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Synthetic CT generation for
MRI-guided adaptive
radiotherapy in prostate cancer

Shu-Hui Hsu*, Zhaohui Han, Jonathan E. Leeman,
Yue-Houng Hu, Raymond H. Mak and Atchar Sudhyadhom

Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer
Institute, Boston, MA, United States
Current MRI-guided adaptive radiotherapy (MRgART) workflows require

fraction-specific electron and/or mass density maps, which are created by

deformable image registration (DIR) between the simulation CT images and

daily MR images. Manual density overrides may also be needed where DIR-

produced results are inaccurate. This approach slows the adaptive radiotherapy

workflow and introduces additional dosimetric uncertainties, especially in the

presence of the magnetic field. This study investigated a method based on a

conditional generative adversarial network (cGAN) with a multi-planar method

to generate synthetic CT images from low-field MR images to improve

efficiency in MRgART workflows for prostate cancer. Fifty-seven male

patients, who received MRI-guided radiation therapy to the pelvis using the

ViewRay MRIdian Linac, were selected. Forty-five cases were randomly

assigned to the training cohort with the remaining twelve cases assigned to

the validation/testing cohort. All patient datasets had a semi-paired DIR-

deformed CT-sim image and 0.35T MR image acquired using a true fast

imaging with steady-state precession (TrueFISP) sequence. Synthetic CT

images were compared with deformed CT images to evaluate image quality

and dosimetric accuracy. To evaluate the dosimetric accuracy of this method,

clinical plans were recalculated on synthetic CT images in the MRIdian

treatment planning system. Dose volume histograms for planning target

volumes (PTVs) and organs-at-risk (OARs) and dose distributions using

gamma analyses were evaluated. The mean-absolute-errors (MAEs) in CT

numbers were 30.1 ± 4.2 HU, 19.6 ± 2.3 HU and 158.5 ± 26.0 HU for the

whole pelvis, soft tissue, and bone, respectively. The peak signal-to-noise ratio

was 35.2 ± 1.7 and the structural index similarity measure was 0.9758 ± 0.0035.

The dosimetric difference was on average less than 1% for all PTV and OAR

metrics. Plans showed good agreement with gamma pass rates of 99% and

99.9% for 1%/1 mm and 2%/2 mm, respectively. Our study demonstrates the

potential of using synthetic CT images created with a multi-planar cGAN

method from 0.35T MRI TrueFISP images for the MRgART treatment of
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prostate radiotherapy. Future work will validate the method in a large cohort

of patients and investigate the limitations of the method in the

adaptive workflow.
KEYWORDS

MRI-guided therapy, adaptive radiotherapy, synthetic CT, deep learning,
prostate radiotherapy
1 Introduction

Online prostate adaptive radiotherapy allows for the

generation of an optimal treatment plan based on daily

changes to anatomy and has the potential to improve target

coverage and reduce the toxicity to the surrounding organs such

as rectum, bladder and urethra. Recently, the MR-linac

treatment modality offers on-board MR images with high soft

tissue contrast for improved tumor and normal tissue

delineation compared to standard cone-beam CT based

radiotherapy (1). Additionally, the system can deliver gated

treatment by monitoring the prostate or critical organ

positions to ensure high-precision treatment. Therefore, MRI-

guided adaptive radiotherapy (MRgART) can potentially

improve treatment outcomes by reducing inter-fraction and

intra-fraction uncertainties in prostate treatments (2–4).

Current clinical procedures in MRgART require CT image

acquisitions for dose calculations in treatment planning because of

the lack of electron/mass density information on MR images. For

each fraction, daily MR images are acquired and deformably

registered to the original simulation MR image, calculating a

daily deformation vector field (DVF). The deformable image

registration (DIR) DVF is then applied to original simulation CT

images to propagate the electron/mass density information in the

coordinate frame of daily MR images. Any remaining differences

in the body contour and air pockets between the two image sets are

compensated for by means of user-driven override structures with

densities equal to soft tissue and air. The process of DIR and

density overrides must be repeated for each fraction in the adaptive

radiotherapy workflow. This approach is labor intensive, subject to

user bias and interpretation, slows the adaptive radiotherapy

workflow and introduces additional dosimetric uncertainties,

especially in the presence of the magnetic field (5, 6). Thus,

generating synthetic CT from daily MRI images would

streamline the MRgART workflow and reduce uncertainties

caused by image registration and manual density overrides.

Challenges in generating synthetic CT fromMRI include the

lack of correlation between the MRI intensity and tissue electron

density, the dependence of the MRI contrast on scanning

parameters, and the difficulty in distinguishing air from bone

on MR images as both air and dense bone have little to no signal
02
on MRI. Several methods have been proposed for generating

synthetic CT images from MR images in various body sites and

have been reviewed comprehensively in prior studies (7–11).

These methods included bulk density assignment, atlas-based

methods, voxel-based methods and machine learning methods.

Most studies focused on MR simulators (1.5T and 3T).

Additionally, these methods may require special scanning

sequences or multiple pulse sequences, the most common

being Dixon and zero echo time (ZTE)/ultrashort TE (UTE).

Few studies have reported synthetic CT methods for low-field

MRgART, such as ViewRay MRIdian (0.35T) (12–14).

Generating synthetic CT images from low-field MR images

can be more challenging due to the lower signal-to-noise ratio

compared to higher field strength and limited selection of

scanning protocols (usually using a true fast imaging with

steady-state precession (TrueFISP) sequence for fast and low-

noise imaging at low-field MRI). Therefore, tissue classification

via tissue-contrast optimized scanning protocols may not be

feasible for low-field MRgART because of the need to

compromise with fast imaging, particularly for breath-hold

imaging and treatments.

Deep learning methods have shown promising results in

medical imaging processing, such as image classification and

reconstruction. Using deep learning methods in synthetic CT

generation may be more feasible than voxel-based methods for

low-field MRgART to obtain better image quality and may

produce more accurate electron/mass density maps for dose

calculations. Cusumano et al. (12) demonstrated that using a

conditional generative adversarial network (cGAN) was feasible

to generate synthetic CT from low-field MR images for

abdominal and pelvic cases. Fu et al. (14) compared synthetic

CT images generated from 0.35T MR images using the cGAN

and the cycle-consistent generative adversarial network

(cycleGAN) for liver radiotherapy and reported that both

cGAN and cycleGAN achieved accurate dose calculations.

Olberg et al. (13) proposed a deep spatial pyramid convolution

framework to generate synthetic CT from 0.35T MRI for breast

radiotherapy and demonstrated improved performance

compared to a conventional GAN framework.

Based on previous studies, GAN-based deep learning

methods have the potential to generate high quality synthetic
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CT images from low-field MR images. However, most of these

studies trained networks using a single two-dimensional (2D)

plane approach, typically using axial slices. Therefore,

discontinuities across slices were often observed with this

single 2D plane method. Using three-dimensional (3D)

volumes as an input may generate a more accurate synthetic

CT volume; however, this approach may require larger datasets

for training to obtain high quality results. The aim of the study

was to evaluate the quality of synthetic CT images generated by a

cGAN using a multi-planar method as inputs in the application

of low-field MRgART for prostate radiotherapy.
2 Materials and methods

2.1 Patient selection and image data

Fifty-seven male patients, who received MRI-guided pelvic

radiation therapy on a ViewRay 0.35T MRIdian Linac (ViewRay

Inc., Oakwood, OH, USA) between 2019 and 2022, were

retrospectively enrolled in this study. All patients were

scanned and treated with a free breathing technique. The

selection criteria included absence of hip implants and less
Frontiers in Oncology 03
imaging artifacts, determined by visual interpretation. Each

patient had both CT-sim and 0.35T MR-sim images acquired

on the same day and in the treatment position. The CT images

were acquired on a Siemens SOMATOM Confidence CT

simulator (Siemens Healthcare, Malvern, PA, USA) or GE

LightSpeed RT16 (GE Healthcare, Chicago, Illinois, USA),

with a tube voltage of 120 kVp, slice thicknesses of 2 to 3 mm

and in-plane pixel sizes of 0.98 × 0.98 and 1.27 × 1.27 mm2

(Table 1). MR images were acquired using a TrueFISP

sequence on the 0.35T MRIdian, with two different fields of

view (Table 1). All patients were simulated on both the CT

simulator and the MR-linac with a modest bladder filling and

enema rectum preparation (3).

A subset of forty-five cases were used for model training. The

treatment sites included pelvic nodes, prostate, perirectal area,

sacrum and ureter (Table 1). The task for the model was to learn

male pelvic anatomy and CT-to-MRI mapping for a large patient

cohort. Thus, the training cases were not limited to only prostate

cases. The remaining twelve cases were used for model

validation/testing. These validation/testing datasets were

limited to prostate stereotactic body radiotherapy (SBRT)

patients. The treatment plan parameters of these prostate cases

are shown in Table 1.
TABLE 1 CT imaging parameters (simulator model and voxel size), MR imaging parameters (field of view, scan time, voxel size, flip angle,
repetition time and echo time), treatment sites and clinical plan information for training and validation/testing datasets.

Training Datasets (45) CT Parameters SOMATOM – 0.98×0.98×3 mm3 (38)

SOMATOM – 1.27×1.27×2 mm3 (1)

SOMATOM – 1.27×1.27×3 mm3 (4)

LightSpeed – 0.98×0.98×2.5 mm3 (2)

MRI Parameters 50×45×43 cm3– 172 sec (41)

1.5×1.5×1.5 mm3/60°/3.37 ms/1.45 ms

50×45×43 cm3– 25 sec (3)

1.5×1.5×3.0 mm3/60°/3 ms/1.27 ms

50×30×36 cm3– 173 sec (1)

1.5×1.5×1.5 mm3/60°/3.37 ms/1.45 ms

Treatment Sites Pelvic Nodes (23)

Prostate (19)

Perirectal (1)

Sacrum (1)

Ureter (1)

Validation/Testing Datasets (12) CT Parameters SOMATOM – 0.98×0.98×3 mm3 (10)

SOMATOM – 1.27×1.27×3 mm3 (1)

LightSpeed – 0.98×0.98×2.5 mm3 (1)

MRI Parameters 50×45×43 cm3– 172 sec (12)

1.5×1.5×1.5 mm3/60°/3.37 ms/1.45 ms

Fractionation 36.25 Gy in 5 fractions (8)

SIB (36.25, 45 Gy) in 5 fractions (4)

Number of Beams 24 – 29 (avoid posterior beams and
entering through couch edges)

Number of Monitor Units 1795 – 3474 MUs per fraction
Number of patients are indicated in parentheses. SIB, simultaneous integrated boost.
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2.2 Synthetic CT generation

2.2.1 Image preprocessing
In our current clinical workflow, the CT images were

deformably registered to 0.35T MR images using MIM (MIM

Software Inc., Cleveland, OH, USA) to get electron/mass density

information for dose calculations. The quality of deformed CT

images was carefully reviewed in the planning process. For our

study, the deformed CT and MR images were exported, and

additional image preprocessing was performed.

All MR images were corrected for residual intensity non-

uniformity using a commonly applied post-processing bias-field

correction algorithm (N4itk) (15) and implemented in a publicly

available image analysis software environment (SLICER, surgical

processing laboratory, Brigham and Women’s Hospital, Boston,

MA, USA). The bias field was estimated within the volume

defined by the skin surface. The N4itk optimization parameters

included: BSpline order of 3, BSpline grid resolutions of (1, 1, 1),

a shrink factor of 4, maximum numbers of 50, 40 and 30

iterations at each of the 3 resolution levels, and a convergence

threshold of 0.0001. All CT and MR images were resampled to

256×256×256 with a resolution of 1.5×1.5×1 mm3. The pixel

value of the volume outside the skin surface was set to -1000 for

CT images and 0 for MR images.

The pixel value of CT images ranged from -1000 to 3095

while the pixel value for MR images ranged from 0 to a varying

maximum value. The CT image intensity was normalized by

dividing 4095 and scaled such that the CT number of -1000 HU

was mapped to -1 and the CT number of 3095 HU was mapped

to 1. The MR intensity was also normalized and mapped from -1

to 1 using a z-score method (16). The z-score method

standardizes the image by centering the intensity histogram at

a mean of 0 and dividing the intensity by the standard deviation.

When calculating the mean and standard deviation for eachMRI

dataset, the areas with an intensity smaller than 40 were

excluded from the calculations. This threshold value is often

used in our clinical workflow to define the air/gas region on

TrueFISP MR images. After normalizing the MR intensities, any

intensity value less than or greater than three standard

deviations from the mean were truncated to be -1 and 1,

respectively. For example, after normalization, the pixel value

in the air region was -1 and the value in the brightest area on MR

images was 1.
2.2.2 Deep learning network and loss function
A cGAN based on the pix2pix architecture with some

modifications was employed to generate synthetic CT images

from MR images (17). The GAN has two neural networks, a

generator and a discriminator, contesting with each other

(Figure 1A). The generator (G) learns to generate synthetic CT

images while the discriminator (D) learns to distinguish the
Frontiers in Oncology 04
generator’s synthetic CT images from real CT images. The

generator was based on U-Net architecture with skip-

connections while the discriminator was based on 16×16

PatchGAN. The objective (LT) was composed of an adversarial

loss (LcGAN), pixel reconstruction loss (LL1) with a weighting

factor (l1) and mutual information loss (LMI) with a weighting

factor (l2).

LT = argmin
G

max
D

LcGAN G,Dð Þ + l1LL1 Gð Þ + l2LMI Gð Þ

LcGAN (G,D) = Ex,y D(x, y)2
� �

+ Ex (D(x,G(x)) − 1)2
� �

LL1(G) = Ex,y½jjy − G(x)jj1� =
1
no

n

i=1
yi − G(xi)j j

LMI(G) = Ex,y 1 − nMI(y,G(x))½ �

where l1 and l2 were 100 and 5, respectively, and x, y and G

(x) represent MR images, real CT images and generated

synthetic CT images, respectively. For LcGAN, a least-squares

objective was used rather than the log likelihood objective

because former exhibited better stability during training (18).

The LL1 objective was used to calculate the mean-absolute-error

between real CT and generated synthetic CT images for all

voxels (n). The LMI objective was not in the original pix2pix

implementation but was added in the loss function to minimize

the effect of the uncertainty due to the misalignment between CT

and MR images. This objective was to calculate image similarity

between real CT and synthetic CT images, and the mutual

information was normalized (nMI) so it ranged from 0 to 1.

To reduce the model oscillation, the discriminator was

updated using a history of generated images rather than the

ones produced by the latest generator (18). The optimization was

performed using an adaptive moment estimation (Adam) solver,

with an initial learning rate of 0.0002 for the generator and

0.00005 for the discriminator and momentum parameters of 0.5

and 0.999 (17). The learning rate was decreased by 1% per

increasing epoch. A total of 100 epochs were trained.

The network training was performed in MATLAB

(MathWorks, Inc., Natick, MA, USA) using a RTX A5000

GPU (NVIDIA, Sunnyvale, CA, USA). The GAN was trained

on three orthogonal directions. Each image batch in the iteration

of the training process included 2D axial, sagittal and coronal

planes of the paired MR and CT images (Figure 1A). In each

iteration, three orthogonal planes were randomly extracted from

3D volumes (unused slices in prior iterations) in both MR and

CT image sets. If no anatomy information existed in any

extracted planes, that image batch was disregarded. Maximum

iterations in each epoch were 256 (slices)×45(number of

training cases).
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2.2.3 Synthetic CT generation for
validation/testing

The generator network was trained with the multi-planar

method (Figure 1A). Thus, an MRI volume sampled in any

orthogonal direction can be used as an input to generate a

synthetic CT volume. To improve the robustness of synthetic CT

generation and reduce discontinuities across slices, three image

sets sampled in three orthogonal directions from each MRI
Frontiers in Oncology 05
volume were input into the generator and the corresponding

synthetic CT image sets in 2D axial (sCTax), coronal (sCTcor)

and sagittal (sCTsag) planes were created, as illustrated in

Figure 1B. As a result, three predictions were acquired for

each voxel. Predicted values from the outputs in all three

directions were then averaged to obtain the final synthetic CT

volume (sCTave). The synthetic CT generation was performed

using an in-house program, written in MATLAB.
B

A

FIGURE 1

(A) A synthetic CT training process using a multi-planar method. Three orthogonal planes from paired MR-CT image sets are used to train
generator and discriminator networks with loss functions (LG and LD). (B) A synthetic CT generation process for validation/testing. A 3D MRI
volume is sampled in three orthogonal directions, generating three MRI sets as inputs to the generator. Three corresponding synthetic CT sets
are generated (sCTax, sCTcor, sCTsag) and combined to get the final synthetic CT (sCTave).
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2.3 Evaluation of synthetic CT quality

2.3.1 Image quality of synthetic CT volumes
To evaluate the quality of synthetic CT images, their

similarity to a ground truth CT, on a voxel-wise basis, was

calculated. The CT images closest to the ground truth in this

study were deformed CT images. Therefore, mean-absolute-

errors (MAE) and mean errors (ME) in CT numbers, peak

signal-to-noise ratios (PSNRs) and structural similarity index

measures (SSIMs) between synthetic CT and deformed CT were

calculated following the equations shown below.

MAE = o
n
1 sCTi − CTij j

n

ME = o
n
1sCTi − CTi

n

PSNR = 10logðMax2CT
MSE

)

SSIM =
(2msCTmCT + c1)(2ssCT ,CT + c2)

(m2
sCT + m2

CT + c1)(s2
sCT + s 2

CT + c2)

where n is the voxel number in the region of interest (ROI);

MAXCT is the maximum pixel value of deformed CT images;

MSE is the mean-squared-error; msCT and mCT are the means of

synthetic CT and deformed CT images; ssCT and sCT are the

standard deviations; ssCT, CT is cross-covariance; c1 and c2 are

regularization constants for the luminance and contrast.

The ROI in calculating the SSIM was the whole 3D volume

(256×256×256), while the ROI in calculating the PSNR, MAE

and ME was the 3D volume but only included the voxels within

the body contour. In particular, the MAE and ME were also

calculated in three different tissue segments, including air, soft

tissue and bone. The three tissue segments were identified by

applying image intensity thresholds on the deformed CT. The

voxels with CT numbers smaller than -200 HU was included in

the air segment, and the voxels with CT numbers larger than 200

HU was included in the bone segment. The residual voxels were

included in the soft tissue segment, i.e. CT numbers from -200

HU to 200 HU. No morphological post-processing on these

segments was performed.

2.3.2 Dosimetric accuracy of synthetic
CT volumes

Clinical intensity-modulated radiotherapy plans were

calculated on deformed CT images. As the deformation was

not likely perfect, differences in body contours and gas pockets

between MRI and deformed CT datasets were compensated by

overriding the mass density (relative to water) in these structures

with soft tissue (1.02) and air (0.0012). Dose distributions were

calculated using a Monte Carlo algorithm implemented in the
Frontiers in Oncology 06
MRIdian treatment planning system, including the effect of the

magnetic field, 0.2 cm calculation grid and 0.5% calculation

uncertainty. The clinical plans were then recalculated on the

synthetic CT images with the same fluence and calculation

parameters for each validation case. The CT calibration curve

used in the synthetic CT recalculation was the same as the one in

the initial plan, depending on which simulator was used for CT

image acquisition.

Dose volume histograms (DVHs) were compared between

synthetic CT and user-corrected deformed CT (dCTcorr)

calculations of each clinical plan. Two DVH metrics (D95%

and D2%) were evaluated for planning target volumes (PTVs)

and D2% was evaluated for organs-at-risk (OARs), including

rectum, bladder and urethra, for prostate SBRT.

Three-dimensional dose distributions were exported to

SLICER and 3D gamma analyses were performed in a ROI

where the dose was larger than 10% of the maximum dose in

each clinical plan. Two different criteria in gamma analyses were

compared, 1%/1 mm and 2%/2 mm.
3 Results

3.1 Image quality of synthetic
CT volumes

The image quality of all synthetic CT image sets generated

along different orientations was similar to the quality of

deformed CT image sets (Figure 2). However, for sCTax image

sets, the axial view had smoother edges than the sagittal and

coronal views. Similar behaviors were observed for sCTsag and

sCTcor image sets. The sCTave image set was created by averaging

sCTax, sCTsag and sCTcor image sets, so the discontinuities across

slices, observed in sCTax, sCTsag and sCTcor image sets,

were reduced.

Regarding quantitative analyses, the MAEs ranged from 30.1

HU to 33.6 HU in the whole pelvis area for all four synthetic CT

image sets; the MEs ranged from -4.3 HU to -7.9 HU; PSNRs

ranged from 33.8 to 35.2; SSIMs ranged from 0.9694 to 0.9758

(Table 2). In terms of CT numbers in various tissue segments,

the accuracy was the best in the soft tissue segment and worst in

the air segment, due to changes in bowel gas positioning between

scans. Comparing sCTave with the other three synthetic CT sets,

MAEs were ~10% lower, PSNRs were 3% higher, and SSIMs

were 0.5% higher in the whole pelvis.
3.2 Dosimetric accuracy of synthetic
CT volumes

Clinical plans were recalculated on sCTave image sets.

Figure 3 plots the case that exhibited the best agreement in CT

numbers (23.7 HU in MAE for the whole pelvis) and DVH
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FIGURE 2

MR (top row), deformed CT (2nd row), sCTax (3
rd row), sCTsag (4th row), sCTcor (5

th row) and sCTave (bottom row) for one of the validation cases.
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metrics (< 0.2 Gy), while Figure 4 shows the case that had the

largest differences in CT numbers (36.1 HU inMAE for the whole

pelvis) and DVH metrics (< 0.9 Gy). The DVHs for the best and

worst cases are shown in Figure 5. Large dose differences were

observed in the PTV, urethra and rectum for the worst case.

In general, the DVH metrics calculated on sCTave image sets

were higher than those calculated on dCTcorr image sets

(Figure 6 and Table 3). The mean dose differences were within
Frontiers in Oncology 08
0.25 Gy for the PTV metrics and 0.35 Gy for the OAR metrics,

representing 0.6% and 0.9%, respectively (Table 3). All

validation cases had dose differences less than 0.7 Gy in both

PTV and OAR structures except one case (the worst case shown

in Figure 4) that had a deviation in rectal D2% of 0.9 Gy

(2.3%) (Figure 6).

Comparing dose distributions using 3D gamma analyses,

good agreement was found for all validation cases, with 99% and
TABLE 2 MAEs and MEs for whole pelvis and individual segments (air, soft tissue and bone) and PSNRs and SSIMs for whole pelvis.

Axial (sCTax) Sagittal (sCTsag) Coronal (sCTcor) Average (sCTave)

Whole pelvis (MAE) 32.8 ± 4.4
[26.4 to 39.1]

33.6 ± 4.4
[27.7 to 40.5]

33.2 ± 4.4
[26.2 to 38.5]

30.1 ± 4.2
[23.7 to 36.1]

Air (MAE) 406.2 ± 119.3
[176.3 to 558.6]

402 ± 131.6
[160.2 to 539.5]

409.8 ± 113.7
[207.0 to 564.2]

396.5 ± 126.1
[159.3 to 542.1]

Soft tissue (MAE) 21.6 ± 2.3
[19.2 to 25.4]

21.4 ± 2.6
[18.9 to 25.8]

21.8 ± 2.9
[18.9 to 27.9]

19.6 ± 2.3
[17.4 to 23.6]

Bone (MAE) 171.7 ± 25.8
[126.4 to 216.5]

188.7 ± 25.6
[140.5 to 243.1]

175.9 ± 29.9
[121.5 to 215.0]

158.5 ± 26.0
[111.9 to 209.7]

Whole pelvis (ME) -4.3 ± 4.4
[-11.1 to 2.2]

-7.5 ± 4.0
[-16.1 to -1.6]

-7.9 ± 4.2
[-14.8 to -2.9]

-6.8 ± 3.6
[-14.3 to -2.8]

Air (ME) 395.7 ± 122.9
[165.7 to 558.3]

381.0 ± 146.7
[132.2 to 535.4]

394.8 ± 120.1
[191.1 to 551.3]

388.4 ± 131.3
[148.9 to 541.2]

Soft tissue (ME) 0.7 ± 3.3
[-6.4 to 5.1]

-1.1 ± 2.8
[-7.3 to 4.0]

-2.5 ± 2.4
[-5.6 to 1.6]

-1.2 ± 2.4
[-6.4 to 3.1]

Bone (ME) -115.9 ± 40.9
[-184.6 to -58.2]

-142.5 ± 34.9
[-221.7 to -81.0]

-125.6 ± 43.7
[-189.2 to -41.6]

-128.0 ± 35.2
[-198.5 to -65.4]

PSNR 34.4 ± 1.5
[31.9 to 36.8]

33.8 ± 1.4
[31.2 to 35.9]

34.0 ± 1.4
[31.9 to 36.3]

35.2 ± 1.7
[32.4 to 38.0]

SSIM 0.9722 ± 0.0031
[0.9669 to 0.9765]

0.9706 ± 0.0047
[0.9634 to 0.9771]

0.9694 ± 0.0053
[0.9576 to 0.9752]

0.9758 ± 0.0035
[0.9705 to 0.9800]
Means, standard deviations and ranges are shown in the table.
FIGURE 3

Isodose color wash (124%, 100%, 69%, 50% and 30% of 36.25 Gy in the prescribed dose) displayed on MR and sCTave images in axial, sagittal and
coronal views for the best case (SIB case).
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99.9% pass rates for 1%/1 mm and 2%/2 mm criteria,

respectively (Table 3).
4 Discussion

The multi-planar cGAN deep learning method used in this

study to generate synthetic CT images reduced discontinuities

across slices that were often observed in the 2D planar method.

The MAE in CT numbers was reduced by ~10% with the multi-

planar method compared to the 2D planar method. Regarding

its dosimetric accuracy compared to clinical plans on dCTcorr,

the mean relative difference was less than 1% for PTV and OAR

metrics, and 3D gamma analyses showed good agreement,

achieving a 99% pass rate for 1%/1 mm criteria. This study

demonstrated that the presented method generated synthetic CT

images comparable to the deformed CT method that is currently

used in the low-field MRgART workflow for treating

prostate cancer.

Some outliers were observed when evaluating the dosimetric

accuracy, particularly in the rectum (Figures 4, 5B, 6). Several

factors may contribute to the large deviations. First, the MRIdian

TPS uses a Monte Carlo method, which has an inherent

calculation uncertainty (0.5% in this study). Second, deformed

CT images with air and soft tissue overrides were used as ground

truth to validate the accuracy of synthetic CT images. However,

anatomical changes may be observed between simulation CT

and MR scans, despite their acquisition on the same day, e.g.,

changes in bladder filling (as seen on the MR and CT images in

Figure 2) and variation of gas pockets in the bowel and rectum

(resulting in large deviations for air segments in Table 2). To

compensate for the change in gas morphology, manual density
Frontiers in Oncology 09
overrides with pure air were used when planning. This process

can introduce additional uncertainties because gas pockets may

not be correctly identified nor necessarily be composed of pure

air. As shown in Figure 4, a large gas pocket was found in the

rectum adjacent to the prostate. The accuracy of its size and

density was crucial for this case because of the electron return

effect in the presence of the magnetic field. It is therefore difficult

to assert that the deformed CT with density overrides represents

the ground truth. Ultimately this resulted in higher

measured error.

Compared with previous synthetic CT generating studies

in the prostate or pelvis using deep learning methods, our

results were superior or comparable to those performed with

either low-field (12, 19) or high-field (14, 20–25) MRI. For

example, Cusumano et al. (12) generated synthetic CT from

0.35T MRI using a 2D cGAN and reported that MAEs in

CT numbers were 54.3 ± 11.9 HU, 40.4 ± 9.2 HU, 224.4 ±

35.5 HU for whole pelvis, soft tissue and bone, respectively,

as compared to our results, 30.1 ± 4.2 HU, 19.6 ± 2.3 HU and

158.5 ± 26.0 HU for whole pelvis, soft tissue and bone,

respectively. Fu et al. (14) used T1-weighted images from 1.5T

MRI to synthesize CT using a 3D convolutional neural network

(CNN) and reported 37.6 ± 5.1 HU, 26.2 ± 4.5 HU and 154.3 ±

22.3 HU for whole pelvis, soft tissue and bone, respectively.

Chen et al. (22) used T2-weighted images from 3T MRI to

synthesize CT using a 2D U-net model and reported 30.0 ±

4.9 HU, 19.6 ± 2.5 HU and 122.5 ± 10.5 HU for whole pelvis, soft

tissue and bone, respectively.

Regarding the calculation time, the time required by the

neural network to generate synthetic CT was ~12 seconds with

the GPU system used in this study. The presented method would

be more efficient and provide more accurate electron/mass
FIGURE 4

Isodose color wash (100%, 69%, 50% and 30% of 36.25 Gy in the prescribed dose) displayed on MR and sCTave images in axial, sagittal and
coronal views for the worst case.
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density information as the density override and review processes

take ~4 minutes in our current MRgART workflow.

The image resolution and size combination used in this study

may cut off part of the anatomy for fields of view larger than 38.4

cm×38.4 cm and limit potential clinical implementation in larger

patients. A follow-up study will consider increasing the image size

to ensure the method can be applied to large-size patients.

In addition, future work will investigate the accuracy,

robustness, and limitations of the presented method in a large
Frontiers in Oncology 10
patient cohort, apply the method to different body sites for

MRgART and explore a method to independently verify the

accuracy of the synthetic CT generation for a quality assurance

(QA) process in the clinical workflow, such as catching outliers

to trigger further review in MRgART. A QA process will ensure

that the deep learning method can be safely and reliably

implemented in clinical workflows to generate synthetic CT

volumes from MRI volumes and to improve the workflow

efficiency in MRI-guided radiotherapy.
B

A

FIGURE 5

(A) DVHs for the case shown in Figure 3 and (B) DVHs for the case shown in Figure 4. Sold lines: dCTcorr; dotted lines: sCTave.
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5 Conclusion

The quality of synthetic CT images generated from 0.35T

MRI using a multi-planar cGAN method was evaluated for

prostate radiotherapy. The MAE was 30.1 ± 4.2 HU in the
Frontiers in Oncology 11
whole pelvis compared to the deformed CT. Calculated doses on

synthetic CT images agreed well with the doses in the clinical

plans with a gamma pass rate of 99% for 1%/1 mm criteria, and

the difference was less than 1% on average for all PTV and OAR

metrics. Our study demonstrates the potential of using synthetic
B

A

FIGURE 6

Box-and-whisker plots of (A) dose difference (Gy) and (B) relative dose difference (%) between sCTave and dCTcorr for PTV and OAR metrics. The
bottom and top of the box represent the 1st and 3rd quartiles; the band inside the box is the median; the ends of the whiskers represent 95%
range; the crosses represent outliers.
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CT created from 0.35T MRI TrueFISP images in the adaptive

workflow of prostate radiotherapy. Future work will validate the

method in a large cohort of patients and investigate the

limitations of the method in the adaptive workflow.
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