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INTRODUCTION

Describing the spatial patterns formed by individuals in a 
population is one of the most important and widespread 
research activities across ecology. Knowledge of species- 
level spatial patterns is used to draw inferences about the 
possible underlying ecological mechanisms operating in 
populations and communities, design sampling schemes 
for characterising populations and identify general laws 
that are common across ecological systems (Brown, 1995; 
Diggle, 2013; Lawton, 1999; Magurran, 2011; Wiegand & 
Moloney, 2013). A diverse set of quantitative descriptions 

of intraspecies spatial patterns, here referred to as spa-
tial metrics, have been developed and are in widespread 
use.

At the most general level, such spatial metrics can be 
divided into three broad categories. The first category 
includes metrics that describe plot- based spatial scal-
ing, which is the change in some property of a popula-
tion with the area of a plot being surveyed. Perhaps, the 
most important of these scaling metrics is the occupancy 
area curve (He & Condit, 2007), which describes how the 
probability that a plot is occupied changes with the area 
of that plot (see also the related scale- area curve, Kunin 
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Abstract

The description of spatial patterns in species distributions is central to research 

throughout ecology. In this manuscript, we demonstrate that five of the most 

widely used species- level spatial patterns are not only related, but can in fact be 

quantitatively derived from each other under minimal assumptions: the occupancy 

area curve, Taylor's Law, the neighborhood density function, a two- plot variant 

of Taylor's Law and two- plot single- species turnover. We present an overarching 

mathematical framework and derivations for several theoretical example cases, 

along with a simulation study and empirical analysis that applies the framework to 

data from the Barro Colorado Island tropical forest plot. We discuss how knowl-

edge of this mathematical relationship can support the testing of ecological theory, 

suggest efficient field sampling schemes, highlight the relative importance of plot 

area and abundance in driving turnover patterns and lay the groundwork for fu-

ture unified theories of community- level spatial metrics and multi- patch spatial 

patterns.
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1998). The community- level species– area relationship is 
frequently constructed or predicted as the sum of these 
occupancy area curves across all species in the commu-
nity (e.g. Coleman, 1981; Green & Plotkin, 2007; Harte, 
2011; He & Legendre, 2002; Kitzes & Harte, 2014; Sizling 
& Storch, 2004). Shifting from occupancy to abundance, 
Taylor's Law is a well- established relationship between 
the mean and variance in the abundance of a species in a 
plot across plot areas (Taylor, 1961). Both temporal and 
spatial forms of Taylor's Law have been studied, with the 
relationship between variance and mean often found to 
resemble a power law with relatively universal parame-
ters across communities (Xiao et al., 2015).

The second broad category of spatial metrics is those 
that describe plot- based spatial turnover, which is the re-
lationship in some property of a population or commu-
nity between two plots separated by a known distance. 
For a single species, for example the joint probability that 
two plots are both occupied by a species can be defined 
as a two- plot analogue to the occupancy area curve. A 
single- species turnover metric can then be defined as this 
probability of joint occupancy divided by the probability 
that one of the two plots is occupied. Similar to the man-
ner in which occupancy area curves for all species sum 
to the species– area relationship, the sum of this single- 
species two- plot turnover metric across all species gives 
the Sorensen index of commonality or distance decay 
for that community (Soininen et al., 2007). Expanding 
again from occupancy to abundance, a two- plot variant 
of Taylor's Law for a species can be defined as the cova-
riance in abundance between pairs of plots as a function 
of the plot area and the distance between plots.

Finally, the third broad category includes spatial met-
rics that are not based on plots but are instead measured 
in continuous space. Unlike the previous two categories, 

which are most closely associated with spatial macro-
ecology, these metrics originate largely with the field of 
point pattern analysis (Diggle, 2013; Illian et al., 2008; 
Wiegand & Moloney, 2013). In ecology, perhaps the most 
frequently used single- species metrics of this type are 
Ripley's K, the O- ring or neighborhood density function 
and the pair- correlation function (Wiegand & Moloney, 
2004). Each of these related metrics reflects, in some 
manner, the probability that two discs of infinitesimally 
small area separated by some distance both contain a 
point, representing an individual of the species. A related 
metric in continuous space that mixes the single species 
and community perspectives is the probability that two 
individuals separated by a known distance belong to the 
same species, a relationship that has been derived for 
communities with a variety of dispersal kernels (Chave 
& Leigh, 2002).

The diverse spatial metrics described above are gener-
ally considered separately when describing species- level 
spatial patterns, and it is often presumed that the shapes 
of metrics in the three categories above represent distinct 
aspects of a species’ spatial distribution. In this manu-
script, we demonstrate that not only are all three cate-
gories of metrics mathematically related, but that with 
relatively minimal assumptions, knowledge of the shape 
of any one metric described above provides sufficient 
information to quantitatively derive the form of several 
other metrics. Below, we focus specifically on demon-
strating the mathematical relationships between five of 
these spatial metrics for a single species: the occupancy 
area curve, Taylor's Law, the neighborhood density func-
tion, the two- plot variant of Taylor's Law and two- plot 
turnover (Figure 1).

This analysis builds on prior attempts to uncover 
relationships between these and other similar spatial 

F I G U R E  1  Relationships between the five focal spatial metrics and the second- order intensity function. Arrows indicate mathematical 
relationships between specific metrics, which are indicated in schematic form in blue text. Red text summarizes the assumptions necessary 
for each mathematical relationship to hold. Grey arrows and text show the relationship between the focal single- species metrics and two 
community- level metrics, the species– area relationship and Sorensen commonality or distance decay (see Discussion)
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metrics. For example the relationship between the pair 
correlation function and the variance of abundance in a 
plot of fixed area, or covariance in abundance between 
two plots of a fixed area, has appeared in several ref-
erences (Diggle, 2013; Illian et al., 2008). Azaele et al., 
(2015) explored the relationship between the pair correla-
tion function and the spatial scaling of plot variance in 
the context of exploring species– area relationships and 
the spatial scaling of species- abundance distributions. 
Focusing more specifically on only single- plot metrics, 
He and Gaston (2003) describe the relationship between 
Taylor's Law and the occupancy area curve. This rela-
tionship is also implicitly used in constructing the sam-
pled species– area relationship from a species abundance 
distribution (Green & Plotkin, 2007; He & Legendre, 
2002; Kitzes & Harte, 2014).

At the community level, several efforts have been made 
to link the species– area relationship to overlap in spe-
cies composition between two plots, the community- level 
equivalent to relating the occupancy area curve to two- 
plot single species turnover across scales (Harte & Kinzig, 
1997; Hui, 2009; McGlinn & Hurlbert, 2012; McGlinn 
et al., 2015; Tjørve & Tjørve, 2008). These efforts, however, 
have only succeeded in deriving this relationship for pairs 
of plots that share a common side or that touch at a cor-
ner, with any further relationships requiring assumptions 
of independence between plot abundances at certain areas 
or distances to complete the analysis.

We begin below by outlining the general mathemat-
ical framework that unites the five core spatial metrics 
named above. To demonstrate the framework, we derive 
analytical expressions and approximations for several 
theoretical examples in which knowledge of one spatial 
metric is used to derive the form of the remaining four. 
We then present the results of both simulation and em-
pirical analyses showing the ability of the framework to 
link the shapes of the five spatial metrics in practice. We 
then discuss ways in which this newly developed frame-
work supports more robust testing of ecological theory, 
suggests different and potentially more efficient field 
sampling schemes and demonstrates the importance of 
plot area and species abundance in driving measures of 
turnover. We conclude with several future directions for 
expanding this framework to the community level and to 
multi- patch spatial patterns.

M ETHODS A N D RESU LTS

General framework

Consider a large landscape containing many individuals 
of a single species. The location of each individual is rep-
resented by a point, and this set of points forms a point 
pattern that is defined within the landscape. We assume 
that the point pattern is (1) orderly, such that no two 
points can occur at the same location, (2) homogeneous, 

such that the statistical properties of the pattern, par-
ticularly the first- order and second- order intensity (de-
fined below), are the same across the entire landscape 
and (3) isotropic, such that there is no directionality in 
the pattern. Together, these three common assumptions 
define a “well- behaved” point pattern. One or more plots 
or quadrats of area A that are small relative to the land-
scape area may be located within this landscape.

In all equations below, we use the notation F (x), where 
F  may be a Greek or upper case Roman letter, to denote 
a metric or intermediate variable whose shape is a func-
tion of one or more variables x. We reserve the notation 
P(X = Y ) specifically for the probability that a random 
variable X  takes the value Y .

There are many methods of describing point patterns 
quantitatively (Illian et al., 2008; Wiegand & Moloney, 
2013). Three intermediate statistics will be central to the 
framework presented here (see Supporting Information 1 
for formal definitions). The first intermediate statistic is 
the pattern's first- order intensity, �, which describes the 
overall density of points in the landscape and can be calcu-
lated as the number of points in the entire pattern divided 
by the area of the landscape. The second intermediate sta-
tistic is the second- order intensity, �2(r), which represents 
the probability that two locations separated by distance 
r both contain a point. The third intermediate statistic is 
the quadrat count distribution (Diggle, 2013) or species- 
level spatial abundance distribution (Harte, 2011), P(n |A), 
which describes the probability of observing n individuals 
in a plot of area A that is small relative to the landscape. 
A two- plot joint quadrat count distribution for the simul-
taneous abundance in two plots, each of area A, can be 
defined as P (n, n′|A,D), where D is the distance between 
the nearest edges of the two plots.

The focus of this manuscript is on the relationship 
between five single- species spatial metrics: the occu-
pancy area curve, Taylor's Law, the neighborhood den-
sity function, the two- plot variant of Taylor's Law and 
two- plot turnover. The mathematical relationships be-
tween these five metrics are shown in summary form in 
Figure 1, with equations defining the exact relationships 
given below. The five spatial metrics, the intermediate 
statistics named above and other key variables are also 
illustrated graphically in Figure 2.

The five spatial metrics are linked in part by the 
three intermediate statistics described above (Figure 1). 
Beginning with the second- order intensity function, the 
neighborhood density function or O- ring, Ω(r), can be 
calculated as (Wiegand & Moloney, 2013)

Several other related spatial metrics, including the 
pair correlation function and Ripley's K, can also be eas-
ily calculated from the second order intensity (Wiegand 
& Moloney, 2004, 2013).

(1)Ω(r) =
�2(r)

�
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The second- order intensity can then be linked to 
the quadrat count distribution as follows. First, the ex-
pected number of pairs of points in a plot, E[R], can be 
expanded to E[R]  =  E[n(n– 1)]  =  E[n2]– E[n]=σ2– μ  +  μ2 
where n is a random variable representing the number of 
points in a plot and � and σ2 are the mean and variance 
of the quadrat count distribution. Second, the quantity 
E[R] can also be calculated as a double integral of the 
second- order intensity function over all possible loca-
tions of points in the plot (see Supporting Information 
1). Following the notation of Diggle (2013), the rela-
tionship between the variance of the quadrat count dis-
tribution and the second- order intensity is then

where L is the region covered by a plot of area A, dx1 and dx2 
are two discs located at x1 and x2 within L, r is the distance 
between the two discs and the integrals are over all possible 
locations within L (Diggle, 2013). This equation can be used to 
calculate Taylor's Law, which relates σ(A)2 to �(A).

Extending the second- order intensity to the case of two 
disjoint plots, a two- plot variant of Taylor's Law can be 
defined as the covariance, C(A,D), in abundance between 
two plots as a function of both plot area A and the distance 
between the plots D. The relationship between the two- plot 
Taylor's Law and the second- order intensity can be derived 
using similar logic to the above as (Diggle, 2013)

where L and L′ are the regions covered by two plots, 
both of area A, and other definitions are as above. 
Here x1 is constrained to lie in L and x2 is constrained 
to lie in L′.

Turning finally to plot occupancy, the probability 
that a single plot of area A is occupied, Ψ(A), is given by

where P(n = 0 |A) is the probability of a plot of area A 
containing zero individuals, which is given by the quadrat 
count distribution. The relationship between the probabil-
ity of plot occupancy and area is known as the occupancy 
area curve (He & Condit, 2007).

Similar to the Sorensen index of community turnover 
or distance decay (Soininen et al., 2007), two- plot turn-
over for a single species can be defined as the probability 
that two plots of area A separated by distance D are si-
multaneously occupied, divided by the probability of a 
single plot being occupied,

(2)�(A)2 − �(A) + �(A)2 = ∫
L
∫
L

�2(r)dx1dx2

(3)C(A,D) + �(A)2 = ∫
L
∫
L�

�2(r)dx2dx2

(4)Ψ(A) = 1 − P(n = 0 |A)

(5)
T (A,D) =

P(n>0, n�>0|A,D)
P(n>0|A)

= 2+
P(n=0, n� =0|A,D)−1

Ψ (A)

F I G U R E  2  Graphical illustration of five focal spatial metrics, three intermediate statistics and supporting variables. The five focal spatial 
metrics are shown in solid red boxes near multiple plots of area A containing n individuals each (σ(A)2, Ψ(A)), pairs of plots of area A separated 
by distance D containing n and n′ individuals respectively (C(A,D), T (A,D)), or pairs of locations separated by distance r that may each either 
contain an individual or not (Ω(r)). Three intermediate statistics used to calculate these metrics are indicated in dashed blue boxes: the first- 
order intensity �, the second- order intensity function �2(r) and the quadrat count distribution P (n, n′). Image Credit: Shenandoah National 
Park, Virginia. Alexandra Fries, Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.
edu/imagelibrary/)
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where P(n = 0, n′ = 0|A,D) is the joint probability that both 
plots are empty. This turnover metric can also be inter-
preted as the conditional probability that one plot is occu-
pied, given that the other is occupied.

The first assumption required to use this frame-
work, as described above, is that the point pattern 
defining individual locations is orderly, homogenous 
and isotropic. A second required assumption is a para-
metric form of the quadrat count distribution, which is 
needed to predict univariate and bivariate probabili-
ties of occupancy. The framework as presented here re-
quires a bivariate quadrat count distribution that can 
be parameterized with a vector of means and a cova-
riance matrix, but which can otherwise take any para-
metric form. The univariate distribution for a single 
plot is then the marginal distribution of this bivariate 
distribution.

We follow previous investigators (Green & Plotkin, 
2007; He & Legendre, 2002) in assuming a negative bi-
nomial distribution for the quadrat count distribution. 
The standard bivariate negative binomial distribution, 
however, does not allow for the specification of an ar-
bitrary covariance independent of the mean and vari-
ance of the marginal distributions (Dunn, 1967; Johnson 
et al., 1997). As such, we construct an alternative bivar-
iate negative binomial distribution as the sum of three 
independent underlying negative binomial distributions, 
which describe the sizes of a population of individuals 
occurring in the first plot independently of the second, 
a population of individuals occurring in the second plot 
independent of the first and a population of individuals 
with identical size occurring in both plots (Supporting 
Information 1).

In the results below, units are defined such that � = 1, 
or equivalently such that a plot of area 1 has an expected 
abundance of 1 individual, which ensures that �(A) = A 
(see Supporting Information 1). As such, variation in 
plot area is equivalent to variation in expected abun-
dance within a plot of fixed physical area.

Theoretical examples

As described above, this unified framework can be 
used to derive any four of the five spatial metrics given 
knowledge of the fifth. We demonstrate this math-
ematical relationship with several concrete theoretical 
examples, in which the exact form of one metric is as-
sumed and the forms of the remaining four metrics are 
derived.

We first consider the case where a species exhibits a 
power law form of Taylor's Law, which is well- established 
both in space and time (Xiao et al., 2015) and takes the 
form

where a is a constant often in the range of 0.1 to 100 and 
b is a constant commonly ranging from 1 to 2 (see Xiao 
et al., 2015 for examples and plots). We consider a one- 
dimensional case, which might represent a length of a river 
or a time sequence, as well as a two dimensional case.

We next consider a community for which the second- 
order intensity function takes the form of a Gaussian 
function, such that

A Gaussian second- order intensity function is a par-
ticularly common assumption in point pattern analysis, 
as several Poisson cluster models (Wiegand & Moloney, 
2013) have a second- order intensity of this form (see 
below).

Finally, we calculate the shapes of all five spatial met-
rics in the case of complete spatial randomness (CSR). 
CSR can be understood as a limiting case of the exam-
ples above in which a = 1 and b = 1 or � = 0.

Expressions for Taylor's Law, the neighborhood 
density function and the two- plot Taylor's Law vari-
ant for four theoretical examples are shown in Table 1. 
These expressions can be combined with the general 
equations for the occupancy area curve (He & Gaston, 
2003)

and the equation for two- plot turnover

to calculate these remaining two metrics for each the-
oretical example.

Figure 3 illustrates the two- dimensional examples in 
Table 1 graphically for the particular parameter values of 
a = 0.88 and b = 1.51 for the Taylor's power law examples, 
reflecting the median values of these parameters from a 
recent review (Xiao et al., 2015, Xiao Xiao pers comm) 
and � = 2.30 and � = 0.71 for the Gaussian second- order 
intensity example, which are equal to the median val-
ues of these parameters across 171 species in the Barro 
Colorado Island dataset (see below). For the two- plot 
Taylor's Law and turnover, the metrics are shown as a 
function of distance D for a fixed plot area A = 1.

Simulation study

We next test our mathematical framework by using a 
Thomas process model (Morlon et al., 2008; Wiegand 
& Moloney, 2013) to generate simulated species (6)�(A)2 = a�(A)b

(7)�2(r) = �e−�r2 + 1

(8)Ψ (A) = 1 −

(
A

�(A)2

) A2

�(A)2 −A

(9)T (A,D) = 2 +
1

Ψ (A)

⎡⎢⎢⎣

�
A

�(A)2

� A2(2�(A)2 −C(A,D))

�(A)2(�(A)2 −A)

− 1

⎤⎥⎥⎦
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distributions (see Supporting Information 3 and 4). The 
Thomas process is a Poisson cluster model in which clus-
ter centres are located by a Poisson process with intensity 
�, the number of individuals per cluster is drawn from 
a Poisson distribution with mean � and the location of 
individuals within a cluster is defined by a bivariate nor-
mal distribution with variance σ2 around a cluster center.

The pair correlation function of the Thomas process, 
which is equal to the second- order intensity �2(r) in the 
scaled units used in our analysis (see Results), is given by 
the Gaussian function (Wiegand & Moloney, 2013)

In the notation above, � = 1∕4���2 and � = 1∕4�2 for 
this particular point process model.

We simulate point patterns for each of three idealized 
‘species’. We chose parameters for each idealized species 
based on empirical data from the Barro Colorado Island 
(BCI) tropical forest plot (see below). We began by divid-
ing the species at BCI into three abundance tertiles. We 
fitted Thomas process models to each BCI species using 
the thomas.pcf function in the spatstat package in R 
(Baddeley et al., 2015; R Core Team, 2020), and then ex-
tracted the median values of landscape- wide abundance 
n, � and � for low (n = 108, � = 4.5, � = 3.8), medium 
(n = 432, � = 2.7, � = 0.8) and high (n = 1856, � = 1.0, 
� = 0.1) idealized species. These parameters were used to 
simulate 200 replicate point patterns for each idealized 
species in a 500 m by 1000 m landscape, matching the 
dimensions of the BCI plot.

For each simulation, we directly evaluate the shape of 
all five spatial metrics. An intermediate- sized small plot 
of side length 25 m is used for calculations of two- plot 
Taylor's Law and turnover, which are evaluated as func-
tions of interplot distance D holding plot area constant. 
For each idealized species, we then calculate the median 
value of the metric at each A or D across all 200 simula-
tions and use this median metric for comparison to the-
oretical predictions.

We generated theoretical predictions for each metric 
by using the equations derived for a species exhibiting 
a Gaussian second- order intensity function, along with 
known values of � and � from the simulations. In re-
viewing the simulated data, however, we found that the 
median fitted � and � parameters or each idealized spe-
cies deviated slightly from the target values for the low 
(� = 5.1, � = 4.8) and medium (� = 2.9, � = 0.9) species. 
We used these recovered parameter values to generate 
predictions for these idealized species.

Boswell and Patil (1970) note that under some con-
ditions, the negative binomial is a good approximation 
for the quadrat count distribution in a Poisson cluster 
model with a Gaussian neighborhood density function. 
However, as this relationship is not exact, we expect 

(10)�2(r) =
exp( − r2∕4�2)
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greater deviation between simulations and predictions 
for the occupancy area curve and turnover metric, the 
two spatial metrics that rely on the assumption of a neg-
ative binomial quadrat count distribution.

Figure 4 shows the results of this simulation study, 
which demonstrate that the median values of Taylor's 
Law, the neighborhood density function and two- plot 

Taylor's Law from the simulated data very closely match 
the associated theoretical predictions for all three ideal-
ized species. For the occupancy area curve and turnover, 
the theoretical predictions deviate more from the empir-
ical results, as expected given that the negative binomial 
quadrat count distribution is only an approximation for 
this point process model. In particular, the theoretical 

F I G U R E  3  Example shapes of five spatial metrics calculated for three theoretical examples. In each example, the shape of one of the five 
metrics is assumed and the remaining four metrics are calculated using equations and parameters described in the text. Examples are Taylor's 
power law in two dimensions (black solid line), a Gaussian second- order intensity function (dashed line) and complete spatial randomness (grey 
solid line). See Table 1 and main text for equations. Subplots showing each of the five metrics are located in the same relative positions as in 
Figure 1

F I G U R E  4  Results of simulation study. Each subplot plots one spatial metric for Thomas process simulations of low (orange), medium 
(green) and high (blue) idealized species. Light colored solid lines show median values of the metric for each species calculated directly from 
200 replicate simulations, and dark dotted lines show the theoretical predictions for each metric based on known simulation parameters. Larger 
deviations between simulations and theoretical predictions for the occupancy area curve and turnover metrics reflect violations of framework 
assumptions for these metrics (see text)
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predictions systematically overestimate the values of 
both metrics for all three idealized species, indicating 
that the simulated point patterns are more spatially ag-
gregated than predicted by this theoretical framework. 
When considering variation across simulations within 
a species (Figure S1 in Supporting Information 1), the 
three idealized species have clearly distinguishable 
shapes of the neighborhood density function, two- plot 
Taylor's Law and turnover metrics. Simulated Taylor's 
Law and occupancy area curves, in contrast, are largely 
overlapping across species, indicating that it would be 
difficult in practice to use the shape of these two metrics 
to infer the shape of the other three metrics for this par-
ticular point process model and parameter choices.

Empirical study

Finally, we test the applicability of our framework to an 
empirical data set using data from the Barro Colorado 
Island tropical forest plot (Condit et al., 2019). Using 
the 2015 census, we consider 171 tree species with 70 or 
more living individuals (see Wiegand & Moloney, 2013). 
We directly measure the shapes of all five spatial met-
rics for each species, using a square plot with a 25 m side 
length for metrics involving both plot area and interplot 

distance. For each species and metric, we then fit the cor-
responding equation for that metric for a species with 
a Gaussian second- order intensity, which gives one esti-
mated value of � and � for each combination of species 
and metric (see Supporting Information 3 and 4).

A key result of the mathematical framework proposed 
here is that the five spatial metrics for any species are 
related in a predictable manner. To test this assertion, 
we calculate Spearman's rank correlation coefficients 
for the � and � parameters estimated from each possible 
pair of spatial metrics for all species in the community. 
This coefficient measures the strength of the linear re-
lationship between the ranks of species’ parameter val-
ues within the community as estimated from two spatial 
metrics. Under the null hypothesis in which the shapes 
of two spatial metrics are independent of each other, this 
coefficient would be statistically insignificant and near 
zero. In contrast, a positive and statistically significant 
coefficient for any two spatial metrics indicates that 
there is a correlation between parameter values calcu-
lated using those two metrics, as would be expected if the 
mathematical framework is able to use the shape of one 
spatial metric to predict the shape of the other.

Figure 5 shows results from this empirical study using 
data from the Barro Colorado Island tropical forest plot. 
These results show that fitted values of � and � have 

F I G U R E  5  Results of empirical analysis of Barro Colorado Island data. Each subplot shows the correlation between the � (top right) or � 
(bottom left) parameters fitted from a pair of spatial metrics for 171 tree species at Barro Colorado Island. Blue text in each subplot gives the 
Spearman's rank correlation coefficient for each pair of metrics. P- values for all Spearman's coefficients are <1e- 13 for � and <1e- 6 for �.  
The scatter in these pairwise correlation plots can be attributed in part to the observation that a Gaussian second- order intensity is only an 
approximation for the spatial distributions of many of the BCI species (compare to variation observed in Morlon et al., 2008)
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relatively strong, positive and statistically significant 
correlations across all possible pairs of metrics, indi-
cating that the equations predicted by this framework 
can be used to identify biologically and statistically sig-
nificant relationships between the shapes of the spatial 
metrics (P- values for all Spearman's � are <1e- 13 for � 
and <1e- 6 for �). As units for each species were scaled 
such that � = 1, these correlations do not reflect simply 
a variation in abundance between species. Overall, the 
correlations involving Taylor's Law and the two- plot 
Taylor's Law are the weakest, suggesting that in practice, 
the shape of the remaining spatial metrics will not be as 
well- predicted from knowledge of these particular met-
rics. Figures SI1.3– 6 provide additional information on 
how variation in � and � parameters relate to the shapes 
of each of the five metrics.

DISCUSSION

The framework above demonstrates the mathematical 
relationships between five important spatial metrics 
that are frequently considered separately. Expressing the 
quantitative relationships between these metrics requires 
two general assumptions. Deriving the relationship be-
tween Taylor's Law, the neighborhood density function 
and two- plot Taylor's Law requires the assumption that 
the point pattern is orderly, homogeneous and isotropic. 
Relating these three metrics to single- plot occupancy 
and two- plot joint occupancy additionally requires the 
assumption of a parametric form for the bivariate quad-
rat count distribution, which we here assume to be nega-
tive binomial. As shown above, the ability to predict one 
metric from the known shape of another in practice will 
depend on several factors, including the extent to which 
a species’ point pattern meets these two assumptions, the 
sensitivity of the shapes of empirical metrics to changes 
in parameter values, which empirical metric is used to 
estimate parameters, and the ability to statistically re-
cover accurate empirical parameter values from a point 
pattern.

The equivalence of area units and species density in 
the framework above highlights the additional observa-
tion that there is only a single, universal set of spatial 
metrics for any set of species that share one of the met-
rics. For example all species exhibiting a Taylor's power 
law with the same a and b parameters will exhibit identi-
cal parametric forms of all five spatial metrics, regardless 
of their density or abundance, with the exact numerical 
form of the metric scaled by a constant (see Supporting 
Information 1).

This mathematical relationship leads to at least four 
important implications for both basic and applied ecol-
ogy. First, from the perspective of theory testing, this 
framework highlights that a theory that predicts one of 
the five metrics above also inherently makes predictions 
about the other four metrics. This provides an additional 

means of testing such theories with empirical data. As 
one concrete example, the Maximum Entropy Theory 
of Ecology predicts that the quadrat count distribution 
will take the form of a geometric distribution across 
spatial scales, a prediction that appears broadly consis-
tent with empirical data (Harte, 2011; Harte & Newman, 
2014; Harte et al., 2008). An application of the framework 
above, however, shows that this assumption leads to the-
oretically and empirically implausible forms of both the 
second- order intensity function and the correlation in plot 
abundance with distance (Supporting Information 1).

Second, from the perspective of experimental design, 
this framework highlights that, at least in principle, data 
collected using one sampling scheme can be used to de-
termine the shape of metrics that have traditionally been 
thought to require a different sampling approach. One 
useful translation would be to use nested measurements 
of plot abundance for a species, a type of data used to 
construct nested species– area relationships, to predict 
the second- order intensity function or single- species 
turnover, two metrics that otherwise require spatially 
explicit data to measure directly. The simulation study 
above suggests that this particular translation may be 
error- prone given the overlap in Taylor's Law across pa-
rameter sets. In contrast, however, the empirical study 
suggests that among a large group of species, the shape 
of Taylor's Law does have significant predictive power 
in inferring the shape of other distance- based spatial 
metrics.

Third, from the perspective of spatial ecology, the 
shape of the predicted single- species turnover metrics 
highlights the potentially pervasive dominance of area 
over distance in determining spatial turnover. Although 
turnover is often analyzed in terms of the distance be-
tween plots, the equations above demonstrate that plot 
area may have a stronger influence on the value of these-
metrics than interplot distance. Figure SI1.2 shows that 
for the two- dimensional Taylor's power law and Gaussian 
second- order intensity examples, the turnover metric is 
more strongly influenced by plot area than by distance, 
particularly when the plot area is relatively large. Since 
the community- level Sorensen index is the sum of the 
individual species turnover metrics, this result suggests 
that the shape of the species abundance distribution in 
a community may be the dominant influence on com-
munity turnover, rather than the distance between two 
plots. We note that this finding rests on the assumption 
that a species’ point pattern is homogenous, stationary 
and isotropic, an assumption that may break down at 
larger spatial scales where habitat heterogeneity and gra-
dients become more prominent.

Finally, from the perspective of theory development, 
this framework lays the groundwork for future theories 
that can relate spatial metrics at the community level. 
For example, the single- species framework presented 
here could be extended to the community level through 
the addition of a metacommunity species abundance 
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distribution. Using the assumption of spatial indepen-
dence between species that is common to many mac-
roecological theories (see McGill, 2010), a species– area 
relationship can be constructed as the sum of occupancy 
area curves across species, and two- plot community- 
level turnover can be calculated as the sum of the single- 
species turnover metric across species. This would allow 
for a new method for examining the general relationship 
between shapes of the species– area relationship and two- 
plot turnover, a relationship that has been an important 
topic of research in spatial macroecology (Harte, 2011; 
Harte & Kinzig, 1997; Hui, 2009; McGlinn & Hurlbert, 
2012; McGlinn et al., 2015; Tjørve & Tjørve, 2008). 
Similar community- level metrics can be constructed in 
continuous space by summing second- order intensities 
across species (Chave & Leigh, 2002).

Another community- level expansion of this frame-
work lies in the construction of a multi- plot species– 
area relationship. To begin, note that the probability 
that a species is simultaneously absent from both of a 
pair of plots is part of the calculation of the two- plot 
turnover metric above. This probability depends both 
on plot area and the distance between plots. As above, 
a metacommunity abundance distribution can be used 
with this probability to construct a species– area rela-
tionship for a pair of plots separated by a fixed dis-
tance as the area of either or both plots change. This 
logic can be further generalized to a landscape with 
more than two plots, where any given plot may change 
in area, where the network- wide probability of pres-
ence is calculated using a vector of means and cova-
riance matrix for the abundance of each species in the 
network. In this more general case of the species– area 
relationship, the change in species richness with the 
area will depend on the particular location within the 
network where the area is added or subtracted.

To support the expansion of this framework, several 
of the assumptions made above could be relaxed. The 
negative binomial quadrat count distribution could be 
replaced by other distributions that can be parameter-
ized from plot mean, variance and covariance, such as 
the lognormal distribution (Limpert et al., 2001; Yue, 
2002). The assumption of homogeneity could be re-
laxed by instead assuming that the observed point pat-
tern is second- order intensity- reweighted stationary 
(Baddeley et al., 2000), a type of pattern that is created 
when an otherwise homogeneous pattern is thinned 
according to an intensity layer. Methods exist for re-
covering the underlying properties of, for example 
the second- order intensity function from such a pat-
tern given knowledge of the additional thinning layer 
(Baddeley et al., 2000; Wiegand & Moloney, 2013). The 
results from this second- order intensity- reweighted 
framework could be compared to those from the cur-
rent framework in order to evaluate the importance 
of heterogeneity on the quantitative relationships be-
tween the five spatial metrics.

In summary, this work presents a mathematical frame-
work demonstrating the relationships between five species- 
level metrics of spatial pattern: the occupancy area curve, 
Taylor's Law, the neighborhood density function, a two- plot 
variant of Taylor's Law and two- plot turnover. This frame-
work presents new avenues for theory testing, expands inves-
tigators’ options for spatial sampling and demonstrates the 
importance of plot area in driving patterns of turnover. The 
results also lay the groundwork for expanded, unified spa-
tial theories that explicitly incorporate habitat heterogeneity 
and fragmentation at the community level.
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