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Abstract: Andrographolide (AG) has been shown to have several medicinal and pharmaceutical
effects, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, and anti-malarial ac-
tivities. Moreover, studies to assess the pharmacological effect of AG on the metabolic changes of
uninfected red blood cells (uRBCs) have not yet been investigated. This study aims to evaluate
the pharmacological effects of AG compared to chloroquine (CQ) on the metabolic variations of
uRBCs in vitro using a proton nuclear magnetic resonance (1H-NMR)-based metabolomics approach
coupled with multivariate data analysis (MVDA). Forty-one metabolites were successfully iden-
tified by 1H-NMR. The results of the unsupervised data analysis principal component analysis
(PCA) showed ideal differentiation between AG and CQ. PC1 and PC2 accounted for 71.4% and
17.7% of the explained variation, respectively, with a total variance of 89.10%. Based on S-plot
and VIP values, a total of 28 and 32 metabolites were identified as biomarkers in uRBCs-AG and
uRBCs-CQ, respectively. In uRBCs treated with AG, ten metabolic pathways were determined to be
disturbed, including riboflavin metabolism, D-glutamate and D-glutamine metabolism, phenylala-
nine metabolism, glutathione metabolism, proline and arginine metabolism, arginine biosynthesis,
citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism as well as alanine, aspartate, and
glutamate metabolism. In contrast, in CQ-treated uRBCs, nine affected metabolic pathways were
determined, which involved the same metabolic pathways for uRBCs-AG, except for glutathione
metabolism. These findings suggest an evident relationship between AG and CQ associated with
metabolic changes in intact RBCs after being exposed to the treatment. The metabolomics results
could allow useful comprehensive insights into the underlying mechanism of the action of AG and
CQ on red blood cells. Consequently, the 1H-NMR-based metabolomics approach was successfully
utilized to identify the pharmacological effects of AG and CQ on the metabolic variations of uRBCs.
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1. Introduction

Human red blood cells (RBCs), also known as erythrocytes, represent a high number
of types of blood cells in the human body. They also account for nearly half of the total
blood volume and their diameters are 7–8 µm [1]. Normal human RBCs are composed
of high concentrations of different metabolites that act as coenzymes of redox reactions,
such as nicotinamide adenine dinucleotide phosphate (NADP+ and NADPH) and oxi-
dized/reduced nicotinamide adenine dinucleotide (NAD+ and NADH). In addition, they
contain enzymatic antioxidants, such as catalase (Cat), superoxide dismutase (SOD), glu-
tathione peroxidase (GPx), and peroxiredoxin 2 (Prx2). The coenzymes of energy are
also present, such as adenosine diphosphate (ADP), adenosine monophosphate (AMP),
and adenosine triphosphate (ATP), as well as non-enzymatic antioxidants, such as oxi-
dized and reduced glutathione (GSSG and GSH). All of these components can be found in
plasma/serum [2,3].

Unlike several other cells in the human body, mature RBCs lack nuclei, mitochondria,
ribosomes, and other organelles, which are unable to generate energy through the Krebs
cycle, and synthesize new proteins [4,5]. For this reason, the anaerobic degradation of
glucose via the glycolytic pathway known as the Embden–Meyerhof pathway (EMP) is
the only source of produced ATP and NADH [6]. It is very important to note that RBCs
are highly metabolically active cells and glycolysis is the main metabolic pathway in
RBCs that provides the energy demand. They also have a function to protect cells against
reactive oxygen species (ROS) using the GSH antioxidant [2]. RBCs, as the most abundant
types of blood cells, work as a perfect candidate for in vivo drug delivery due to many
characteristics, including an extended circulation period of ~120 days, flexibility, superb
biocompatibility, and minimal immunogenicity [7–10]. Due to these remarkable properties,
RBCs have been widely studied as drug delivery systems [11].

Metabolomics can study the profiling of the biochemical compounds or metabolites
which are changed by the physiological or pathological state in cells, tissue, biofluids,
organs, and organisms [12,13]. Many analytical tools have been employed in metabolomics
studies, of which proton nuclear magnetic resonance (1H-NMR) spectroscopy is the major
one. Its significant role is in the analysis of the metabolites in different biological samples,
including RBCs, serum, plasma, and urine [14]. Yet, blood analysis using metabolomics is
limited to the analysis of either serum or plasma metabolites only, while all other blood com-
ponents obtained during sample preparation, including the RBCs, white blood cells (WBCs),
and platelets (PLT) are barely examined [2]. So far, only a handful of researchers have stud-
ied the metabolomics variation of RBCs and infected RBCs with different species of Plasmod-
ium parasites using 1H-NMR coupled with multivariate data analysis (MVDA) [2,15–17].
In addition, metabolomics can be used to evaluate the changes in metabolites of blood cells
upon treatment with herbal drugs.

Andrographis paniculate is one of the medical plants which has been used extensively in
Southern Asia, China, and India for many clinical applications [18]. A. paniculate has many
bioactive compounds, one of which is andrographolide (AG). It is a labdane diterpenoid
derivative reported to exhibit many medicinal and pharmaceutical attributes, such as
antimicrobial, anti-inflammation, antioxidant [19], cardio-protection, hepatoprotection [20],
anti-HIV, anti-carcinogenic [21,22], anti-diabetic, anti-trypanosomal activity [23], and anti-
malarial [24–31]. Concerning the effect of AG as an anti-malarial drug, there is one study
that has reported the impact of AG on the membranes of uninfected RBCs (uRBCs) and
infected RBCs (iRBCs) by Plasmodium falciparum 3D7. The results showed that AG was
harmless to uRBCs at concentrations approach in its medicinal effect on Plasmodia. How-
ever, this stability declined at higher concentrations [30]. In iRBCs, a high concentration
of AG inhibits the Plasmodium-induced permeation pathway as well as the capability of



Metabolites 2021, 11, 486 3 of 24

merozoites to infect new RBCs [30]. In this context, AG has many pharmacological activi-
ties, when used as an anti-malarial drug on both uRBCs and iRBCs with the Plasmodium
parasite. More significantly, mature RBCs do not have any genetic elements, making them
less risky compared to other cell therapies and genes [5]. Undoubtedly, AG may have an
effect on the metabolism of uRBCs and iRBCs. However, there is no study of the AG effects
on the metabolism of uRBCs of the host, especially when using it as an anti-malarial drug.
Nevertheless, many studies suggested that RBCs might contribute to the metabolism of
exogenous and endogenous elements, including drugs [32,33]. Consequently, understand-
ing the impact of these elements or drugs on intact RBC metabolism and its biology may
have critical outcomes in the field of antimalarial drug discovery. Metabolites of RBC as
the downstream of gene expression can show the real changes upon treatment with drugs.
Metabolites have numerous activities in cell physiology, including fuel, structure, signaling,
stimulating, and inhibiting enzyme effects; catalytic activity as an enzyme cofactor, defense,
and interactions with others. To the best of our knowledge, this study was carried out
to fill up this gap. In addition, there has been no study conducted to investigate and
interpret the metabolic changes associated with AG on uRBCs. Therefore, this study aimed
to evaluate the metabolic variations of uRBCs following exposure to AG and compared
with chloroquine (CQ) by using a 1H-NMR-based metabolomics approach. It is essential to
assess the effects of AG on uRBCs in vitro when intending to reveal some potent insights
into the field of antimalarial drugs with a novel mechanism of action.

2. Results and Discussion

2.1. 1H-NMR Spectra of Uninfected RBC Extracts

The representative 500 MHz 1H-NMR spectra of the extracts of uRBCs-untreated,
uRBCs-AG and uRBCs-CQ are shown in Figure 1. By examining the spectra of the three
samples, there were variations in the intensity of the peak signals, wherein the uRBCs-
AG revealed a lower intensity compared to the those of uRBCs-CQ as well as uRBCs-
control (Figure 1). The metabolite signals were then assigned based on the previous
studies [2,34], Human Metabolome Database (HMDB), and the library of Chenomx NMR
suite 7.5 (Chenomx Inc., Canada) by comparison with the 1H-NMR signals of reference
compounds. Human red blood cells contain a wealth of metabolites, such as amino acids,
carbohydrates, fatty acids, and coenzymes. In addition, RBCs represent a high percentage
of total blood cells [2,34]. In this study, 41 blood metabolites were identified as shown in
Table 1. All these metabolites have been previously reported in many studies [16,17,35,36].
The metabolites belonged to different chemical classes, such as fatty acids, amino acids,
organic acids, and carbohydrates. The first region of the spectra from 0.9 to 3.5 ppm
exhibited signals that primarily belong to fatty acids (i.e., isovalerate and 3-hydroxybutyric)
as well as amino acids (i.e., valine, lysine, alanine, arginine, threonine, and glutamine).
The middle region of the spectra (3.5–5.6 ppm) showed the signals of carbohydrates
(i.e., fructose, glucose, and ribose) and some amino acid signals (i.e., glycine, threonine,
arginine. The remaining part of the spectra (5.7–9.0 ppm) showcased signals of organic
acids and purine nucleotides (i.e., lactate, isocitric acid, adenosine monophosphate (AMP),
and adenosine triphosphate (ATP). Table 1 summarizes all the identified metabolites of
uninfected RBC extracts, and their characteristic signals.



Metabolites 2021, 11, 486 4 of 24
Metabolites 2021, 11, x FOR PEER REVIEW 4 of 26 
 

 

 

Figure 1. 1H-NMR spectra (500 MHz, CPMG) of untreated uRBCs-control (A), uRBCs-AG (B), and uRBCs-CQ (C). The 1H-

NMR signals identified were: 1; isovalerate, 2; 2-aminobutyric acid, 3; valine, 4; isobutyrate, 5; 3-hydroxybutyrate, 6; la-

tate, 7; alanine, 8; lysine, 9; ornithine, 10; proline, 11; homoserine, 12; methionine, 13; acetone, 14; glutamate, 15; pyruvate, 

16; l-glutamine, 17; riboflavin, 18; citrate, 19; glutathione, 20; creatine, 21; cis-aconitic acid, 22; choline, 23; glucose, 24; 

glycine, 25; threonine, 26; arginine, 27; betaine, 28; ribose, 29; mannose, 30; fructose, 31; isocitrate, 32; pyroglutamic acid, 

33; n-acetylcysteine, 34; 2-phosphoglycerate, 35; guanosine triphosphate (GTP), 36; 4-pyridoxate, 37; adenosine triphos-

phate (ATP), 38; histidine, 39; 3-methylhistidine, 40; adenosine monophosphate (AMP), 41; phenylalanine. 

Table 1. 1H-NMR characteristic signals of the identified metabolites in the red blood cells. 

No. HMDB ID Metabolites 1H-NMR Signals 
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2.  HMDB0000452 2-aminobutyric acid 0.98 (t, 7.6) 

3.  HMDB0000883 Valine 1.02 (d, 7.1), 3.60 (d, 4.4) 

4.  HMDB0001873 Isobutyrate 1.06 (d, 6.8) 

5.  HMDB0000011 3-Hydroxybutyrate  1.20 (d, 6.2) 

6.  HMDB0000190 Lactate  1.34 (d, 7.0) 

7.  HMDB0000161 Alanine 1.48 (d, 7.3) 

8.  HMDB0000182 Lysine  1.74 (m) 

9.  HMDB0000214 Ornithine  3.06 (t, 7.5), 1.78 (m) 

10.  HMDB0000162 Proline  1.99 (m), 3.33 (m), 2.06 (m), 4.13 (dd, 6.4, 8.7)  

11.  HMDB0000719 Homoserine 2.02 (m) 

12.  HMDB0000696 Methionine  2.14 (m) 

13.  HMDB0001659 Acetone   2.22 (s) 

14.  HMDB0000148 Glutamate  2.38 (m), 2.32 (m) 

15.  HMDB0000243 Pyruvate 2.36 (s) 

Figure 1. 1H-NMR spectra (500 MHz, CPMG) of untreated uRBCs-control (A), uRBCs-AG (B), and uRBCs-CQ (C). The
1H-NMR signals identified were: 1; isovalerate, 2; 2-aminobutyric acid, 3; valine, 4; isobutyrate, 5; 3-hydroxybutyrate, 6;
la-tate, 7; alanine, 8; lysine, 9; ornithine, 10; proline, 11; homoserine, 12; methionine, 13; acetone, 14; glutamate, 15; pyruvate,
16; l-glutamine, 17; riboflavin, 18; citrate, 19; glutathione, 20; creatine, 21; cis-aconitic acid, 22; choline, 23; glucose, 24;
glycine, 25; threonine, 26; arginine, 27; betaine, 28; ribose, 29; mannose, 30; fructose, 31; isocitrate, 32; pyroglutamic acid, 33;
n-acetylcysteine, 34; 2-phosphoglycerate, 35; guanosine triphosphate (GTP), 36; 4-pyridoxate, 37; adenosine triphosphate
(ATP), 38; histidine, 39; 3-methylhistidine, 40; adenosine monophosphate (AMP), 41; phenylalanine.

Table 1. 1H-NMR characteristic signals of the identified metabolites in the red blood cells.

No. HMDB ID Metabolites 1H-NMR Signals

1. HMDB0000718 Isovalerate 0.94 (d, 6.6), 1.93 (m)
2. HMDB0000452 2-aminobutyric acid 0.98 (t, 7.6)
3. HMDB0000883 Valine 1.02 (d, 7.1), 3.60 (d, 4.4)
4. HMDB0001873 Isobutyrate 1.06 (d, 6.8)
5. HMDB0000011 3-Hydroxybutyrate 1.20 (d, 6.2)
6. HMDB0000190 Lactate 1.34 (d, 7.0)
7. HMDB0000161 Alanine 1.48 (d, 7.3)
8. HMDB0000182 Lysine 1.74 (m)
9. HMDB0000214 Ornithine 3.06 (t, 7.5), 1.78 (m)
10. HMDB0000162 Proline 1.99 (m), 3.33 (m), 2.06 (m), 4.13 (dd, 6.4, 8.7)
11. HMDB0000719 Homoserine 2.02 (m)
12. HMDB0000696 Methionine 2.14 (m)
13. HMDB0001659 Acetone 2.22 (s)
14. HMDB0000148 Glutamate 2.38 (m), 2.32 (m)
15. HMDB0000243 Pyruvate 2.36 (s)
16. HMDB0000641 L-Glutamine 2.44 (m)
17. HMDB0000244 Riboflavin 2.49 (s), 2.56 (s)
18. HMDB0000094 Citrate 2.66 (d, 15.1)
19. HMDB0000125 Glutathione 2.18 (m), 2.58 (m), 2.98 (m)
20. HMDB0000064 Creatine 3.02 (s)
21. HMDB0000072 Cis-Aconitic acid 3.10 (s)
22. HMDB0000097 Choline 3.22 (s)
23. HMDB0003345 Glucose 5.22 (d, 3.8), 3.40 (m), 3.45 (m)
24. HMDB0000123 Glycine 3.54 (s)
25. HMDB0000167 Threonine 3.58 (d, 4.9)
26. HMDB0000517 Arginine 3.78 (t, 6.5)
27. HMDB0000043 Betaine 3.89 (s)
28. HMDB0000283 Ribose 3.99 (m), 3.82 (m)
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Table 1. Cont.

No. HMDB ID Metabolites 1H-NMR Signals

29. HMDB0000169 Mannose 5.18 (d, 1.7), 3.86 (m)
30. HMDB0000660 Fructose 4.01 (m)
31. HMDB0000193 Isocitrate 2.95 (m)
32. HMDB0000267 Pyroglutamic acid 2.50 (m), 4.16 (dd, 7.5, 5.0)
33. HMDB0001890 N-Acetylcysteine 4.36 (m)
34. HMDB0003391 2-Phosphoglycerate 4.50 (m)
35. HMDB0001273 GTP 4.55 (d,5.0)
36. HMDB0000017 4-Pyridoxate 4.74 (s)
37. HMDB0000538 ATP 6.13 (d, 5.7)
38. HMDB0000177 Histidine 7.06 (s)
39. HMDB0000479 3-Methylhistidine 7.92 (s)
40. HMDB0000045 AMP 8.23 (s), 8.58 (s)
41. HMDB0000159 Phenylalanine 3.19 (m), 7.32 (d, 7.4)

The small letters in parentheses signify: s; singlet, d; doublet, dd; doublet of doublet, t; triplet, and m; multiplet.
J couplings in Hz. HMDB; Human Metabolome Database, ATP; adenosine triphosphate, AMP; adenosine
monophosphate, GTP; guanosine triphosphate.

2.2. Principal Component Analysis (PCA) of 1H-NMR Data

Principal component analysis (PCA) is one of the most practical and reliable MVDA
methods. As an unsupervised method, PCA is employed to minimize the dimensionality
of the multivariate dataset. PCA is generally presented graphically as a score and loading
plots that are used to determine the similarities or the metabolic differences between
biological samples. Therefore, one of the benefits of PCA is that it can help in showing the
occurrence of clusters or outliers between the samples represented in the score plot. In order
to determine the metabolites that have contributed to a separation in the score plot, the
loading plot is used. This plot shows the variables that are responsible for the discernment
pattern between the samples as well as the recognition of spectral signals resulting from
the discovery of the compounds [37]. The binned 1H-NMR data were subjected to PCA
in order to distinguish the variations or similarities of the blood metabolites among the
treated and untreated uninfected RBCs samples. The PCA model showed a clear separation
between three groups into three clusters (Figure 2A). The model has great goodness of
fit, with R2Y = 0.968, and good predictability, with Q2 = 0.906. In the PCA score plot,
the first two principal components, PC1 and PC2, revealed a total variance of 89.10%,
with PC1 accounting for 71.4% and PC2 for 17.4%. The control group was separately
discriminated from the other two treated groups with AG and CQ by PC1. The uRBCsCQ
group was separated from the control and uRBCsAG by PC2 (Figure 2A). No outlier data
were observed in the X-space based on the DModX analysis [38].

The loading scatter plot was performed in order to know the characteristic variables
that contributed to the separation in score plot. Consequently, both the loading and score
plots are complementary to each other and aid the comprehensive insight into the differen-
tiation between the untreated uRBCs, uRBCs-AG and uRBCs-CQ (Figure 2B). The uRBCs
were located on the negative side of PC1, characterized as having lower level/concentration
of most blood metabolites, while the two uRBCs treated groups (uRBCs-AG and uRBCs-CQ)
were on the positive side of PC1 with higher levels of blood metabolites. The metabolite
signals in the upper-right quadrant of the scatter plot contribute to the separation of uRBCs-
AG, including ribose, arginine, glucose, acetone, citrate, 4-pyridoxate, 3-hydroxybutyrate,
and riboflavin. On the other hand, in the uRBCs-CQ group, the contributing metabolite
signals were in the lower-right quadrant of the scatter plot belonging to the metabolites,
such as 2-aminobutyric acid, valine, isobutyrate, lactate, alanine, lysine, glutathione, and
glutamate. The results of the loading scatter plot indicate that the metabolites of the
uRBCs-CQ group were higher compared to uRBCs-AG (Figure 2B). The observed higher
level of metabolites in both treated groups could be attributed to AG and CQ. Both AG
and CQ showed significant effects by shifting away from the untreated group. A possible
explanation of these effects or changes in the normal components of RBCs might be the
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immediate result of an established pharmacologic action of this drug [39]. In addition, AG
was possibly innocent to RBCs at concentrations of its therapeutic level against plasmodia,
which can be reduced at higher concentrations [30]. To find the biomarkers for both AG
and CQ, separate models for each group of uRBCs-AG and uRBCs-CQ were constructed
by comparing them with the uRBCs control group.
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2.3. Biomarker Identification by OPLS-DA

In most of the metabolomics studies conducted to determine biomarkers, OPLS-DA
is the preferred method and has proven to be a very helpful tool for this purpose. In the
OPLS-DA score plot, S-plot and variable importance in projection (VIP) values help in
assigning the significant metabolites, which contribute to the biological outcomes [40].
Generally, variables with VIP values equal to or higher than 1.0 are considered to be
significant features in the OPLS-DA model [38]. In this study, the OPLS-DA was employed
on blood 1H-NMR data to reveal distinct observations about the significant metabolites in
the models of uRBCs-AG versus uRBCs and uRBCs-CQ versus uRBCs. The score plot of
OPLS-DA revealed an obvious separation by PC1 between uRBCs and uRBCs-AG. The
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uRBCs group was on the positive side of PC1, while the group treated with AG was on the
negative side (Figure 3A).
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assigning the significant metabolites, which contribute to the biological outcomes [40]. 

Generally, variables with VIP values equal to or higher than 1.0 are considered to be sig-

nificant features in the OPLS-DA model [38]. In this study, the OPLS-DA was employed 

on blood 1H-NMR data to reveal distinct observations about the significant metabolites in 

the models of uRBCs-AG versus uRBCs and uRBCs-CQ versus uRBCs. The score plot of 

OPLS-DA revealed an obvious separation by PC1 between uRBCs and uRBCs-AG. The 

uRBCs group was on the positive side of PC1, while the group treated with AG was on 

the negative side (Figure 3A). 
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Figure 3. The OPLS-DA score scatter plot (A) and S-plot (B) of the blood metabolic profiles of
uninfected RBC samples. uRBCs; uninfected red blood cells, AG; andrographolide.

The S-plot is the covariance and association loading diagnostics of the OPLS-DA
model, which gives an overview of the affecting variables on the model and clarifies
significant metabolites in the projection (Figure 3B). It shows that there were significantly
higher metabolites in the uRBCs treated with AG, such as arginine, ribose, cis-aconitic acid,
lactate, alanine, isovalerate, valine, acetone, glutamate, and riboflavin. These metabolites
contributed to the separation in the upper-right quadrant of the S-plot, which have the
covariances and positive correlations with uRBCs-AG. However, the other metabolites,
such as mannose and 2-phosphoglycerta, were in the lower-left quadrant, which were
higher in uRBCs, as illustrated in Figure 3B. The results indicate that these metabolites
were associated with AG’s effect, and they might be the biomarkers.

In the other OPLS-DA model, an obvious distinction by PC1 between uRBCs and
uRBCs-CQ was shown in the OPLS-DA score plot with great discriminant statistical values
of R2 and Q2 represented as 0.903 and 0.934, respectively. The uRBCs group was on the
left side of component 1, while uRBCs treated with CQ were on the right side of PC1
(Figure 4A). These results are consistent with those previously found in the PCA model.
Figure 4B represents the S-plot. There are substantially higher metabolites in the group
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of uRBCs treated with CQ, such as arginine, lactate, glutamate, 2-aminobutyric, alanine,
valine, isocitrate, acetone, threonine, proline, creatine, and lysine, which contribute to
separation in the upper right side of the S-plot. At the same time, the bottom-left of the
plot shows the metabolites which were low, such as 3-hydroxybutyrate and glutathione.
Based on these findings, these metabolites are significantly affected by CQ and are possibly
the biomarkers.
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Figure 4. The OPLS-DA score scatter plot (A) and S-plot (B) of the blood metabolic profiles of uninfected RBC samples.
uRBCs; uninfected red blood cells, CQ; chloroquine.

The variable importance of projection (VIP) showed that 28 metabolites were iden-
tified as biomarkers from the OPLS-DA model of the uRBCs treated with AG. The VIP >
1.0 metabolites were arginine, ribose, ribose, lactate, glutamate, glutathione, glutamate,
isocitrate, acetone, alanine, creatine, 2-aminobutyric acid, proline, cis-aconitic acid, threo-
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nine, riboflavin, ATP, valine, pyruvate, ornithine, phenylalanine, fructose, citrate, glucose,
AMP, AMP, lysine, and glucose. (Figure 5). However, in the loading column plot, some
of the metabolites were shown to be not significant due to their error bars crossing the 0
axis of the plot. Consequently, these metabolites did not have a significant impact on the
separation.
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Figure 5. Variable importance of projection (VIP) values of the influential contributing metabolites in the OPLS-DA score plot
of uninfected RBCs-control and uRBCs-CQ, error bars represent the standard error of the mean (SEM), uRBCs; uninfected
red blood cells, AG; andrographolide.

The VIP analysis of the second OPLS-DA model was conducted to identify the most
important contributing variables, as shown in Figure 6. A total of 32 metabolites sig-
nificantly contributed to the discrimination between the uRBCs treated with CQ and
uRBCs-control with VIP values of more than 1. The metabolites were arginine, lactate,
glutamate, 2-aminobutyric acid, glutamate, alanine, ornithine, valine, isocitrate, acetone,
arginine, threonine, proline, creatine, cis-aconitic acid, lysine, ornithine, fructose, pheny-
lalanine, isobutyrate, AMP, AMP, ATP, riboflavin, glucose, pyruvate, glucose, ATP, lactate,
valine, citrate, and pyroglutamate. These metabolites had a significant impact on the
separation and could be suggested as potential biomarkers.
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2.4. The Model Validation of the OPLS-DA

To validate the OPLS-DA model, in the internal cross-validation, if the values of R2Y
and Q2 are higher than 0.5, this indicates the model is valid [38]. R2 denotes the fitness
of the model as well as describing the quality of Y variables through the model, while
Q2 indicates the predictive diagnostics of the model. In the present study, by calculating
R2Y and Q2, the goodness of fit and the predicting ability were determined. From the
OPLS-DA model of uRBCs-AG and uRBCs, the model exhibited a high degree of fit, R2Y
= 0.998, and a high degree of predictability, Q2 = 0.995. From the 100 permutations test,
the model showed Y-axis intercepts of R2 less than 0.3 and those of Q2 less than 0.5 (R2
< 0.3, Q2 < 0.05), indicating that the models are valid and did not show overfitting [38].
The permutation tests with 100 permutations and external validation indicated that the
OPLS-DA models were valid, as shown in Figure 7A.
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Figure 7. The OPLS-DA models’ validation of uRBCs-control and uRBCs-AG: (A) 100 permutations test; (B) the validation
regression plot. uRBCs, uninfected red blood cells; AG, andrographolide.

Furthermore, this model is perceived to have excellent prediction and validation
characteristics, which suggests that it is an adequate model. Additionally, for the estab-
lished models, the validation for the various variables was verified using the regression
diagnostics by the root mean square error of cross-validation (RMSECV) and root mean
square error of calibration (RMSEC). Based on our results, the RMSEC and RMSECV were
nearly similar, which implies that it is a good model (Figure 7B). These results suggest that
each of these models meet the criteria of great validation and prediction performances.

The OPLS-DA model of uRBCs-CQ and uRBCs gave the results of R2Y = 0.903 and
Q2 = 0.934, signifying that this model meets the criteria of the validation and prediction.
In addition, the results of the 100 permutations test were acceptable, which indicates that
the model is valid (Figure 8A). The regression coefficient (R2) was 0.987. Additionally, the
difference between root mean square error of cross-validation (RMSECV) and root mean
square error of calibration (RMSEC) was small. These findings show that the RMSEC and
RMSECV are nearly similar, which means that it is a good model (Figure 8B). From these
findings, it appears that this model has strong validity and prediction performances.
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2.5. The Hierarchical Cluster Analysis (HCA)

A hierarchical clustering analysis (HCA) was conducted to deduce the metabolites’
variations in different groups of the uRBCs. Clustering analysis is dependent on the simili-
tude concept. One method to identify the similarity between two objects in mathematical
terms is the Euclidean distance. The samples were divided into two groups. The first HCA
was between the uRBCs-AG versus uRBCs and the second one was for uRBCs-CQ versus
uRBCs. Then the visual HCA was performed to identify the metabolites’ discrepancies for
each group. From the results of the first of OPLS-DA plots and VIP plots of uRBCs-AG
and uRBCs, the metabolites that contributed the most to the discrimination were deter-
mined. Before being exposed to HCA with Euclidean distance measurements and Ward’s
clustering algorithm, the distinctive binned regions of the metabolites of importance in
the group were normalized and Pareto-scaled. Figure 9 shows the results of the study as a
HCA heat map, with each rectangle representing an averaged binned 1H-NMR spectral
area indicative of the important metabolite, which was colored on a normalized scale
from −1.5 (low) to 1.5 (high). The heat map successfully classified the group of uRBCs
treated with AG as a large class that was different from uRBCs. In addition, the group
of uRBCs treated with AG exhibited higher levels of arginine, ribose, lactate, glutamate,
glutathione, isocitrate, acetone, alanine, creatine, 2-aminobutyric acid, proline, cis-aconitic
acid, threonine, riboflavin, ATP, valine, pyruvate, ornithine, phenylalanine, fructose, citrate,
AMP, and glucose. In contrast, these metabolites had lower levels in untreated uRBCs, as
shown in Figure 9. The results suggest that in the levels of the metabolites in the treated
uRBCs group, exposure to AG significantly contributed to the changes observed in many
of the metabolites in the uRBCs [41]. In addition to that, it is possible that these results are
due to the fact that AG has the effect of compromising RBCs’ membrane integrity [30]. As
mentioned earlier, a total of 28 metabolites were identified as biomarkers in the group of
uRBCs-AG. The relative quantification of these particular biomarkers was then assessed
through binned data of average peak metabolites within the groups. The variations in
the level of the metabolites were quantitatively evaluated as shown in Figure 10, which
represents the box plots of these significant individual metabolites.
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Figure 9. Heat map of the identified biomarkers of uRBCs and uRBCs-AG obtained from HCA by using Ward’s minimum
variance method and Euclidean distance. The concentration of each metabolite is colored based on a normalized scale from
minimum −1.5 (dark blue) to maximum 1.5 (dark brown). uRBCs, uninfected red blood cells; AG, andrographolide.
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Figure 10. Box plots of the relative quantities of the significant metabolites of uRBCs-AG (red color) and uRBCs-control
(green color) using 1H-NMR spectra binned data with a VIP value ≥0.1 in OPLS-DA model. uRBCs, uninfected red blood
cells; AG, andrographolide.

The other OPLS-DA plot and VIP plot of uRBCs-CQ and uRBCs in Figure 11 shows
the results of the heat map analysis of identified biomarkers of uRBCs treated with CQ. The
uRBCs group treated with CQ was categorized successfully as a broad group that differed
from uRBCs. Furthermore, there were higher levels of the metabolites of uRBCs treated
with CQ than in the uRBCs group. The metabolites were arginine, lactate, glutamate,
2-aminobutyric acid, glutamate, alanine, ornithine, valine, isocitrate, acetone, arginine,
threonine, proline, creatine, cis-aconitic acid, lysine, ornithine, fructose, phenylalanine,
isobutyrate, AMP, AMP, ATP, riboflavin, glucose, pyruvate, glucose, ATP, lactate, valine,
citrate, and pyroglutamate (Figure 11). As previously described, a total of 32 metabolites
in the uRBCs-CQ group were identified as biomarkers. The changes in metabolite lev-
els were assessed via a comparison between uRBCs treated with CQ and the untreated
group. Figure 12 shows the box plots of these important individual metabolites, relatively
quantified to TSP.
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Figure 11. Heat map of the identified biomarkers of uRBCs-control and uRBCs-CQ obtained from HCA by using Ward’s
minimum variance method and Euclidean distance. The concentration of each metabolite is colored based on a normalized
scale from minimum −1 (dark blue) to maximum 1 (dark brown). uRBCs, uninfected red blood cells; CQ, chloroquine.
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chloroquine.

2.6. Analysis of the Perturbed Metabolic Pathways by AG and CQ in Uninfected RBCs

The identified metabolite perturbations based on the 1H-NMR data are useful for ex-
tracting out the desired information from the uRBCs and uRBCs treated groups. To system-
atically identify the most significant pathways that are involved in these groups, metabolic
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pathway analysis (MetPA) using MetaboAnalyst (www.metaboanalyst.ca/MataboAnalyst)
accessed on 20 March 2021 was performed as well as KEGG (https://www.genome.jp/
kegg/pathway) accessed on 1 March 2021. The pathway impact factors are the appro-
priate tool to measure the significance of metabolites in the network. From the results,
28 metabolic pathways were identified in the group of uRBCs-AG (Table S1). Based on
the set standards for a pathway impact value of higher than 0.1 [40] from the 28 metabolic
pathways, 10 metabolic pathways were determined as important metabolic pathways in
the uRBCs which were exposed to AG. The D-glutamate and D-glutamine metabolism as
well as metabolic of riboflavin showed the same highest impact value of 0.50, followed
by phenylalanine metabolism, arginine and proline metabolism, glutathione metabolism,
arginine biosynthesis, citrate cycle, pyruvate metabolism, alanine, aspartate and glutamate
metabolism, and glycolysis/gluconeogenesis with values of 0.35, 0.34, 0.27,0.25, 0.23, 0.20,
0.19, and 1.0, respectively (Table 2 and Figure 13).

Table 2. Results of the ingenuity pathway analysis of uninfected RBCs treated with AG by using MetaboAnalyst (MetPA)
shown the impact values.

NO. Pathway Name Match Raw p -log(p) Holm p FDR Impact

1. Arginine and proline metabolism 6/38 0.0000141 4.8507 0.0011704 0.0005922 0.34441
2. Citrate cycle (TCA cycle) 4/20 0.0001819 3.7401 0.014736 0.0038204 0.23173

3. Alanine, aspartate and glutamate
metabolism 4/28 0.0007073 3.1504 0.056585 0.011883 0.19712

4. Arginine biosynthesis 3/14 0.0010628 2.9735 0.083964 0.01488 0.2538
5. Glycolysis/Gluconeogenesis 3/26 0.0067171 2.1728 0.51721 0.070529 0.10065
6. Glutathione metabolism 3/28 0.0082928 2.0813 0.63026 0.0774 0.27562
7. Pyruvate metabolism 2/22 0.043961 1.3569 1.0 0.3357 0.20684
8. Riboflavin metabolism 1/4 0.060569 1.2177 1.0 0.39137 0.5

9. D-Glutamine and D-glutamate
metabolism 1/6 0.089519 1.0481 1.0 0.47604 0.5

10. Phenylalanine metabolism 1/10 0.14488 0.839 1.0 0.67609 0.35714

Raw p-values were defined according to a total number of hits and total compounds in each pathway; Holm p, p-value corrected by
Holm–Bonferroni method, FDR, false discovery rate; impact, the pathway impact value computed from pathway topology analysis.
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However, in the uRBCs-CQ group, the number of the identified metabolic path-
ways, including significant pathways, was less than in the uRBCs-AG group. Twenty-six
metabolic pathways were identified in this group (Table S2). From 26 metabolic path-
ways, nine metabolic pathways were identified as important metabolic pathways in uRBCs
treated with CQ. In addition, all affected metabolic pathways in this group were the same
pathways identified in the uRBCs-AG group, except for glutathione metabolism, which
was not significant because its impact value was less than 1.0. This is illustrated in Table 3
and Figure 14. Further, the general metabolic pathway map was constructed to illustrate
all biomarkers and roles of each metabolite in the different pathways of the treated group
of uRBCs-AG and uRBCs-CQ. All these metabolites took part in a number of pathways,
which include amino acid, carbohydrate, and lipid metabolism. This schematic metabolic
pathway is illustrated in Figure 15.

Table 3. Results of the ingenuity pathway analysis of uninfected RBCs treated with CQ by using MetaboAnalyst (MetPA)
showing the impact values.

NO. Pathway Name Match Raw p -log(p) Holm p FDR Impact

1. Arginine and proline metabolism 6/38 0.000014 4.8507 0.001704 0.00059 0.34
2. Citrate cycle (TCA cycle) 4/20 0.000181 3.7401 0.014736 0.00304 0.23

3. Alanine, aspartate and glutamate
metabolism 4/28 0.000707 3.1504 0.056585 0.0113 0.20

4. Arginine biosynthesis 3/14 0.00128 2.9735 0.083964 0.018 0.25
5. Glycolysis/Gluconeogenesis 3/26 0.00671 2.1728 0.51721 0.0729 0.10
6. Pyruvate metabolism 2/22 0.043961 1.3569 1.0 0.335 0.21
7. Riboflavin metabolism 1/4 0.060569 1.2177 1.0 0.39137 0.50

8. D-Glutamine and D-glutamate
metabolism 1/6 0.089519 1.0481 1.0 0.47604 0.50

9. Phenylalanine metabolism 1/10 0.14488 0.839 1.0 0.67609 0.36

Raw p-values were defined according to a total number of hits and total compounds in each pathway. Holm p, p-value corrected by
Holm–Bonferroni method, FDR, false discovery rate; impact, the pathway impact value computed from pathway topology analysis.
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and (10) arginine and proline metabolism.

From the results of PAC and OPLS-DA, both treated groups of uRBCs-AG and uRBCs-
CQ exhibited distinct variations in their metabolites compared to the uRBCs-control group.
From the analysis of the perturbated metabolic pathways, ten metabolic pathways in
uninfected RBCs treated with AG have been determined as disturbed. On the other hand,
nine metabolic pathways in uRBCs treated with CQ were identified as disrupted metabolic
pathways. In this section, the suggested metabolic pathways are further discussed in detail.

2.6.1. Amino Acid Metabolism

In the human body, RBCs are the most abundant host cells. They represent a large
proportion of the free amino acids (A.A.) in the blood [42–44], due to the fact that mature
RBCs do not have nuclei, mitochondria, ribosomes, and other organelles and are unable
to synthesize new proteins [4,5]. Nevertheless, various A.A transport systems have been
identified in human RBCs, which permit the uptake of various exogenous biochemical
compounds, such as amino acids, carbohydrates, and inorganic ions [45] or endogenous
compounds, by the RBCs [34]. In addition, the transport system resembles those in other
cells [46]. The results of the present study show an increase in the concentrations of most
A.A. (such as arginine, alanine, threonine, valine, ornithine, glutamate, lysine, phenylala-
nine, methionine, glutamine, and proline) in the uRBCs exposed to CQ. The increased level
of A.A. in this group suggests that the chloroquine might inhibit the RBCs in the uptake of
some amino acids, thus increasing their levels [47]. Furthermore, the concentrations of the
A.A. mentioned above were observed to rise in the uRBCs exposed to AG. The high levels
of these A.A. in this group can be considered an early sign that the mechanism of action of
AG is associated with levels of A.A. The results of HCA showed that there is an evident
relationship between AG and CQ associated with a concentration of A.A. Therefore, it can
be suggested that AG and CQ may have the effect of increasing the levels of A.A. of RBCs.
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2.6.2. Glutathione Metabolism

The current study results reveal a significant increase in the level of GSH in the
uRBCs exposed to AG compared to the group of uRBCs exposed to CQ. Glutathione
(GSH) is a tripeptide of low molecular weight, and it is well-known that GSH performs a
crucial protective role versus oxidative processes, which damages the hemoglobin function
and results in RBCs’ lysis [48,49]. In order to evaluate redox status, the antioxidants
GSH and GSSG were previously determined and characterized by 1H-NMR in healthy
RBCs [50–52]. The results of the current study reveal the differences in the levels of GSH
in the treated groups, a result which is in alignment with Rossi et al.’s (2002) [53]. AG
is one of the bioactive compounds of A. paniculate as a labdane diterpenoid derivative.
Several publications have revealed the biological properties of AG, such as antimicrobial,
anti-inflammation, and antioxidant [19,54]. The increase of GSH level can possibly be
associated with the antioxidative property of AG. Moreover, these increases may be as
a result of a conversion of GSSG to GSH [41]. It is known that the synthesis of GSH
requires three amino acids, viz. glutamate, cysteine, and glycine, as well as two enzymes,
glutamate-cysteine ligase (GCL) and GSH synthetase, which require ATP [48,55]. From the
results, these A.A. were determined to be present at a high concentration, which in turn
contributes to the increased synthesis of GSH.

2.6.3. Carbohydrate Metabolism

The results showed high levels of glucose, ribose, and fructose in the uRBCs exposed
to AG group compared to those in the uRBCs group. Meanwhile, the levels of glucose and
fructose metabolites were high in the uRBCs exposed to CQ group. Such findings suggest
that AG and CQ might affect the pathways associated with carbohydrate metabolism. The
metabolism of carbohydrates is the most essential metabolic pathway, including glycolysis
and gluconeogenesis, pyruvate metabolism and citrate cycle (TCA), due to its role in
controlling and modulating the production of cellular energy in organisms. For example,
the catabolism of glucose produces pyruvate with its derived ATP and NADH via the
glycolysis pathway, which usually needs aerobic conditions for the conversion process to
the acetyl-CoA essential for the TCA cycle [56]. In anaerobic conditions, glucose produces
pyruvate, after which it is reduced to lactate [57]. As mentioned earlier, the metabolic
pathways were identified as metabolic disturbances after exposure of the uRBCs to AG.
These disorders in uRBCs may be attributed to AG (Table 2). Moreover, the results showed
a notable increase in the level of lactate in both treated groups, uRBCs-CQ and uRBCs-AG,
respectively, compared to the uRBCs group (Figures 9 and 11). This is probably because
of the increased lactate metabolism and the change in energy metabolism from glucose to
lactate in the glycolysis pathway [57].

3. Materials and Methods
3.1. Chemicals and Consumables

Human O- erythrocytes, Roswell Park Memorial Institute medium (RPMI-1640)
medium (1X) with sodium bicarbonate, Albumax II was procured from Gibco BRL (Grand
Island, NY, USA). HEPES, triton X-100, EDTA, saponin, sorbitol, hypoxanthine, (100X)
phosphate buffered saline (PBS), chloroquine diphosphate (CQ), NMR solvent: deuterium
oxide 99.9% (D2O), trimethylsilyl-2,2,3,3-tetradeuteropropionate acid sodium salt (TSP),
potassium hydroxide (KOH), and potassium dihydrogen phosphate (KH2PO4) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Andrographolide compound C20H30O5
(Cat. No.: M16-11074), presented in Figure 16, was also obtained from Sigma-Aldrich. Gen-
tamicin, sodium deuteroxide solution (NaOD), sodium chloride (NaCl) and hydro-chloric
acid (HCl) were purchased from Jiangxi Dongxu Chemical Technology Co., Ltd, Kuala
Lampur, Malaysia.
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3.2. Blood Collection and Preparation for Culture

The first author donated uninfected RBCs (type O- negative) under the supervision of
a hematologist. The blood was combined with citrate phosphate buffer as an anticoagulant
(1:9 anticoagulant/blood). The blood was then washed three times with washing medium
to remove plasma and white blood cells before being resuspended to generate an RBC
suspension. In the washing media with RPMI-1640, the following combination was used,
including 25 mM HEPES (4-(2-hydroxyethyl)-1-piperazine-ethan-sulphonic acid) buffer
(pH 7.4), 24 mM sodium bicarbonate, 11 mM glucose, and 50 g/L gentamicin. The usual
blood washing process was used as previously described [53].

3.3. In-Vitro Cell Culture of Uninfected RBCs

The uRBCs were cultured as described by Trager and Jensen [58] and suspended in
complete RPMI-1640 malaria culture medium (cMCM) containing 25 mM HEPES, 0.75 mM
hypoxanthin, Albumax 5%, 24 mM sodium bicarbonate, 11 mM glucose, and 20 µg/mL
gentamicin at pH and hematocrit levels of 7.4 and 2%, respectively, in 75 cm2 tissue culture
flasks. After that, all cultures were incubated at standard conditions for parasite cultivation
in a micro-aerophilic environment containing 5% CO2 at 37 ◦C. The medium was changed
daily. Before the drug exposure commenced, the uRBCs were established at 2% hematocrit.
The first group was the untreated uRBCs cultures flasks which served as a control. The
second group was uRBCs treated by exposure to AG at a concentration of 4.14 µM, which
represented the IC50 of AG (the concentration of AG that inhibits malaria parasite growth
at 50%), and the last group was uRBCs treated by exposure to CQ at a concentration of
20.19 nM (the concentration of CQ that inhibits malaria parasite growth at 50%), the IC50
of both AG and CQ were obtained from a previous study [59]. Next, the samples were
collected from the control and uRBCs-CQ after 12 h of drug exposure. The uRBCs-AG were
collected after 24 h; 12 and 24 h were the initial times of action of CQ and AG against the
P. falciparum 3D7, which was determined in a previous study [59], respectively. For each
group, five culture flasks were prepared, and the procedure was repeated three times.

3.4. The Extraction of Metabolites of Uninfected RBC

The uRBCs were extracted as described by Pertinhez et al. [16]. After 12 h and 24 h
of drug exposure, the supernatant was removed from the cultures after centrifugation
at 2000 rpm for 5 min at 4 ◦C. Then, the pellets of untreated uRBCs as well as treated
uRBCs were individually washed in the 0.9% NaCl/10 mM phosphate buffer (pH 7).
Following this procedure, the supernatant was discarded after centrifugation as stated
earlier. This step was repeated twice. Subsequently, the samples were lysed through a
cycle of freezing at −80 ◦C, thawed at 37 ◦C, vortexed for 20 s, and finally sonicated for
30 s. The procedure was repeated three times. Next, the proteins and membranes of all
samples were excluded by ultrafiltration using a 5 kDa cut-off filter [60]. All the samples
were centrifugated through a 5 kDa cutoff, and filtered at 14,000 rpm for 30 min at 4 ◦C [16].
Subsequently, 400 µL from each sample was transferred to an Eppendorf tube and mixed
with 200 µL of phosphate buffer solution (KH2PO4) containing 0.1% trimethylsily l-2,2,3,3-
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tetradeuteropropionate acid sodium salt (TSP) in D2O (pH~7.4). A volume of 550 µL from
each solution was transferred into a 5mm NMR tube. The NMR tubes were marked and
subjected to 1H-NMR.

3.5. H-NMR Spectroscopy Analysis

All NMR spectra were acquired at 499.887 MHz on a 500 MHz Varian INOVA NMR
spectrometer (Varian Inc., California, USA). The spectral analysis was carried out at room
temperature with presaturation setting to suppress the residual water signal. Then, the
transverse relaxation time of T2 measurement CPMG (Carr–Purcell–Meiboom–Gill) experi-
ment was performed using the following parameters: (δ = 0.0002); (big δ = 0.4); a number
of transient (n = 256 scans), and relaxation delay RD (D1 = 0.5 s). The CPMG spectrum
was obtained in 16 min and 1 s. The CPMG experiment can reduce the broad signals of
macromolecules and minimize the intensity to obtain a much better spectral baseline [61].
The TSP was used as the internal reference for the calibration of chemical shift at δ 0.0 ppm.

3.6. Processing Data of 1H-NMR Spectra and Metabolite Identification

One-dimensional (1D) 1H-NMR spectra were achieved on 500 MHz NMR spectrom-
eter. All NMR spectra were processed by phased, baseline corrected, and calibrated to
the internal standard (TSP) at 0.00 ppm. The NMR spectra were converted to ASCII files
using Chenomx NMR suite software 7.5 (Chenomx Inc., Edmonton, Alberta, Canada). The
NMR spectra were binned into 245 bins in the width of 0.04 ppm with the omission of
the water region from (δ 4.75–4.90 ppm). MestReNova 6.0.2 software (Mestrelab Research,
Santiago de Compostela, Spain) was used to process and assist for biomarker identification.
The metabolites were identified by matching their signals with the library of Chenomx
NMR database (version 7.5), recent publications on human blood and human serum
metabolome [2,17], and the Human Metabolome Database (HMDB); http://www.hmdb.ca
accessed on 14 March 2021 [62]. Afterwards, the NMR data were imported to the SIMCA-P
software package (version 14.1) accessed on 14 March 2021. Pareto scaling was used to
measure the data in order to reduce the effects of noise as well as make all metabolite
signals the same strength [38].

3.7. Statistical Analysis

For the analysis and determination of variation between untreated and treated uRBCs,
multivariate data analysis MVDA was used using the SIMCA-P software package (version
14.1). The data were analyzed and visualized by using an unsupervised statistical principal
component analysis (PCA) and supervised statistical orthogonal partial least squares-
discriminant analysis (OPLS-DA). In addition, the validation and significance of the model
were carried out using the SIMCA-P software, 100 permutation tests, CV-ANOVA test,
regression line, as well as the computation of R2Y and Q2Y values [38,40]. The heat
map for the correlation analysis metabolites was carried out using MetaboAnalyst 4.0
(http://www.metaboanalyst.ca) accessed on 20 March 2021 [40]. The variable importance
in projection (VIP) values of >1 [63] were used to determine the potential biomarkers in
OPLS-DA. The pathway analyses were performed using the MetaboAnalyst 4.0 together
with the Kyoto encyclopedia of genes and genomes (KEGG), and a database (http://www.
genome.jp/kegg/ExPASy) accessed on 1 March 2021. The one-way analysis of variance
(ANOVA) was performed using MetaboAnalyst. Tukey’s test was chosen as the post hoc
analysis method and p ≤ 0.05 was considered to be statistically significant, while the values
were expressed as mean ± SEM.

4. Conclusions

In conclusion, the experiments presented in this study were undertaken to determine
the pharmacological effects of andrographolide as well as chloroquine on the metabolic vari-
ations of uninfected red blood cells (uRBCs) in vitro using a 1H-NMR-based metabolomics
approach in combination with MVDA. Based on S-plot and VIP values, a total of 28 and

http://www.hmdb.ca
http://www.metaboanalyst.ca
http://www.genome.jp/kegg/ExPASy
http://www.genome.jp/kegg/ExPASy
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32 metabolites were identified as biomarkers in uRBCs-AG and uRBCs-CQ, respectively.
In uRBCs treated with AG, ten metabolic pathways were determined as affected metabolic
pathways, including riboflavin, D-glutamine and D-glutamate, phenylalanine, arginine
and proline, glutathione, pyruvate alanine, aspartate, and glutamate metabolisms as well
as arginine biosynthesis, citrate cycle, and glycolysis/gluconeogenesis. In contrast, in
CQ-treated uRBCs, nine metabolic pathways were determined as disturbed metabolic path-
ways, which were the same disturbed metabolic pathways mentioned above for uRBCs-AG,
except for glutathione metabolism. These findings suggest an evident relationship between
AG and CQ associated with metabolic perturbations in intact RBCs after being exposed
to the treatment. Our metabolomics results could allow valuable, comprehensive insights
into the underlying mechanism of action of AG and CQ on red blood cells.
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