hys(V) Behavior Residing in Hyperpolarization-Activated Cation Current (Ih)

2.1. Pirfenidone (Esbriet®, 5-Methyl-1-Phenylpyridin-2[H-1]-One)

The magnitude of Ih (or funny current [If]) has been viewed to be a notable deter-
minant of repetitive electrical activities inherently in heart cells and various excitable
cells [3–9]. This type of ionic current is characterized by a mixed inward Na+/K+ cur-
rent with a slowly activating property during long-lasting membrane hyperpolarization.
Pirfenidone is thought to act by interfering with the production of transforming growth
factor-β and tumor necrosis factor-α and it is a new anti-fibrotic drug for idiopathic pul-
monary fibrosis [10]. Of note, a recent paper has convincingly demonstrated the ability of
pirfenidone to produce a reduction in the Hys(V)’s strength of Ih evoked by long-lasting
inverted triangular Vramp [11,12]. In other words, there was a substantial reduction in ∆area
of Ih’s Hys(V) loop encircled by the forward and backward limbs of the inverted double
Vramp. The experimental results thus suggest that cell exposure to pirfenidone can diminish
such Hys(V) entailed in the voltage-dependent elicitation of Ih. The inhibitory effect of
pirfenidone on Ih was also accompanied by substantial depression in the magnitude of
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sag voltage elicited by hyperpolarizing current stimulus as observed under current-clamp
potential recordings. However, neither the amplitude of IK(M) nor IK(erg) was altered by the
presence of this compound. Therefore, these results highlight evidence that pirfenidone is
capable of perturbing the magnitude, gating kinetics, and Hys(V) properties of Ih, thereby
revealing a potential additional impact on the functional activities (e.g., discharge patterns)
of different excitable cells.

2.2. Dexmedetomidine

Dexmedetomidine, a lipophilic imidazole derivative, is a potent and selective ag-
onist of α2-adrenergic receptors [13]. This drug has been disclosed to exert a variety
of actions on the human brain such as sedation, anesthetic sparing effects, and analge-
sia [13,14]. A recent investigation has shown that dexmedetomidine could perturb on the
non-equilibrium property of Ih in response to triangular Vramp found in GH3 cells [15]. The
presence of this agent was found to diminish such Hys(V) linked to the voltage-dependent
elicitation of Ih. However, further application of yohimbine, dexmedetomidine failed to
attenuate dexmedetomidine-mediated reduction in the Hys(V)’s area of Ih. Yohimbine is
an antagonist of α-adrenergic receptors. As such, the inhibition of Ih’s Hys(V) caused by
dexmedetomidine is not associated with a mechanism highly linked to its interaction with
α2-adrenergic receptors, although pituitary cells were previously demonstrated to express
those receptors [16]. It has been reported that HCN2, HCN3, or mixed HCN2+HCN3
channels are intrinsically expressed in GH3 cells or other types of endocrine or neuroen-
docrine cells [4,5,17,18]. Because of the importance of Ih (i.e., HCNx-encoded currents)
in contributing to the excitability and automaticity in different excitable cells [3,4,7,17,18],
findings from this study could provide additional but important insights into electrophysi-
ological and pharmacological properties of dexmedetomidine or other structurally similar
compounds (e.g., medetomidine). Dexmedetomidine that viably and directly targets ionic
channels [15,19] is therefore expected to have a significant therapeutic potential. However,
whether dexmedetomidine-induced bradycardia or different cardioprotective action [20]
is pertinent to its inhibitory effect on the magnitude and Hys(V) of Ih intrinsically in heart
cells warrants further investigations.

2.3. Oxaliplatin

Oxaliplatin (Eloxatin®) belongs to a family of platinum-based chemotherapeutic com-
pounds. Despite the fair safety profile,prolong treatment of oxaliplatin could induce severe
peripheral neuropathy, affecting sensory and motor nerve fibers [21–25]. In agreement
with previous observations [26,27], the Ih natively existing in GH3 cells was demonstrated
to undergo either a Hys(V) change, or a mode shift in situations where the voltage sen-
sitivity in gating charge movements of the current depends on the previous state of the
channel [7,11,12]. Recent investigations have clearly demonstrated that the presence of
oxaliplatin was capable of enlarging such Hys(V)’s ∆area involved in the voltage-dependent
elicitation of Ih [11]. Furthermore, subsequent addition of ivabradine, but still in the contin-
ued presence of oxaliplatin, could attenuate oxaliplatin-mediated increase in the ∆area of
Hys(V) in response to triangular Vramp [11]. Ivabradine has been reported to be an inhibitor
of Ih [18,28–30]. Therefore, the oxaliplatin actions occurring in vivo are not exclusively
connected to the formation of platinum-DNA adducts. The perturbations by oxaliplatin
on Hys(V) change of Ih is thus another intriguing mechanism, through which it or other
structurally related compounds can interfere with cell behaviors, particularly in electrically
excitable cells [21–23,25].

2.4. Honokiol

Honokiol, a hydroxylated biphenyl compound obtained from Magnolia officinalis
and from other species of the family Magnoliaceae, has been used in traditional Asian
medicine [31]. In a recent study, the authors exploited a long-lasting triangular Vramp for
the measurement of the Hys(V) properties in Ih. In this study, as whole-cell configuration
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was achieved, it is clear that the trajectory of Ih in response to the upsloping (i.e., depolar-
izing from −150 to x40 mV) and downsloping (hyperpolarizing from −40 to −150 mV)
Vramp as a function of time was distinguishable between these two limbs of triangular
Vramp [11,12,26,32]. Importantly, honokiol was capable of diminishing Hys(V)’s strength
involved in the voltage-dependent activation of Ih. Moreover, with the continued presence
of honokiol, the further application oxaliplatin could attenuate honokiol-mediated decrease
of the ∆area of the Hys(V) in response to triangular Vramp. Oxaliplatin was previously
reported to enhance the Hys(V) strength of Ih [11,12,30]. However, although the voltage
ranges in which Ih activation occurs, either in control conditions or after the honokiol
treatment, appear to fall outside of the values of the membrane in a neuron, it needs to be
noted that a small fraction of Ih is tonically activated at rest [33]. Moreover, since the macro-
scopic Ih in GH3 cells could be a mixture of several channel currents (i.e., HCNx-encoded
current), whether honokiol can affect either Ih existing in a variety of cells or different
types of Ih remains to be rigorously evaluated. The extent to which the honokiol-induced
inhibition of Ih along with its perturbations on Hys(V) contributes to anti-inflammatory or
antinociceptive action [25,34,35] is yet to be explored.

2.5. Lutein (Xanthophyll, β,ε-Carotene-3,3′-Diol or 3,3′-Di-Hydroxy-β,α-Carotene)

The Hys(V) properties of Ih activated by triangular Vramp were known to perturb the
electrical behaviors of various excitable cells [6,26,30]. Voltage-sensing domain relaxation
in the channel proteins (e.g., HCNx channels) has been noticed to involve in such Hys(V)
behavior [26,36]. Alternatively, the observed “inertia” in the responsiveness of HCNx chan-
nels can be driven by changes in their electrical sensitivity, which is presumably allowed to
resemble that occurring in ferromagnetic materials displaying Hys(V) behaviors [1,2]. Of
notice, the Ih intrinsically residing in GH3 cells underwent a non-equilibrium property of
instantaneous Ih. That is, there appears to be an anti-clockwise Hys(V) loop responding
to the isosceles-triangular Vramp as demonstrated in Figure 1A. Such perturbations have
been viewed to be dynamically linked to a mode shift in situations where the voltage
sensitivity of gating charge movements (i.e., voltage-sensing domain relaxation) depends
on the previous state (or conformation) of the channel (e.g., HCNx channel). Of additional
interest, GH3-cell exposure to lutein resulted in a significant reduction in Hys(V) strength of
Ih evoked by long-lasting inverted triangular Vramp (Figure 1A,B). Upon continued expo-
sure to lutein (3 µM), the subsequent addition of oxaliplatin (10 µM) was able to attenuate
lutein-mediated decrease in the ∆area of Ih’s Hys(V) observed in these cells. Oxaliplatin, a
platinum-based anti-neoplastic agent, has been demonstrated to be an activator of Ih [11,23].
The presence of lutein effectively suppressed the magnitude of Ih in pituitary GH3 cells
with an IC50 value of 4.1 µM. Under current-clamp potential recordings, the sag potential
evoked by long-lasting hyperpolarizing current stimulus also became reduced during cell
exposure to this compound [37]. Lutein is one of the few xanthophyll carotenoids which
exist not only in vegetables and fruits, but is also enriched in the macular of the human
retina [38].

Moreover, based on the docking prediction, it is likely that the interaction of the lutein
molecules with HCN channels could be located at the cytosolic side of the membrane [37].
Lutein may thus bind to the HCNx channels and interfere with channel gating to alter
the magnitude, gating and Hys(V) of Ih. Findings from these recent reports tempt us to
propose that the Ih present in different cell types could thus be unidentified, but the lutein
molecules can act through distinctive targets to affect the functional activities of the cells
involved. Nonetheless, lutein-mediated decrease in the Hys(V)’s area is thought to be
strongly linked to the voltage-dependent elicitation of HCN channel [7,27,36]. However,
either whether the lutein molecules can interact mainly with the voltage-sensing domains
of HCNx channels [7] to alter Hys(V) strength of the channel, or how lutein-mediated
changes in the Hys(V)’s strength influence the functional activities (e.g., electrical behaviors)
in variable excitable cells, still remains to be explored.
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Figure 1. Effect of lutein and lutein plus oxaliplatin on Hys(V) of Ih measured from pituitary GH3 
cells. The experiments were conducted in cells bathed in Ca2+-free Tyrode’s solution, and the record-
ing pipette was filled up with K+-containing solution. The tested cell was held at −40 mV and the 
inverted isosceles-triangular Vramp from −40 to −150 mV with a duration of 3.2 s (or ramp speed of 
±69 mV/s) was thereafter applied to evoke Ih’s Hys(V). (A) Representative Hys(V)’s traces of Ih (i.e., the 
relation of forward [descending] or backward [ascending] current versus membrane potential). a: 
control (blue color); b: 3 μM lutein (red color); and c: 3 μM lutein plus 10 μM oxaliplatin (green 
color). Inset indicates the voltage protocol imposed. The black dashed arrows underneath the cur-
rent traces in the control period (i.e., neither lutein nor oxaliplatin was present) indicate Ih trajectory 
in an anti-clockwise direction when time passes during the inverted triangular Vramp. (B) Summary 
graph disclosing effects of lutein (3 μM) and lutein (3 μM) plus oxaliplatin (10 μM) on the ∆area of 
Ih’s Hys(V) (i.e., the curves encircled by Ih’s Hys(V) activated during the descending and ascending 
limb of the triangular Vramp). * Significantly different from control (p < 0.05) and ** significantly dif-
ferent from lutein (3 μM) alone group (p < 0.05). 
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Figure 1. Effect of lutein and lutein plus oxaliplatin on Hys(V) of Ih measured from pituitary GH3 cells.
The experiments were conducted in cells bathed in Ca2+-free Tyrode’s solution, and the recording
pipette was filled up with K+-containing solution. The tested cell was held at −40 mV and the
inverted isosceles-triangular Vramp from −40 to −150 mV with a duration of 3.2 s (or ramp speed of
±69 mV/s) was thereafter applied to evoke Ih’s Hys(V). (A) Representative Hys(V)’s traces of Ih (i.e.,
the relation of forward [descending] or backward [ascending] current versus membrane potential).
a: control (blue color); b: 3 µM lutein (red color); and c: 3 µM lutein plus 10 µM oxaliplatin (green
color). Inset indicates the voltage protocol imposed. The black dashed arrows underneath the current
traces in the control period (i.e., neither lutein nor oxaliplatin was present) indicate Ih trajectory in an
anti-clockwise direction when time passes during the inverted triangular Vramp. (B) Summary graph
disclosing effects of lutein (3 µM) and lutein (3 µM) plus oxaliplatin (10 µM) on the ∆area of Ih’s
Hys(V) (i.e., the curves encircled by Ih’s Hys(V) activated during the descending and ascending limb
of the triangular Vramp). * Significantly different from control (p < 0.05) and ** significantly different
from lutein (3 µM) alone group (p < 0.05).

Additionally, HCN channels have been previously demonstrated to be linked to
phototransduction in photosensitive retinal ganglion cells [39]. Its activity was found
either to alter the electroretinographic ON and OFF responses or to delay photoreceptor
degeneration [40]. To what extent lutein-mediated changes in Hys(V) behavior of Ih is
associated with its action on age-related diseases (e.g., macular degeneration) [41] still
needs to be further determined.

3. Hys(V) Behavior Residing in Erg-Mediated K+ Current (IK(erg))
3.1. UCL-2077 (3-(Triphenylmethylaminomethyl)pyridine))

The IK(erg) encoded by three different subfamilies of the gene KCNH is known to
give rise to the pore-forming α-subunit of erg-mediated K+ (i.e., Kerg or KV11) channels.
These macroscopic currents are regarded to constitute the cloned counterpart of the rapidly
activating delayed-rectifying K+ currents in heart cells, where the KCNH2 gene encodes
the pore-forming α-subunit of the KV11.1 channels, commonly identified as hERG [42,43].
These currents inherently existing in neurons or in different types of electrically excitable
cells, such as endocrine or neuroendocrine cells, can highly influence the maintenance of
the resting potential as well as the increase in subthreshold excitability [44,45]. In GH3
cells bathed in Ca2+-free high-K+ solution, as whole-cell configuration in the patch-clamp
current recordings was established, the examined cell was hyperpolarized from −10 to
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long-lasting hyperpolarization (e.g., 1 s) and the deactivating IK(erg) with a slowly decaying
time course can be robustly elicited [30,44,46]. Moreover, the Hys(V) properties present in
IK(erg) have been proposed to play a role in influencing the electrical behavior of excitable
cells. In an earlier study, consistent with previous observations in HCN channels [26,27,36],
Kerg channels inherently existing in GH3 cells were noticed to undergo either a Hys(V)
in their voltage dependence or a mode-shift, in which the voltage sensitivity of gating
charge movements depends on the previous state [47,48]. The IK(erg)’s Hys(V) reflects that a
mode shift during channel activation may exist because the voltage sensitivity of the gating
charge movement depends on the previous state (conformation) of Kerg channels. Under
such a scenario, when the membrane potential becomes negative (i.e., the downward limb
of the inverted triangular Vramp), the voltage dependence of Kerg channel may shift the
mode of Hys(V) to one which occurs at more negative potentials, thereby leading to an
increase in membrane repolarization. However, as the membrane potential is depolarized
(i.e., during initiation of action potentials or upward end of the triangular Vramp), the
voltage-dependence of IK(erg) activation would quickly switch to less depolarized voltages
with a smaller current magnitude, thereby having the tendency to increase membrane
excitability [47]. The experimental results also revealed that the presence of UCL-2077
was able to decrease Hys(V)’s strength of Ih elicitation by triangular Vramp [48]. Although
the underlying mechanism of neuronal slow after-hyperpolarization is currently unclear,
previous studies demonstrated that the ability of UCL-2077 in slow modification after-
hyperpolarization [49] could be, partly if not entirely, attributed to its modifications on the
magnitude, gating kinetics, and Hys(V) behavior of Vramp-induced IK(erg).

3.2. SM-102 (1-Octylnonyl 8-[(2-Hydroxyethyl)[6-oxo-6(Undecyloxy)hexyl]amino]-Octanoate)

SM-102 is a synthetic and ionizable amino lipid that has been widely used in com-
bination with other lipids in the formation of lipid nanoparticles [50–52]. Formulations
containing SM-102 have been noticeably used in the development of lipid nanoparticles
for the delivery of mRNA-based vaccines. For example, SM-102 is known to be one of
the ingredients in the ModernaTM COVID-19 vaccine [52]. Recent investigations have also
disclosed that the strength of Hys(V) of IK(erg) elicited by the upright isosceles-triangular
Vramp was profoundly decreased as cells were exposed to SM-102 or TurboFectinTM [53].
TurboFectinTM is a proprietary mixture of a broad-spectrum protein/polyamine with his-
tones and lipids, which is known to be a transfection reagent. Moreover, with continued
exposure to SM-102 or TurboFectinTM, further application of PD118057 was able to attenu-
ate the inhibition by these two agents on IK(erg)’s strength activated during the triangular
Vramp. PD118057 was previously reported to be an activator of IK(erg) [54]. The magnitude
of inwardly rectifier K+ currents inherently in BV2 microglial cells was also subjected to
be inhibited by SM-102. In sum, SM-102 concentration-dependently suppressed IK(erg)
magnitude in endocrine cells (e.g., GH3 or MA-10 cells) along with the decrease of Hys(V)’s
strength of the current [53]. These above actions are thus anticipated to contribute to their
functional effects on different cell types, presumably similarly affected in vitro or in vivo.

3.3. Isoplumbagin (5-Hydroxy-3-Methyl-1,4-Naphthoquinone) and Plumbagin
(5-Hydroxy-2-Methyl-1,4-Naphthoquinone)

Isoplumbagin is a naturally occurring quinone from Lawsonia inermis or Plumbago
europaea, while plumbagin, another hystodyl-1,4-naphthoquinone, is an alkaloid obtained
from the roots of the plants of the Plumbago genus. Isoplumbagin and plumbagin have re-
cently been demonstrated to exert anti-neoplastic activity against an array of cancers [55,56].
Earlier studies have revealed that the IK(erg) residing in GH3 cells did undergo Hys(V) be-
havior activated during the inverted isosceles-triangular Vramp, reflecting that the Kerg
channels in these cells display a clear Hys(V) in the voltage dependence, which is closely
linked to the voltage sensor domain inherently in the channel [48,53,57]. Moreover, upon
cell exposure to isoplumbagin or plumbagin, the ∆area (i.e., the area encircled by the Hys(V)
curves elicited by the descending and ascending direction) of IK(erg)’s Hys(V) during the in-
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verted triangular Vramp was markedly reduced [57]. Isoplumbagin was also demonstrated
to suppress IK(erg) magnitude in MA-10 Leydig tumor cells [57]. Therefore, the inhibition by
isoplumbagin or plumbagin of IK(erg)’s magnitude and Hys(V)’s strength would be expected
to have an important impact on the discharge patterns of actions potentials occurring in
excitable cells. Docking results have additionally shown that there appears to be a predicted
interaction (i.e., the formation of hydrogen bond and hydrophobic contacts) between the
isoplumbagin or plumbagin molecule and hERG channel [57]. In this regard, isoplumbagin,
plumbagin, or other structurally similar compounds [58] could be intriguing compounds
useful for characterizing the Kerg channels. Moreover, it remains to be studied whether this
ionic mechanism of their actions on IK(erg) described presently can be closely linked to their
actions on either functional activities or aberrant growth of different neoplastic cells [59,60].

4. Hys(V) Behavior Residing in M-Type K+ Current (IK(M))
4.1. Remdesivir (Development Code: GS-5734)

It has been shown that the KCNQ2, KCNQ3, or KCNQ5 encodes the core subunit
of KV7.2, KV7.3, or KV7.5 channels. The enhanced activity of this family of K+ channels
(KCNQx, KV7x, or KM [M-type K+] channels) can generate macroscopic M-type K+ cur-
rent (IK(M)) [30,61–63]. Once evoked during membrane depolarization, the currents have
been disclosed to exhibit a slowly activating and deactivating property as well as to af-
fect the bursting patterns in different types of neurons, endocrine and neuroendocrine
cells [30,63–65]. Remdesivir, a broad-spectrum antiviral agent, is recognized as a mono-
phosphoramidate prodrug of an adenosine analog that metabolizes into its active form
GS-441524 which is a C-adenosine nucleoside analog [66]. This compound, a nucleotide-
analog inhibitor of RNA-dependent RNA polymerase, is thought to be highly active against
coronaviruses (CoVs), including MERS-Cov and SARS CoV-2 [67]. The recent investigations
have disclosed that remdesivir could suppressed the magnitude of IK(M) in pituitary GH3
cells [68]. Moreover, the magnitude of IK(M)’s Hys(V) elicited by long-lasting triangular
Vramp was diminished by adding remdesivir. In Jurkat T-lymphocytes, remdesivir could
effectively decrease the amplitude of delayed-rectifier K+ current concomitantly with the
raised rate of current inactivation evoked by step depolarization. As such, in terms of the
remdesivir molecule itself, there seems to be an unintentional activity of the prodrug on
IK(M). The perturbing effects of remdesivir on membrane ionic currents were noted to be
rapid in onset, and they should be upstream of its actions occurring inside the cytosol
or nucleus. Its inhibition of IK(M)’s Hys(V) emerging in a non-genomic fashion might pro-
vide additional but important mechanisms through which in vivo cellular functions are
perturbed.

4.2. QO-58 (5-(2,6-Dichloro-5-Fluoropyridin-3-yl)-3-Phenyl-2-(Trifluoromethyl)-1H-
Pyrazolol[1,5-a]pyrimidin-7-One)

The Hys(V) behavior of ionic currents has been recently noticed to exert important
impacts on electrical behaviors of action potential firing [26,27,62,63]. The IK(M) intrinsically
residing in GH3 cells was robustly observed to undergo Vramp-induced Hys(V) [65], suggest-
ing that the voltage sensitivity of gating charge movements relies on the previous state (or
conformation) of the M-type K+ (KM) channel. Alternatively, as the membrane potential of
the cell becomes depolarized (i.e., during initiation of an action potential or the upsloping
limb of the triangular Vramp), the voltage dependence of IK(M) activation would switch to
less depolarized voltage with a small current magnitude, thereby causing the depression
of membrane excitability. However, as the membrane potential becomes negative (i.e.,
downward Vramp), the voltage dependence of KM channels may shift the mode of Hys(V) to
one which occurs at more negative potentials, thereby resulting in an increase in membrane
repolarization. Moreover, upon triangular Vramp with varying durations, QO-58 increased
the Hys(V)’s strength of IK(M) [65]. QO-58 has been demonstrated previously to be an
opener of KCNQx (KV7x) channels [65,69,70]. In this regard, the experimental observations
led to the notion that there would be a perturbing stimulatory effect of QO-58 on such
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non-equilibrium property (i.e., non-linear Hys(V) behavior) in KM (or KV7) channels in
electrically excitable cells. However, how QO-58-induced modifications on IK(M)’s Hys(V)
are linked to the behavior of these cells occurring in vivo remains to be further resolved.

5. Hys(V) Behavior Residing in L-Type Ca2+ Current (ICa,L)
Zingerone (Ginerone, Vanillylacetone)

Zingerone is a nontoxic methoxyphenol isolated from the rhizome of ginger (Zingiber
officinale Roscoe), and it has been used as a flavor additive in spiced oils and in perfumery
to introduce exotic aromas. It is widely viewed to have potential anti-inflammatory, anti-
diabetic, antilipolytic, antidiarrheal, antispasmodic, and anti-tumor properties [71]. In a
recent study, pituitary GH3 cells were kept in normal Tyrode’s solution containing 1.8 mM
CaCl2, and when an abrupt double Vramp was applied to the tested cell, there appeared a
Hys(V) loop with a figure-of-eight pattern of L-type Ca2+ current (ICa,L) [72]. The Hys(V)
properties of ICa,L are noted to be distinguishable from those described above in either Ih,
IK(erg) or IK(M) evoked by triangular Vramp. In other words, the trajectory of the instanta-
neous current induced by Vramp revealed two loops, namely, a high-threshold anticlockwise
and a low-threshold clockwise loop, during Hys(V) elicitation. However, as extracellular
Ca2+ was replaced with Ba2+ ions, the low-threshold current at the downsloping phase of
triangular Vramp diminished, whereas the high-threshold current at the upsloping end of
Vramp became increased. The formation of a low-threshold clockwise loop was thought
to be attributed either to the magnitude of the Ca2+-activated nonselective cationic cur-
rents or the late component of ICa,L [73,74]. Consequently, the replacement of Ca2+ ions
with Ba2+ ions increased the amplitude of ICa,L (i.e., barium inward current, IBa) activated
by rectangular depolarization from −50 to +10 mV, in combination with a conceivable
slowing in inactivation process of the current. However, the Hys(V) of the current ac-
tivated by the double Vramp was reduced during the high-amplitude loop of Vramp, as
well as it was concurrently increased at the low-amplitude loop [72]. Of additional note,
as cells were exposed to zingerone, the area (encircled by ICa,L’s Hys(V)) of both high-
and low-threshold loop of ICa,L activated by the Vramp were markedly reduced. Whether
zingerone-mediated inhibition of ICa,L accompanied by the decreased Hys(V) strength of
the current can be responsible for its potential to attenuate seizure activity [75,76], remains
to be further evaluated.

6. Hys(V) Behavior Residing in Persistent Na+ Current (INa(P))

6.1. Esaxerenone (Minnebro®)

Esaxerenone, known to be a newly oral, non-steroidal selective blocker on the activity
of mineralocorticoid receptor, has been growingly used for the management of various
pathological disorders, such as primary aldosteronism, refractory hypertension, chronic
kidney disease, diabetic nephropathy, and heart failure [77–79]. In a recent investigation,
the addition of esaxerenone to pituitary GH3 cells suppressed the transient (INa(T)) and
late component (INa(L)) of INa with effective IC50 of 13.2 and 3.2 µM, respectively [80].
Furthermore, the non-linear Hys(V) of Vramp-induced INa(P) in the control period (i.e.,
neither tefluthrin nor esaxerenone was present) and during cell exposure to tefluthrin or
tefluthrin plus esaxerenone was observed by the upright isosceles-triangular Vramp with
varying durations. In particular, when cells were exposed to 10 µM tefluthrin, the peak
INa(P) amplitude activated at the forward (upsloping) limb of the triangular Vramp was
noted to increase, particularly at the level of −30 mV, whereas the INa(P) amplitude at
the backward (downsloping) end at −80 mV arose. In this regard, distinguishable from
Hys(V) configuration present in Ih, IK(erg) and IK(M) elaborated above, the instantaneous
figure-of-eight (i.e., infinity-shaped: ∞) configuration residing in the Ih’s Hys(V) loop
during upright triangular Vramp appeared. These results indicate that, as the time goes
by during activation, there is a counterclockwise direction in the high-threshold loop (i.e.,
the relationship of current amplitude as a function of membrane potential), followed by
a clockwise direction in the low-threshold loop. Consequently, in the presence of 10 µM
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tefluthrin, the figure-of-eight configuration in the Hys(V) loop elicited by the triangular
Vramp was demonstrated and further enhanced. Tefluthrin, a type-I pyrethroid insecticide,
has been previously demonstrated to be an activator of INa accompanied by the slowed
inactivation of the current [81–83]. In other words, there appeared to be the two distinct
types of INa(P), i.e., low-threshold (i.e., activating at a voltage range near the resting potential
of the cell) and high-threshold loop (i.e., activating at a voltage range near the maximal INa
achieved), clearly observed ruing cell exposure to tefluthrin. Of note, the low-threshold
INa(P) was identified to be activated (at the voltage range near the resting potential) upon
the downsloping end of the triangular ramp pulse. However, the high-threshold INa(P) (at
the voltage range where peak INa(T) was maximally activated) was by the upsloping end
of such Vramp. As the ramp speed decreased with a lowering in peak Vramp, the area of
such Hys(V) became progressively reduced. Therefore, finding from these results revealed
that the INa(P) elicited by triangular Vramp was observed to undergo Hys(V) changes in the
voltage-dependence found in GH3 cells [80].

In an earlier study, as GH3 cells were exposed to tefluthrin, the voltage-dependent
movement of S4 segment residing in NaV channels could be perturbed; as a result, the
coupling of the pore domain to the voltage-sensor domain was enhanced [83]. Such unique
type of Hys(V) behavior inherently in NaV channels would potentially play substantial role
either in influencing electrical behaviors, Na+ overload due to an excessive Na+ influx, or in
hormonal secretion in various types of excitable cells during exposure to pyrethroid insecti-
cides (e.g., tefluthrin or other structurally similar synthetic pyrethroids [e.g., deltamethrin,
metofluthrin, and permethrin]). Additionally, the subsequent addition of esaxerenone,
but still during continued exposure to tefluthrin, was noted to result in a marked attenua-
tion of Hys(V) strength responding to triangular Vramp [80]. The results presented herein
are interesting, and they hence led us to propose that, in concert with its antagonistic
action of mineralocorticoid receptor, the exposure to esaxerenone may directly modify
the magnitude, gating properties, and Hys(V) strength of INa present in different excitable
cells. It also needs to be mentioned that the activity of NaV channels has been found to be
functionally expressed in various types of vascular smooth muscles [84,85]. Therefore, it
is worth pursuing to a further extent as to which esaxerenone-induced antihypertensive
action [78,79] is associated with its additional inhibitory action on INa (i.e., NaV1.7-encoded
current) inherently in vascular smooth myocytes.

In this study, we also explored how the protein of the hNaV1.7 channel could be opti-
mally docked with the tefluthrin molecule by using PyRx software. The protein structure
of hNaV1.7 was obtained from RCB PDB (ID: 5EK0) [86]. The predicted docking sites of
the tefluthrin molecule with which the amino acid residues can interact are presented in
Figure 2. It is thus important to note that the tefluthrin molecule may form hydrophobic
contacts with certain amino-acid residues, including Thr1678(B), Leu1679(A), Leu1679(C),
Leu1679(D), Glu1680(D), Ser1681(D), and Px41804(B) (what is this?). The atom in the
tefluthrin molecule has a hydrogen bond with residue Thr1709(C) at a distance of 3.23 Å. On
the basis of the NaV1.7 [Antrozous pallidus] protein sequence (GenBank: ASY-04966.1, https:
//www.ncbi.nlm.nih.gov/protein/ASY04966.1?report=gpwithparts&log$=seqview, ac-
cessed on 21 August 2022), the inactivation gate of the channel is found to be located at
the residue positions ranging between 1459 and 1462, which are adjacent to the docking
sites of the tefluthrin molecule. These docking results therefore tempted us to propose that
the tefluthrin molecule can dock to the transmembrane segment (position: 1665–1683) of
hNaV1.7 channel (PDB: 5EK0) with a binding affinity of −7.5 kcal/mol, thereby potentially
influencing the magnitude, gating kinetics, and Hys(V) strength of INa.

https://www.ncbi.nlm.nih.gov/protein/ASY04966.1?report=gpwithparts&log$=seqview
https://www.ncbi.nlm.nih.gov/protein/ASY04966.1?report=gpwithparts&log$=seqview
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Figure 2. Docking results of the hNaV1.7 channel and the tefluthrin molecule. The protein structure
of hNaV1.7 was acquired from RCB PDB (ID: 5EK0), whereas the chemical structure of tefluthrin was
from PubChem (compound CID: 5281874 [3D conformer]). The structure of the hNaV1.7 channel
was docked by the tefluthrin molecule in PyRx software (http://pyrx.sourceforge.io/) (accessed on
26 July 2022). Diagram of the interaction between the hNaV1.7 channel and the tefluthrin molecule
generated by LigPlot+ (http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/) (accessed on
26 July 2022). Note that the red arcs on which spokes faced radiating toward the ligand (i.e., tefluthrin)
represent hydrophobic interactions, while green dotted line residing in amino-acid residue (i.e.,
Thr1708(C)) is the formation of a hydrogen bond.

6.2. Mirogabalin

Mirogabalin (Tarlige®) is an orally administered gabapentinoid, and it was thought
to be a selective ligand for the α2δ-1 subunit of voltage-gated Ca2+ channels [87]. More
notable than the issue concerning the magnitude of mirogabalin-induced reduction in INa,
is the current observation of the non-linear Hys(V) of INa(P) elicited by using the upright
isosceles-triangular Vramp in pituitary GH3 lactotrophs [88]. The presence of mirogabalin
in GH3 cells caused a concentration-dependent inhibition of INa(T) and INa(L) amplitude
with the estimated IC50 value of 19.5 and 7.3 µM, respectively [88]. Moreover, during
cell exposure to mirogabalin, the peak INa(P) activated by the ascending (upsloping) limb
of the triangular Vramp became decreased, particularly at the level of −10 mV, while the
INa(P) amplitude at the descending (downsloping) phase was also concurrently reduced
at the level of −80 mV. As a result, there turned out to be two distinct types of Hys(V)
loop; that is, a high-threshold loop with a peak at −10 mV (i.e., activating at a voltage
range near the maximal amplitude of transient Na+ current (INa(T) evoked by brief step
depolarization), and a low-threshold loop with a peak at −80 mV (i.e., activating at a
voltage near the resting membrane potential). The application of mirogabalin was able to
attenuate the Hys(V) strength of INa(P) effectively [88]. Under this scenario, the observations
reveal that the triangular Vramp-induced INa(P) undergoes striking Hys(V) behavior with
the voltage dependence, and that such Hys(V) loops responding to triangular Vramp are
subjected to attenuation by adding mirogabalin. The Hys(V) behavior of INa(P) existing in
endocrine or neuroendocrine cells in vivo could be strongly linked to the magnitude of Na+

background currents, as reported previously [17,27,82,89–95]. Alternatively, genetic defects
(i.e., gain-of-function) in NaV channel inactivation that led to small, sustained INa(P), are
recognized to have devastating consequences, including neuropathic pain and convulsant
activity [89,90,94,96–98].

http://pyrx.sourceforge.io/
http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
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6.3. Dapagliflozin (Foxiga®)

Dapagliflozin is viewed to be a selective inhibitor of Na+-dependent glucose co-
transporter (SGLT) that can block glucose transport which is highly selective for SGLT2
over SGLT1 [99–101]. However, an earlier report has shown the capability of empagliflozin,
another structurally similar compound, in blocking cardiac late Na+ currents [102]. Of
additional notice, the recent observations at our laboratory found that further application
of dapagliflozin (10 µM) in the presence of tefluthrin (10 µM) could effectively and di-
rectly attenuate dapagliflozin-enhanced strength of INa(P)’s Hys(V) observed in GH3 cells
(Figure 3). Consistent with previous studies [102], dapagliflozin is effective at suppress-
ing INa as well as at decreasing the strength of INa(P)’s Hys(V) in response to the upright
isosceles-triangular Vramp.
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Figure 3. Effect of tefluthrin (Tef) and Tef plus dapagliflozin (Dapa) on Hys(V) loop of INa(P) in
pituitary GH3 lactotrophs. In these experiments, we placed cells in the Ca2+-free Tyrode’s solution
containing 10 mM tetraethylammonium chloride and 0.5 mM CdCl2, and the recording electrode
was filled with Cs+-enriched solution. (A) Representative current traces are activated by the upright
isosceles-triangular Vramp for a duration of 1.2 sec, or with a ramp speed of 125 mV/s (as indicated in
inset of left part). The blue color in the left and right part represents the current trace activated by the
ascending (upsloping) limb of the Vramp, the red color indicates the trace by the Vramp’s descending
(downsloping) end, and the purple dashed arrow adjacent to potential or current trace demonstrates
the direction of the potential or current over which time goes during the elicitation of the long-lasting
triangular Vramp. Of note, there is a unique Hys(V) loop (i.e., the figure of eight configuration) evoked
by the isosceles-triangular Vramp obtained in the presence of tefluthrin (Tef, 10 µM) or tefluthrin
plus dapagliflozin (Dapa, 10 µM). In (B,C), summary graphs, respectively, depict effects of Tef or Tef
plus Dapa on the amplitude of INa(P) activated by the upsloping (at −10 mV) and downsloping (at
−80 mV) limbs of the triangular Vramp (mean ± SEM; n = 8 for each point). * Significantly different
from control (p < 0.05), and ** significantly from Tef (10 µM) alone group (p < 0.05). Of note, the
magnitude appearing in (B,C) is indicated as the absolute value of current amplitude.
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The effect of t-butyl hydroperoxide, a hydrophilic oxidant, on Hys(V) of INa(P) was
also further examined. As demonstrated in Figure 4, upon cell exposure to 1 mM t-butyl
hydroperoxide, the Hys(V)’s strength (at the level of −10 and −80 mV) of INa(P) respond-
ing to triangular Vramp. Furthermore, during the continued presence of 1 mM t-butyl
hydroperoxide, further application of dapagliflozin (10 µM) was noticed to reverse t-butyl
hydroperoxide-mediated increase of Hys(V)’s strength. The results therefore reflect that,
consistent with previous investigations [102], the challenge of GH3 cells to t-butyl hydroper-
oxide increased Hys(V) magnitude of Vramp-induced INa(P) and the subsequent addition of
dapagliflozin counteracted its increase of Hys(V) strength.
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It has been demonstrated that the different NaV subtypes (isoforms) can combine to 
constitute macroscopic INa residing in varying types of excitable cells [103,104]. NaV1.1, 
NaV1.2, NaV1.3, and NaV1.6 channels were previously reported to be expressed in GH3 
cells [17]. As such, distinguishable to some extent from previous reports demonstrating 
the ability of empagliflozin, another SGLT2 inhibitor, in inhibiting the late component of 
cardiac-specific Na+ current [102], it seems unlikely that dapagliflozin-induced inhibition 
of INa inherently in native cells is isoform-specific. Nonetheless, the present results 
strongly reflect that inhibitory effect of dapagliflozin or other structurally similar com-
pounds (e.g., canagliflozin and empagliflozin) on INa, particularly INa(P), which may occur 
within the clinically therapeutic range, would be another obligate ionic mechanism 
through which they could converge to perturb the functional activities (e.g., electrical be-
haviors, Na+ influx, and glucose uptake) in different excitable cells. 

7. Conclusions 
As described above and in published studies, the experimental observations have 

revealed that several voltage-gated ion channels were found to undergo non-linear Hys(V) 
behavior elicited during triangular Vramp. A variety of small molecules (Table 1) known to 
modify the magnitude and gating of ionic currents (i.e., Ih, IK(erg), IK(M), ICa,L, and INa(P)) may 
pertinently perturb the Hys(V) behavior of the currents. The modifications of Hys(V) exerted 
by these small-molecule modulators are capable of potentially affecting the functional ac-
tivities of different excitable cells, presuming that the in-vivo findings occurred. 
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Figure 4. Effect of t-butyl hydroperoxide (TBHP) and TBHP plus dapagliflozin (Dapa) on Hys(V) loop
of INa(P) in pituitary GH3 lactotrophs. (A) Representative current traces activated by the triangular
Vramp for a duration of 1 s (or ramp speed of 320 mV/s) (as indicated in inset). Current trace shown
in black color is control (i.e., neither TBHP nor Dapa), while that in red or blue color was respectively
obtained in the presence of 1 mM TBHP, or 1 mM TBHP plus 10 µM Dapa. Two red and blue traces
indicate current trajectories, respectively, activated by the upsloping and downsloping end of the
Vramp. In (B,C), summary graphs, respectively, demonstrate effects of TBHP or TBHP plus Dapa on
the amplitude of INa(P) at the upsloping (−10 mV) and downsloping (−80 mV) ends of triangular
Vramp (mean ± SEM; n = 7 for each point). * Significantly different from control (p < 0.05), and
** significantly different from TBHP (1 mM) alone group (p < 0.05).

It has been demonstrated that the different NaV subtypes (isoforms) can combine to
constitute macroscopic INa residing in varying types of excitable cells [103,104]. NaV1.1,
NaV1.2, NaV1.3, and NaV1.6 channels were previously reported to be expressed in GH3
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cells [17]. As such, distinguishable to some extent from previous reports demonstrating
the ability of empagliflozin, another SGLT2 inhibitor, in inhibiting the late component of
cardiac-specific Na+ current [102], it seems unlikely that dapagliflozin-induced inhibition
of INa inherently in native cells is isoform-specific. Nonetheless, the present results strongly
reflect that inhibitory effect of dapagliflozin or other structurally similar compounds (e.g.,
canagliflozin and empagliflozin) on INa, particularly INa(P), which may occur within the
clinically therapeutic range, would be another obligate ionic mechanism through which
they could converge to perturb the functional activities (e.g., electrical behaviors, Na+

influx, and glucose uptake) in different excitable cells.

7. Conclusions

As described above and in published studies, the experimental observations have
revealed that several voltage-gated ion channels were found to undergo non-linear Hys(V)
behavior elicited during triangular Vramp. A variety of small molecules (Table 1) known
to modify the magnitude and gating of ionic currents (i.e., Ih, IK(erg), IK(M), ICa,L, and
INa(P)) may pertinently perturb the Hys(V) behavior of the currents. The modifications of
Hys(V) exerted by these small-molecule modulators are capable of potentially affecting the
functional activities of different excitable cells, presuming that the in-vivo findings occurred.
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