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Simple Summary: Did you ever wonder why some tissues can produce very aggressive types of
cancer whereas others are apparently immune to this devastating disease? One of the most accepted
theories in the scientific community states that tumors are fueled by small numbers of key master cells
called cancer stem cells, which mediate tumor relapse and metastasis. Much effort has been made
to identify these cells by the characterization of their defining markers, in an attempt to eliminate
these cells selectively. However, many of these markers are also present in other healthy stem cells in
the body, including those found in some tissues like the dental pulp, which is known to be highly
resistant to carcinogenesis. This brings up the question of whether there is indeed a genuine marker
that can be used to unequivocally identify cancer stem cells. We set out to address this question
by a systematic comparison of healthy stem cells and cancer stem cells of different body locations,
and we discuss some key factors that play a role in the resistance of certain types of stem cells to
malignant transformation.

Abstract: The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie
tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from
the malignant transformation of resident multipotent stem cells, which are present in most human
tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers,
contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this
review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and
their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers,
including the expression of pluripotency core factors. We discuss some of their similarities and
differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity
to degenerate to CSCs. We also explore the characteristics of the events and mutations leading
to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs)
share a great deal of features with many of the so far reported CSC phenotypes found in malignant
neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant
tumors. This raises the question about the particularities of the dental pulp and what specific barriers
to malignancy might be present in the case of this tissue. These notable differences warrant further
research to decipher the singular properties of DPSCs that make them resistant to transformation,
and to unravel new therapeutic targets to treat deadly tumors.
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1. Introduction

Adult multipotent stem cells are responsible for renewing cell populations in the different organs of
the body. The physiology and proliferative activity of these very different populations of organ-specific
stem cells are adapted to fulfil the different requirements of the host tissue. Tissues differ markedly in
their rate of mature cell turnover: there exist some tissues with high cell turnover activity owing to
very high stem cell activity, whereas others have very low rates of cell turnover owing to a relative
scarcity and/or quiescence of their adult stem cell populations.

The intestinal epithelium is the tissue with the highest adult cell renewal rate in mammals [1].
Millions of enterocytes are shed from the gut every day, which have to be replaced with new cells.
The adult intestinal epithelium is constantly renewed by a population of cells located in the base of
the Lieberkühn crypts: the ISCs, or intestinal stem cells. These are adult multipotent stem cells that
respond very quickly to regenerative niche signals, and divide every 24 h to generate a new population
of transit-amplifying cells, which gradually migrate towards the top of the villi whilst differentiating
into different cell lineages [2]. The highly proliferative activity of ISCs allows for a practically complete
replacement of the intestinal villi and crypt epithelial cells in a period of a few days. This turnover
rate may be even accelerated in the case of presence of gut parasites, where it contributes to parasite
expulsion [3].

On the diametrically opposite scenario, we find the central nervous system (CNS) with a very low
self-renewal rate. Most cells in the brain and spinal cord are postmitotic neurons and glial cells. Indeed,
the very existence of neurogenesis in the adult human brain was widely questioned by the neuroscientific
community until very recently [4]. However, nowadays it is accepted that new neurons are generated
throughout the whole life of the human brain, by activation of endogenous neural stem cells, or NSCs [5].
This natural neuron renewal process takes places mainly in a region of the limbic system called the
hippocampus, a brain structure involved in memory consolidation [6]. Gliogenesis is known to be more
widespread than neurogenesis, and it can take place in both the gray and white matter parenchyma,
to ensure the renewal of postmitotic oligodendrocytes and astrocytes [7]. Both neurogenesis and
gliogenesis are known to be relatively quiescent processes in the healthy mammal CNS, but they increase
sharply after CNS injury [8,9]. However, there is controversy about whether the exacerbated activation
of NSCs and the consequent reactive gliosis following brain injury are harmful or beneficial events for
the restoration of normal CNS function [10].

Despite the great cellular and physiological differences between the healthy gut and CNS, both
organs can give rise to very aggressive types of cancers. Colorectal cancer (CRC) is one of the most
abundant cancers in the world and develops from the epithelial cells lining the colon or rectum of
the gastrointestinal tract. As in other tumors, colon cancer cells are morphologically heterogeneous,
differing in markers expression, proliferation capacity, tumorigenicity and chemotherapy resistance [11].
Glioblastoma, on the other hand, is a type of stage IV human brain cancer with the poorest prognosis
owing to its very high ability to spread and infiltrate into brain parenchyma, thus hampering its total
eradication by conventional therapies [12–14]. Both CRC and glioblastoma have in common the ability
to relapse after surgical removal, which is attributed to the presence of cancer stem cells (CSCs) within
the tumor.

The Cancer Stem Cell theory states that tumor growth is fueled by small numbers of CSCs hidden
within the bulk of the tumor mass [15]. Much as normal cell renewal in healthy adult tissues depends
on activation and proliferation of their endogenous stem cells, cell renewal in malignant tumors would
depend on the activation of CSCs [16]. This theory explains clinical observations, such as the recurrence
of tumors after initially successful therapy, and the phenomena of tumor dormancy and metastasis [17].
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These CSCs or tumor-initiating cells were first described in teratocarcinomas that contained highly
tumorigenic cells that, as single cells, could differentiate into multiple non-tumorigenic cell types [18].
Accordingly, the most accepted view of the theory of CSCs and tumorigenesis is that CSCs arise
from and/or are closely related to normal adult multipotent stem cells, which undergo a process of
transformation owing to the combined effect of gene mutations and cellular niche perturbation. Thus,
understanding how adult tissue-specific stem cells behave in the healthy adult body, and how this
homeostasis is lost under specific circumstances, is of paramount importance for the study of the
different types of cancer.

The dental pulp shows a cellular renewal rate in between the gut epithelium and the brain
parenchyma. Dental pulp tissue is of relevance to carcinogenesis because no cases of malignancies
primarily originating in that location have ever been reported, at least since 1937 [19]. Back in the late
nineteenth century it was common to diagnose putative dental pulp neoplasms as “pulpitis chronica
sarcomatosa”, which was associated with bacterial infections and poor dental hygiene. However,
closer examinations later on revealed that most, if not all, of those cases were not related to malignant
neoplasms per se, but to a colonization of the exposed dental pulp space by the gingival epithelium [20].

It is unclear whether this dental pulp resistance to oncogenesis owes simply to the physical
constraints of the reduced space of the dental pulp chamber, which would prevent a minimum
tumor growth required for dissemination, or rather to other so far unknown factors [19]. The dental
pulp contains its own stem cells: dental pulp stem cells (DPSCs), which have a particularly high
self-renewal and multilineage differentiation capacity [21]. Interestingly, one surprising feature of
DPSCs is that these cells are extremely resistant to anaerobiosis and lack of nutrients, as clearly
demonstrated by some reported facts, such as their capability to survive and proliferate to confluency
after travelling for more than one week in parafilm-sealed culture flasks under ambient temperature
shipping conditions [22]. DPSCs in the healthy dental pulp are known to localize into neurovascular
bundles containing nerves and blood vessels [23] and they are responsible for renewing populations of
mature fibroblasts, odontoblasts, and myelinating Schwann cells [24]. DPSCs can generate complete
dentin–pulp complexes in vitro and in vivo [21,25,26], and are also induced to activate and proliferate
after dental injury [27].

Arguably, the tissues with the highest resemblance to the dental pulp would be embryonic
mesenchymal tissues and also adult loose connective stromal tissues. Soft stromal connective tissues can
be found distributed throughout the human body, and enriched in some particular locations including
the skin, the bone marrow, the adipose tissue, among others [28,29]. These loose connective tissues
can also give rise to soft tissue sarcomas with a very low incidence in the human population [30,31].
Notably, all of these tissues also home their own resident multipotent mesenchymal stem cells (MSCs),
which share a great deal of characteristics, but also present important differences, with DPSCs. The
systematic comparison between MSCs and DPSCs has already been the main topic of many excellent
reviews [28,32]. It is compelling that all those connective tissues with so many resemblances at the
structural and cellular level present so little rates of malignancy, which again suggests that there might
well be other factors apart from mere physical isolation that would explain the absence of human
cancers originating in the dental pulp.

In this review, we will discuss similarities and differences between three different stem cell
types arising from different embryonic origins; ISCs and their corresponding colorectal cancer stem
cells (CCSCs) from the endoderm, NSCs and their corresponding glioma stem cells (GSCs) from
neuroectoderm, MSCs and their corresponding CSCs from mesoderm, and DPSCs from the neural crest.
Their responsiveness to oncogenic signaling, expression of specific cell markers and cell pluripotency
core factors, telomerase activities, and resistance to oncogenic transformation will be addressed.
Interestingly, no dental pulp CSCs have ever been described in the scientific literature, which brings
the attention to what specific characteristics of dental pulp cell biology might be responsible for the
resistance of DPSCs to malignity. Could we attribute this to the differential expression of a particular
cellular marker, or to any other physiological characteristic? Is there any CSC marker whose lack of
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expression in dental pulp cells could help explain why those cells are so little tumorigenic? Finally,
is there any particular marker at all which can be regarded to be genuine of CSCs and excluded from
all the rest of normal healthy stem cells? Those were the kind of questions that we set out to address in
this review.

It should be noted that these mentioned stem cell types are able to survive and grow in vitro
using the same type of culture media (Figure 1). So, they are not so different from each other, at least in
terms of their minimum requirements of cell signaling and metabolism. Another important shared
characteristic of these cells is that the expression of stemness markers in NSCs, MSCs, DPSCs and CSCs
is normally promoted by their growth in serum-free media, whereas cell differentiation is normally
induced when switching these cells to serum-containing media [33–38].
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Figure 1. Stem cells and cancer stem cells (CSCs) from three different embryonic origins (endoderm,
neuroectoderm, neural crest) can be maintained in the same cell culture media for long periods.
Oncogenic CRC-derived SW620 colon cancer stem cells (CCSCs, left), and normal healthy neural
stem cells (NSCs) (middle) and dental pulp stem cells (DPSCs) (right) can be grown under the same
culture conditions in either the presence or absence of fetal serum. When grown on DMEM/F12
serum-free medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth
factor (EGF), CCSCs, NSCs and DPSCs generate free-floating spheres (upper row) that can be in vitro
maintained for several months. Cells from the same batches were grown in parallel with the same
medium supplemented with 10% fetal bovine serum (bottom row), and in all these cases they generated
plastic-adherent cell monolayers. Scale bars 50 µm.

2. Cell Markers and Pluripotency Core Factors

2.1. Cell Surface or Membrane Markers

Searching for similarities between different types of normal and aberrant stem cells, numerous cell
surface markers with different functions were found to be associated with the stemness characteristics
of CCSCs (see Table 1).
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Table 1. Expression of cell markers and core factors involved in cancer in ISCs, NSCs and their
corresponding CSCs, and DPSCs. Green color represents confirmed expression as reported by the
literature. Red color represents absent expression as reported by the literature. Yellow color implies that
its expression is not well defined or needs to be further studied. “+” symbol implies the existence of
expression-confirming reports, “-” symbol implies the existence of no-expression supporting reports and
question mark “?” implies that the expression of that marker has not been yet thoroughly assessed for a
particular cell type. “↑” or “↓” symbol refers to an upregulation/increase or downregulation/reduction
in its activity/expression with respect to their normal cell counterparts. ISC: intestinal stem cells. CCSC:
colorectal cancer stem cells. NSC: neural stem cells. GSC: glioblastoma stem cells. DPSC: dental pulp
stem cells. CSC: cancer stem cells.

Intestinal Neural Dental

ISC CSC/CCSC NSC CSC/GSC DPSC
CD133 + [39] + ↑ [40,41] + [42–44] + ↑ [43,45] +/- [46,47]
CD15 ? + [48] + [49,50] + [51–53] + [54]
LGR5 + [55] + [56] + [57,58] + [59] ?
CD166 + [60,61] + [61] - [62] + ↑ [63] + [64,65]
CD44 - [60] + ↑ [66] + [67] + ↑ [68–70] + [71]
CD90 - [72] + ↑ [73] - [62] + ↑ [74] + [75,76]

CXCR4 + [77] + ↑ [78] + [79] + ↑ [80] + [81]
NESTIN + [82] + ↑ [83] + [84] + ↑ [83,85] + [54,75]

MUSASHI + [86] + ↑ [87] + [88] + ↑ [89] + [90]
SOX2 ? + ↑ [91] + [52,92] + ↑ [52,93,94] + [54,75,95,96]
OCT4 ? + ↑ [97] + [98] + ↑ [93,94,99] + [54,95,96,100]

NANOG ? + ↑ [101] + [98,102,103] + ↑ [93,94] + [54,95,96,100]
PTEN + [104] + ↓ [105] + [106] + ↓ [106] + [107]

The first identified marker of stem cells and early progenitors in the mouse small intestine was CD133,
a transmembrane glycoprotein, also known as Prominin-1 [39]. More recent studies found that CD133
was also expressed in a subpopulation of CCSCs [40,108,109] and these cells were present in metastasis
and angiogenesis of colorectal adenocarcinoma [41,108]. Moreover, other reports using subcutaneous
injection into immunodeficient mice, after comparison of CD133+ versus CD133- populations showed
that CD133- ones were unable to form tumors or grow as undifferentiated tumorspheres [110]. Similarly,
CD133 was one of the first reported markers of brain CSCs [45]. This marker was identified in brain
stem cells of fetal [111] and premature infants [112] but initially reported as absent in adult human NSCs,
contrary to murine NSCs [42,43,113]. Interestingly, CD133 has been postulated as an embryonic stem
cell marker [44] and its presence or absence may suggest a different cancer origin accordingly to the
cell transcriptional profiles. CD133+ brain CSCs behave similarly to fetal neural stem cells forming
tumorspheres whereas CD133- brain CSCs display a semi adherent growth and its transcriptional profile
is similar to adult NSCs [114].

CD133 expression has not yet been thoroughly evaluated for DPSCs. One study reporting a positive
staining of DPSCs to CD133 relied exclusively on immunocytochemical characterization, which showed
no clear membrane staining [46]. Other studies reported an absence of expression, as assessed by flow
cytometry [47]. All these observations make CD133 an interesting potential marker for tumorigenic
susceptibility across different tissues, and it would be interesting to address unequivocally whether
CD133 is expressed or not in DPSC cultures, and whether this expression changes or not with different
experimental conditions. Another comprehensive flow cytometry assessment also revealed the absence
of CD133 in the more DPSC-related human bone marrow MSCs [115]. However, CD133 expression
could be detected in CSC-like cells derived from malignant fibrosarcomas [116].

All this evidence combined points to CD133 as an interesting marker to identify CSCs in a large
variety of tissues. However, some controversy remains with regard to the adoption of CD133 as
a genuine universal CSC marker [117]. CD133 expression in CSCs has been related to particularly
aggressive phenotypes but, as shown by different reports, this CD133 marker is also expressed by
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some healthy stem cell types such as ISCs and NSCs of the gut and the brain. However, it is precisely
those organs, which give rise to very aggressive types of cancers, are also the ones that apparently
show a higher basal CD133 expression in their resident stem cells, contrary to loose connective tissues,
and the dental pulp in particular. This brings another issue: may eventually a positive relationship be
established between the basal expression of CD133 in healthy stem cells and the malignity of neoplasms
arising from CSCs in different tissues? This may deserve closer investigation. For instance, if CD133
expression was more consistently and comparatively assessed between different human stem cell types
to fill in the existing information gaps, this could decisively help to clarify this question.

Another interesting surface marker of NSCs and neural CSCs is CD15, also known as SSEA-1
or Lewis X (Lex). This embryonic stem cell marker is expressed by some multipotent murine and
human stem cells, and also by human CSCs [48,49,51–54,64,65,118]. Interestingly, CD133 and CD15
coexpression in a same cell (NSC or CSC) is very rare [53,119,120] with the exception of primitive
neuroectodermal tumors which show higher clonogenicity for CD133+/CD15+ than CD133-/CD15+

cells [121]. CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses [122].
In the intestine, CD15 expression has been found in Paneth cells in the vicinity of stem cell niches [123]
but it is yet not clear whether CD15 is expressed or not by ISCs. CD15 expression is progressively
increased during colon cancer development [48]. CD15/SSEA-1 has also been found to be expressed by
both MSCs and DPSCs, as assessed by flow cytometry and RT-PCR. The expression of CD15/SSEA-1
was also found to be higher in DPSCs than in bone marrow MSCs [124]. Moreover, this embryonic
marker was clearly upregulated in DPSCs after experimental conditions that increase the stemness of
these cells, such as Wnt/ß-catenin activation [47,54]. The expression of CD15 has also been identified
in fibrosarcoma-derived cells [125]. It would also be very interesting to compare the relative levels
of CD15 expression in CSCs vs. MSCs and/or DPSCs to further validate the utility of CD15 as a
CSC marker.

Another surface receptor that is present in human NSCs and CSCs is the Leucine-rich repeat-containing
G-protein coupled receptor 5, or LGR5 [57,58]. LGR5, also known as GPR49, works as an important
regulator of canonical Wnt/ß-catenin signaling and it physically interacts with Wnt Frizzled-5/LRP6
receptors [126]. LGR5 binds to R-spondins, which are secreted Wnt activator protein ligands. The LGR5
receptor has been postulated as a widespread CSC marker [127]. Interestingly, LGR5 is required for
the tumorigenicity of glioblastoma cells [59]. LGR5 is also expressed by healthy colorectal ISCs [55]
and its expression is maintained in CCSCs [56]. LGR5 is considered an ISC cell cycle marker and is
related to survival, proliferation, and differentiation [128]. LGR5 can also mediate integrin signaling
through MyoX and integrins present at LGR5 cytonemes [129,130]. Some subsets of MSCs have been
shown to express LGR5, although the expression of this marker seems to be highly dependent on the
mesenchymal cell source [131]. The expression of LGR5 in DPSCs also remains to be fully elucidated,
although one report showed a strong expression of LRG5 in the dental pulp and the odontoblastic cell
layer of permanent teeth [132]. Notably, the loss of expression of some specific LGR5 splicing variants
has been associated with a poor prognosis in soft tissue sarcomas [133]. It is yet unclear how this
differential expression of LRG5 isoforms may promote the development of human cancers, particularly
with regard to the regulation of Wnt/ß-catenin activity.

The CD184 receptor, also known as Fusin or CXCR4, is a G-protein coupled receptor expressed by
both brain NSCs and CSCs [79,80]. CXCR4 expression increases in vivo glioma perivascular invasion
capacity [134]. In the gut, this receptor has been used as a marker to identify the CCSC population,
together with LGR5 [135]. Furthermore, colon cancer cells double positive for CD133+ and CXCR4+

exhibit metastatic potential and their presence is linked to poor prognosis [78]. CXCR4 activation
induces several cellular responses ranging from gene transcription and chemotaxis to cell survival
and proliferation [136]. CXCR4 is amply expressed by human MSCs and DPSCs, where it contributes
to stimulate their migration and chemotaxis, through activation of PI3K/AKT and Wnt/ß-catenin
pathways [81,137]. In all cases, the activation of CXCR4 in stem and/or cancer stem cells is linked to
the acquisition of a migratory cell phenotype and/or metastatic ability.
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The transmembrane glycoprotein, CD166 also known as ALCAM (activated leukocyte cell
adhesion molecule) is an adhesion protein binding to the ECM and is expressed in both ISCs and
CCSCs [60,61]. CD166 is also expressed by plastic-adherent human MSCs and DPSCs [64,65]. CD166 is
not present in NSCs, nor in neural stem-like cells induced from conversion of bone marrow stromal cells
(CD166+) [138]. The association between CD166 expression and poor prognosis of colorectal cancer
is not yet sufficiently elucidated, with studies reporting different results [139]. However, in CD133+

GSCs, CD166 has been shown to increase cellular invasion [63]. The acquired expression of CD166 in
GSCs could be associated with a higher migration and dissemination capacity, by the conversion to
a more mesenchymal-like migratory phenotype. Under this viewpoint, an increased expression of
CD166 in CCSCs could also be regarded as a contributing factor to explain the high tendency of CRC
to form secondary metastases.

There are other mesenchymal stem cell markers associated with a higher tumor invasiveness.
CD44 is a hyaluronic acid-binding surface receptor expressed in DPSCs, GSCs and CCSCs, but not in
their corresponding healthy ISCs. Thus, CD44 constitutes a marker for prediction of hepatic metastases
and poor prognosis in CRC [66–70]. CD90, also known as THY-1, is a GPI-anchored adhesion protein
of the immunoglobulin superfamily, which is another widespread mesenchymal marker related to
poor prognosis in many cancers [140]. As expected for a mesenchymal cell marker, CD90 is also
expressed by DPSCs [71,75]. CD90 is a candidate marker for GSCs, but its expression is completely
absent from healthy brain tissues [141]. Interestingly, CD90 has also been involved in the proliferation,
migration and adhesion of human glioma-associated mesenchymal stem cells [74]. The cases of CD184,
CD44, CD90 and CD166 constitute typical examples of mesenchymal surface proteins involved in cell
chemotaxis and adhesion, whose expression is associated with the emergence of CSC phenotypes and
particularly poor prognosis in many human cancers. However, because of the prominent expression of
these markers in several types of healthy stem cells, such as MSCs and DPSCs, they also could not be
considered to be genuine markers of CSCs.

2.2. Cytoplasmic Markers

One of the most prominent proteins required for self-renewal of NSCs is the intermediate filament
Nestin [142]. Nestin is also expressed in several types of cancers [143], and also by CD133+ brain
CSCs [85]. Nestin abundance is significantly correlated with prognosis, clinicopathological features
and the histological grade of the glioma in patients [83,144]. Nestin+ tumor cells have been observed
to be the origin of tumor regrowth after chemotherapeutic treatment with the alkylating agent
temozolomide [145]. With respect to CRC, Nestin expression is upregulated in stromal cells and its
knockdown inhibits migration and cell cycle arrest at S phase, thus halting cell proliferation [146].
GFP-tagged Nestin protein of several cancer cell lines including CRC revealed a high GFP expression
in proliferating endothelial cells and nascent blood vessels in the growing tumors [147]. DPSCs in vitro
are also practically 100% Nestin+ [75]. The widespread expression of neural markers by DPSCs is
associated with the neural crest origin of these cells. In fact, contrary to other mesoderm-derived
mesenchymal stem cells, such as those obtained by the bone marrow or the adipose tissue, DPSCs have
been reported to show a much better capacity to differentiate to neuronal and glial cells [75,148,149]
and these reasons partly account for the expectation raised by DPSCs as a non-conventional source
of stem cells for neural regeneration [150,151]. Another important feature of DPSCs related to their
use for neural cell therapy is their ability to secrete neurotrophic factors [75,152] and differentiate to
endoteliocytes and pericytes to generate new blood vessels within the CNS [100].

The intracellular RNA binding-protein MUSASHI is a marker of poor prognosis in many human
cancers and regarded as a putative marker for CSCs. It is known to be expressed by ISCs [86], and it is
overexpressed in CRC, where its levels correlate with other stem cell marker of the intestinal epithelium
such as ß1-integrin and LRG5, suggesting its involvement in CCSC generation [77,153]. MUSASHI is
involved in the maintenance of adult stem cell fate, and also expressed by NSCs and GSCs [40,154,155]
where it participates in enhancing tumoral cell migration [156]. MUSASHI has also been shown to be
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expressed by DPSCs and other stem cells of the oral cavity, and its expression was reported to increase
in response to osteogenic differentiation [90]. There exist yet no reports of MUSASHI expression in soft
tissue sarcomas.

One marker whose loss is related to poor prognosis in human cancers is the Phosphatase and
Tensin Homolog (PTEN). This enzyme is critical for stem cell maintenance and PTEN deficiencies can
cause the development of CSCs [157]. It has been observed that PTEN loss reprograms healthy stem
cells to adopt a glioblastoma stem cell-like phenotype [106]. PTEN is also involved in the migration
of precursor cells [158] and it is expressed in adult NSCs and progenitors [102,103]. Its deletion or
loss of function has been reported to alter neurogenesis and provokes cellular alterations in adult
hippocampal neural progenitor and stem cells [159]. PTEN has also been involved in the control of the
proliferation rate and number of ISCs, and similar to what is observed in other regions, the absence
or dysfunction of PTEN provokes an intestinal polyposis due to an excessive cellular proliferation
becoming a precancerous neoplasia [104].

Recent investigations show that DPSCs present unusually high levels of PTEN expression [107].
This accounts for critical differences between DPSCs and other related multipotent stem cells, such as
mesodermal MSCs. In a comparative study between DPSCs and bone marrow MSCs, the high levels
of PTEN expression naturally present in DPSCs were shown to downregulate the oncogenic PI3K/AKT
pathway, thus contributing to an increased osteo/odontogenic capacity, at the expense of a diminished
tumorigenic capacity. Remarkably, when both bone marrow MSCs and DPSCs were transfected in
parallel with pRB and CMYC oncogenes, MSCs readily acquired a tumor phenotype whereas DPSCs
could only be induced to transform when PTEN was also simultaneously inhibited [107]. Due to its
role as a tumor suppressor gene, it might be postulated that at least some of the resistance of DPSCs to
oncogenesis may be attributed to a high expression of PTEN. Another implication of this hypothesis
would be that stem cells from other body locations could also be more vulnerable to transformation
because of an insufficient PTEN expression.

2.3. Nuclear Proteins

One of the principal characteristics of CSCs that distinguish them from the rest of tumor cells is their
overexpression of nuclear transcription factors traditionally associated to stemness and pluripotency.
SOX2 is one of the principal core factors related to cell pluripotency [92] and encodes a transcription
factor member of the SRY-related HMG-box (SOX) family. In CRC, SOX2 positive cells were found
to display several characteristics of CSCs, together with a decreased expression of the intestinal
epithelial marker CDX2, contributing to a poor prognosis [91]. OCT4A is another core factor which has
been linked to chemoresistance of colon CSCs [97] and NANOG has been recently related to colony
formation and growth of CRC cells [101]. Notably, SOX2 is expressed by both healthy NSCs and
GSCs [52]. Interestingly neural progenitor cells have also been reported to express mRNA for NANOG
and OCT4 [98]. It should be taken into account that the expression of these stemness factors, together
with others such as KLF4, leads to the development of induced pluripotent stem cells (iPSCs) with
tumorigenic capacity [99] and SOX2, OCT4 and NANOG are all pluripotency markers [93] that are
found in circulating tumor cells present in the blood of patients with glioblastoma [94].

Nevertheless, it should be noted that the mere coexpression of these three markers per se does not
necessarily induce CSC-related cell phenotypes. Healthy non-tumorigenic DPSC cultures, for instance,
also show coexpression of SOX2, OCT4A and NANOG [54,160]. Moreover, the expression of these
pluripotency core factors rises in DPSCs subjected to activation of Wnt/ßcatenin signaling to enhance
their stemness potential, but without leading to cell transformation [54,95,96]. Wnt/ßcatenin signaling
was also shown to promote the maintenance of pluripotency in embryonic stem cells [118].
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3. Oncogenic Signaling

3.1. Wingless (Wg)-Related Integration Site (Wnt)

Wnt genes are extensively conserved between invertebrates and mammals, thus highlighting
the importance of this signaling pathway to regulate cell development and gene expression [161].
Once secreted, Wnt proteins bind to specific membrane Frizzled/LRP5-6 coreceptors on the target cell.
These events lead to the membrane recruitment of an intracellular multiprotein complex containing
(among others) AXIN2, APC and Glycogen Synthase Kinase-3ß, which causes the inactivation of
the latter enzyme, and the dephosphorylation and eventual accumulation of ß-catenin protein,
a fundamental transcriptional coactivator of Wnt target genes. Wnt/ß-catenin signaling can be
potentiated by simultaneous activation of LRG5 by R-spondins [126], or alternatively weakened
by other LRP5-6 ligands such as DKK-1 [162]. Many malignant cancer cells show a pathological
hyperactivation of canonical Wnt/ß-catenin signaling [163] and mutations that promote a constitutive
activation of the Wnt pathway, such as inactivation of APC or DKK-1, very often lead to colorectal
cancer [164,165]. ISCs are positive for LGR5 [55] and AXIN2 [166], which underscores the importance
of canonical Wnt signaling in controlling the homeostasis of these cells [55,166,167]. On the contrary,
the loss of Wnt function is associated with defects in epithelial cell renewal in many organs, including
the gut [168,169].

Wnt activity in NSCs regulates their homeostasis and adult hippocampal neurogenesis [170].
In human glioma cells, it has been described as an important regulator of cell proliferation [171–173].
Thus, both healthy ISCs and NSCs are sensitive to Wnt signaling, and an excessive Wnt/ß-catenin
hyperactivation is believed to promote the transformation of stem cells to CSCs in both cases [164].
This parallelism shows a common ground between ISCs, NSCs, CCSCs and GSCs [169,174–176].
Strikingly, the “need” for the Wnt pathway and the struggle this creates between cancer cells and neural
cells reaches to levels of “vampirization” in which neurons end dying from the subsequent enwrapping
and Wnt receptor depletion taken by the squeezing and invading glioma cells. Using this strategy,
cancer cells manage to increase their available space and their own proliferation and infiltration
capabilities within the brain [177]. Furthermore, Wnt activity is required for self-renewal of GSCs [178].
Taking everything into account, it is not surprising that the targeting of the Wnt pathway has been
recently regarded as a high priority for therapeutic advances [163].

Another cell type with a high sensitivity to Wnt signaling is the DPSC. It was recently shown that
even very short-term applications of Wnt-3a in DPSCs are associated with an increased self-renewal and
an enhancement of their stemness properties [54]. Moreover, the increase in multilineage differentiation
potential in DPSCs is associated with a deep remodeling of DPSC physiology at both the metabolic
and epigenetic level [95,96]. However, Wnt/ß-catenin activation caused only a modest increase in the
self-renewal capacity of DPSCs [96]. It is currently unknown whether the non-tumorigenic phenotype
of DPSCs could have any relationship with a tighter regulation of Wnt signaling, in comparison
with CCSCs or glioma CSCs [174]. It should also be taken into account that not only the tumor cells
themselves, but also stromal cells around the tumor may also secrete additional factors activating the
Wnt/ß-catenin signaling pathway, to promote tumor cell invasion and metastasis. The contribution of
stromal cells, especially fibroblasts, endothelial cells and pericytes, appears to be very relevant for the
progression of both malignant CRC and glioblastoma [179,180].

3.2. Transforming Growth Factor Beta (TGF-ß) Signaling

TGF-β superfamily signaling plays key roles in cell differentiation and proliferation [181],
and comprises over 30 different members including activins, nodals, bone morphogenetic proteins
(BMPs), and growth and differentiation factors (GDFs) (see review [182]). TGF-β pathway activity
is able to lengthen the progression of the cell cycle in aged NSCs [183]. This signaling also increases
in the neurogenic niches during aging or after a high dose of radiation inducing the quiescence of
NSCs [184]. However, it may also induce epithelial–mesenchymal transition (EMT) of normal cells to
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acquire migratory and stem cell properties [185]. TGF-ß1 protein is known to be up-regulated during
ageing, brain lesions or during neurodegeneration [186] but is also involved in the development and
progression of high-grade gliomas [187,188]. TGF-β also promotes tissue invasion, angiogenesis and
evasion from immune attack [189,190].

TGF-β signaling also regulates stemness of normal stem cells and CSCs [191]. Indeed,
during development Activin and Nodal proteins regulate NANOG expression maintaining cellular
pluripotency in human and mouse embryonic stem cells [192]. The importance of TGF-ß signaling
in the maintenance of stemness of DPSCs needs further clarification. One report showed significant
expression changes of expression in several TGF-ß-related genes after induction of DPSC differentiation
to osteo/odontoblasts by standard pharmacological protocols. Specifically, Activin A, TGF-ß1 and
TGF-ß2 expression were shown to be downregulated, but TFG-ß receptors II and III upregulated,
after DPSC osteoblastic differentiation [193].

In the large intestine, it is assumed that the TGFβ/BMP signal gradually increases along the
intestinal axis of the villi of the crypt, while the gradient towards the base of the crypt decreases,
thus inhibiting the regeneration of stem cells and supporting the differentiation of epithelial cells,
thereby playing a vital role in balancing the effect of Wnt signaling on intestinal homeostasis [194].
However, dysregulation of TGF-β signaling is involved in cell proliferation, differentiation, migration
and apoptosis, and it could lead to the development of CCSCs [195]. Interestingly, a cross-talk between
TGF-β signaling and the R-spondin/LGR5 axis was reported in CRC cells, where LGR5-induced TGF-ß
activity in tumor cells was associated with a decreased tumor invasion and metastasis [196]. However,
the activity of the TGF-β pathway in stromal cells is associated with a higher risk of metastasis in
CRC, and pharmacological inhibition of TGF-ß receptor I impairs tumor metastasis in CRC [197].
Once again, these results show the involvement of TGF-ß signaling to promote an oncogenic tissue
microenvironment and highlight the importance of the crosstalk between tumor and stromal cells to
sustain cancer malignancy.

4. Telomerase Activity

The regulation of cellular telomerase activity depends on the transcriptional control of its two
essential components, hTERC (RNA component) and hTERT (reverse transcriptase component) [198].
Wnt/β-catenin signaling was shown to have a positive regulatory effect on the expression of telomerase
reverse transcriptase (hTERT) and CSC-related proteins [199]. In turn, telomerase directly modulates
Wnt/β-catenin signaling, by activating quiescent stem cells [200]. Importantly, the emergence of
CSCs is promoted by the overexpression of hTERT [201–203]. Interestingly, it has been reported that
a mutated TERT fragment is able to induce brain cancer stemness independently of its telomerase
activity [204]. Furthermore, telomere dysfunction promotes tumorigenesis by inducing chromosomal
instability in tumor initiating cells (see review [205]). Chromosomal instability is a source of genetic
variation, favoring tumor adaptations to stressful environments and cytotoxic anticancer drugs,
contributing to the progression at multiple stages of tumor evolution [206,207]. Normally, telomerase
activity is downregulated after human brain embryonic development even in adult multipotent stem
cells [208,209]. However, multipotent stem cells such as ISCs, MSCs, DPSCs and NSCs all present a
basal telomerase activity and hTERT expression [210–213].

Brain telomerase activity in adult mice has been found to be restricted to the subventricular zone
and olfactory bulb [214]. It plays an important role in cell proliferation in the adult but not in embryonic
NSCs [215]. Telomere length has also been demonstrated to be important for neuronal differentiation
and neuritogenesis [216] (see also review [217]). Its deficiency leads to a compromised olfactory bulb
neurogenesis [215] although NSCs lose telomerase activity upon differentiation into astrocytes [218].
DPSCs also lose progressively their telomerase activity upon their spontaneous in vitro differentiation
to osteoblastic/odontoblastic cells in conditions of high culture passages [212].

It should be emphasized that telomerase is reactivated in some malignancies such as CRC and
most of brain cancers [219]. However, the mere absence of telomerase activity does not guarantee
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cellular resistance to oncogenic transformation, because CSCs may also use a mechanism of alternative
lengthening of telomeres (ALT) [220,221]. ALT preserves telomeres by homologous recombination
machinery independently of hTERT and hTERC [222]. ALT has been reported to be present in 10–15%
of human cancers, including GSCs [52,223], but also in colon cancer cells with BRCA2 deletion [224]
or hereditary and sporadic colon cancer [225]. ALT has not been reported to date in NSCs nor
ISCs, suggesting that the origin of ALT in CSCs of brain and colon cancer could also be related to a
dedifferentiation process from somatic cells [225]. ALT has not been yet reported for DPSCs. However,
this mechanism is very active in malignant tumors of mesenchymal origin [226,227]. It remains to be
studied whether the ability to activate ALT could constitute another important difference between
DPSCs and MSCs.

5. Pathways and Obstacles to Malignant Transformation: The Surprising Case of DPSCs

By making a systematic comparison between normal and cancer stem cells of different embryonic
origins, we have identified a set of differential markers that are all present in brain and gut CSCs but
absent or at least not yet well defined in other healthy stem cells (Figure 2). Interestingly, the first
conclusion of this analysis is that a surprisingly high number of CSC markers are also expressed by
some normal stem cells. DPSCs deserve an extra mention here, because up till now there exists no CSC
marker at all that has been conclusively characterized to be absent from these cells. This brings the
response to the question of the title of this manuscript, whether there was such a thing as a genuine
CSC marker. According to the available information, we can conclude that as yet there exists no such
marker, because practically all the markers mentioned in this review, that were so far regarded as more
or less specific of CSCs, are also known to be expressed by DPSCs, with the only possible exceptions of
CD133 and (less likely) LGR5.
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Figure 2. Comparison between ISCs, NSCs and DPSCs and their corresponding CSC derivatives.
For the sake of simplicity, only markers with a differential expression are shown. Many of the markers
expressed by gut and brain CSCs are also shared by normal healthy DPSCs, with the cases of CD133 and
LGR5 as the only yet unknown exceptions. Healthy NSCs and DPSCs share at least 7 differential markers
each with CSCs. ISCs show far fewer coincidences with CSCs in terms of marker presence/absence.
Despite the great similarity in marker expression between different CSCs and DPSCs, there exist
absolutely no reports showing phenotypes of CSCs originating in the dental pulp, and dental pulp
cancer incidence worldwide is 0%. Markers in green color: confirmed expression. Markers in red color:
confirmed absence of expression. Markers in yellow color: Not well defined or unknown expression.
The yearly worldwide incidence of each cancer type for 2018 is expressed as Age Standardized Rates
(ASR) per 100,000 people (pink color), as reported in [228] and [229]. Images credit: Creative Commons
License Servier Medical Art by Servier (https://smart.servier.com/). All central nervous system cancers
are considered within brain cancer rate. CRC: colorectal cancer. CCSCs: colorectal cancer stem cells.
GSC: glioblastoma stem cells.

Normal and tumor stem cells share some important features. Due to this high resemblance and
according to the CSC theory, normal healthy stem cells in the body would be the most sensitive cellular
targets to undergo malignant transformation, although this does not rule out a possible contribution
from other more differentiated types of cells. CSCs are a small subpopulation of undifferentiated
tumorigenic cells inside the tumors with malignant phenotypic characteristics [230]. In the brain,
NSCs and early progenitor cells have been reported to give origin to glioblastoma [231]. ISCs can acquire
mutations in Wnt-pathway-activating genes that may initiate cancer [232]. Furthermore, CCSCs and
brain CSCs acquire mutations in oncogenes and tumor suppressor genes such as PTEN, TP53 and
RB1, which confer them different abilities including: stemness, producing actively proliferating
cancer progenitor cells in their niches, multidrug and apoptosis resistance and enhanced DNA repair
capacity [196,233]. Other aspects that have been proposed to lead to cellular transformation are
the alteration of several signaling pathways such as EGFR and INK4a/ARF [234] or the stromal cell

https://smart.servier.com/
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recruitment and production of proinflammatory signals in the niche [235], which is a very old concept
that has been retaken over the last decades [236,237].

One of the most intriguing questions about the dental pulp is that, contrary to many others,
this tissue is extremely unlikely to generate malignant neoplasms. The case that the dental pulp niche
would just be more protected against mutagens and inflammatory reactions does not seem to hold
very well to explain this phenomenon. For instance, dental pulpitis stands arguably as quite common
and one of the most exacerbated inflammatory reactions in the whole human body [238]. Yet for all
this evidence, there are no case reports of malignant tumors with an alleged origin in the dental pulp,
at least since 1937 [239]. DPSCs seem to be placed in a particularly disadvantageous position to face
all the looming threats that could contribute to transform a healthy stem cell to a CSCs. It could be
somehow expected that the remarkable stemness of DPSCs would also contribute to boosting their
transformation to particularly malignant cell phenotypes. DPSCs consistently express pluripotency
core factors (SOX2, OCT4, NANOG, CD15, among others); they express adhesion proteins associated
with metastasizing ability (CD44, CD90, CD166); they are highly responsive to signaling pathways
(Wnt, TFG-ß) linked to oncogenesis; they are resistant to radiation; they resist anaerobiosis; they present
hTERT activity, similar to many CSCs and contrary to many other healthy adult multipotent stem cells
in the body. However, despite all these characteristics, DPSCs show a very low tendency to transform,
not even after a forced overexpression of hTERT [240,241] and of oncogenic E7 protein from human
papillomavirus [242].

If DPSCs share so many characteristics in terms of mitogenic potential, responsiveness to signaling
pathways, and marker expression with CSCs, the next obvious question is: what makes them so
resistant to neoplastic transformation? It has been traditionally argued that the reduced dental pulp
space acts as a natural barrier preventing tumors from reaching a critical size for dissemination.
In addition, the reactive differentiation of DPSCs to dentin-producing odontoblasts upon contact with
tumor cells would trigger the sclerosis and calcification of the dental pulp chamber, thus minimizing
even further the available space for tumor growth [19]. However, there are alternative explanations,
such as a high expression of tumor-suppressor genes by DPSCs. This is clearly an aspect of DPSC
biology that has not been yet sufficiently studied. May it be that DPSCs are equipped with a better
genetic armor to avoid transformation? If we identify the genetic signatures that make DPSCs so
resistant to oncogenesis, could we try to boost those characteristics in other more vulnerable and/or
pre-neoplastic cells? We have previously shown the example of PTEN [107]. This accounts for
critical differences between DPSCs and MSCs, with regard to oncogenic susceptibility. Among tumor
suppressors expressed by DPSCs, we also include some microRNAs, such as let-7c, which are involved
in the regulation of cell growth and differentiation via IGF/MAPK pathways [243]. Another particularly
important aspect of DPSCs is their capacity to trigger very strong DNA damage responses to genotoxic
stress [244]. In a comparative assessment of DPSCs and human dermal fibroblasts exposed in parallel
to a genotoxic/cytostatic cisplatin treatment, DPSCs were found to activate the p53/p21 pathway more
potently, thus leading to cell cycle arrest and a rapid onset of senescence or apoptosis [245]. This ability
to readily shut down cell proliferation in response to DNA damage constitutes a fundamental defense
mechanism against tumorigenesis, by avoiding the expansion of cells which have a compromised
genome integrity [246].

Experimental evidence, such as the one mentioned before, demonstrates that it is very likely that
there also exist genetic and/or physiological reasons for the inexistence of human dental pulp cancer
and dental pulp CSCs. If the cancer stem cell theory holds true, then there would be a lot of valuable
lessons to be learnt from these stem cells that naturally resist to transformation. Thus, the oncology
research field might well find new inspirations by looking through the window of the dental pulp.

6. Conclusions

In this review, we have compared stem cells and cancer stem cells from different embryonic
origins. Some multipotent stem cells in the adult body are believed to transform and generate CSCs
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which fuel very aggressive tumors with very poor prognosis, whereas other adult stem cells have so far
never been involved in the generation of human cancers. The case of DPSCs is particularly intriguing
because these cells express a large number of markers that have been identified and reported as highly
characteristic of CSCs. In fact, none of those markers have yet been conclusively demonstrated to be
absent from DPSCs. It is unclear where DPSC resistance to oncogenesis may come from: whether
the physical constraints imposed by the dental pulp space, the high level of expression of certain
tumor-suppressor genes, the capacity to discard defective cell progenies by inducing potent DNA
damage responses leading to senescence/apoptosis, or a combination of all of these factors together.
These aspects warrant further research with a view to gain new knowledge on the comprehension of
stem and cancer stem cell biology. Furthermore, unraveling the mechanisms of DPSC resistance to
oncogenesis might also open new therapeutic avenues and strategies to avoid or mitigate the malignant
transformation of some deadly tumors.

Author Contributions: C.O., G.-G.P., I.G., P.J.R. performed the initial literature search and artwork, and drafted
the first version of the work and C.O., G.-G.P., L.J., B.I., d.l.H.C., U.F., I.G., P.J.R. critically revised and edited the
work. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been financed by The University of The Basque Country (UPV/EHU): Grant number
GIU16/66, UFI 11/44, COLAB19/03 and IKERTU-2020.0155 (to F.U), the Basque Government/Eusko Jaurkaritza:
ELKARTEK KK-2019/00093 (to U.F.), and MINECO “Ramón y Cajal” program RYC-2013-13450 and MINECO
PID2019-104766RB-C21 (to P.J.R.). L.J. was funded by a UPV/EHU postdoctoral fellowship DOKBERRI 2019
(DOCREC19/49) program.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Williams, J.M.; Duckworth, C.A.; Burkitt, M.D.; Watson, A.J.M.; Campbell, B.J.; Pritchard, D.M. Epithelial
cell shedding and barrier function: A matter of life and death at the small intestinal villus tip. Vet. Pathol.
2015, 52, 445–455. [CrossRef] [PubMed]

2. Umar, S. Intestinal Stem Cells. Curr. Gastroenterol. Rep. 2010, 12, 340–348. [CrossRef] [PubMed]
3. Cliffe, L.J.; Humphreys, N.E.; Lane, T.E.; Potten, C.S.; Booth, C.; Grencis, R.K. Accelerated intestinal epithelial

cell turnover: A new mechanism of parasite expulsion. Science 2005, 308, 1463–1465. [CrossRef] [PubMed]
4. Paredes, M.F.; Sorrells, S.F.; Cebrian-Silla, A.; Sandoval, K.; Qi, D.; Kelley, K.W.; James, D.; Mayer, S.; Chang, J.;

Auguste, K.I.; et al. Does Adult Neurogenesis Persist in the Human Hippocampus? Cell Stem Cell 2018, 23,
780–781. [CrossRef] [PubMed]

5. Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.;
Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and
drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [CrossRef] [PubMed]

6. Scoville, W.B.; Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry
1957, 20, 11–21. [CrossRef] [PubMed]

7. Rusznák, Z.; Henskens, W.; Schofield, E.; Kim, W.S.; Fu, Y. Adult Neurogenesis and Gliogenesis: Possible
Mechanisms for Neurorestoration. Exp. Neurobiol. 2016, 25, 103–112. [CrossRef]

8. Arvidsson, A.; Collin, T.; Kirik, D.; Kokaia, Z.; Lindvall, O. Neuronal replacement from endogenous
precursors in the adult brain after stroke. Nat. Med. 2002, 8, 963–970. [CrossRef]

9. Robel, S.; Berninger, B.; Götz, M. The stem cell potential of glia: Lessons from reactive gliosis. Nat. Rev. Neurosci.
2011, 12, 88–104. [CrossRef]

10. Sierra, A.; Martin-Suarez, S.; Valcarcel-Martin, R.; Pascual-Brazo, J.; Aelvoet, S.A.; Abiega, O.; Deudero, J.J.;
Brewster, A.L.; Bernales, I.; Anderson, A.E.; et al. Neuronal hyperactivity accelerates depletion of neural
stem cells and impairs hippocampal neurogenesis. Cell Stem Cell 2015, 16, 488–503. [CrossRef]

11. Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [CrossRef]
12. Seo, Y.-S.; Ko, I.O.; Park, H.; Jeong, Y.J.; Park, J.-A.; Kim, K.S.; Park, M.-J.; Lee, H.-J. Radiation-Induced

Changes in Tumor Vessels and Microenvironment Contribute to Therapeutic Resistance in Glioblastoma.
Front. Oncol. 2019, 9, 1259. [CrossRef] [PubMed]

http://dx.doi.org/10.1177/0300985814559404
http://www.ncbi.nlm.nih.gov/pubmed/25428410
http://dx.doi.org/10.1007/s11894-010-0130-3
http://www.ncbi.nlm.nih.gov/pubmed/20683682
http://dx.doi.org/10.1126/science.1108661
http://www.ncbi.nlm.nih.gov/pubmed/15933199
http://dx.doi.org/10.1016/j.stem.2018.11.006
http://www.ncbi.nlm.nih.gov/pubmed/30526879
http://dx.doi.org/10.1038/s41591-019-0375-9
http://www.ncbi.nlm.nih.gov/pubmed/30911133
http://dx.doi.org/10.1136/jnnp.20.1.11
http://www.ncbi.nlm.nih.gov/pubmed/13406589
http://dx.doi.org/10.5607/en.2016.25.3.103
http://dx.doi.org/10.1038/nm747
http://dx.doi.org/10.1038/nrn2978
http://dx.doi.org/10.1016/j.stem.2015.04.003
http://dx.doi.org/10.1016/S0140-6736(13)61649-9
http://dx.doi.org/10.3389/fonc.2019.01259
http://www.ncbi.nlm.nih.gov/pubmed/31803626


Biology 2020, 9, 426 15 of 26

13. Wang, D.; Wang, C.; Wang, L.; Chen, Y. A comprehensive review in improving delivery of small-molecule
chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment.
Drug Deliv. 2019, 26, 551–565. [CrossRef] [PubMed]

14. Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.;
Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus
radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the
EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [CrossRef]

15. Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumours: Accumulating evidence and unresolved
questions. Nat. Rev. Cancer 2008, 8, 755–768. [CrossRef] [PubMed]

16. Sell, S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 2004, 51, 1–28. [CrossRef]
17. Wang, K.; Wu, X.; Wang, J.; Huang, J. Cancer stem cell theory: Therapeutic implications for nanomedicine.

Int. J. Nanomed. 2013, 8, 899–908. [CrossRef]
18. Kleinsmith, L.J.; Pierce, G.B. MULTIPOTENTIALITY OF SINGLE EMBRYONAL CARCINOMA CELLS.

Cancer Res. 1964, 24, 1544–1551.
19. Neuhaus, K.W. Teeth: Malignant neoplasms in the dental pulp? Lancet Oncol. 2007, 8, 75–78. [CrossRef]
20. Neuhaus, K.W. Dental Pulp Neoplasms. In Encyclopedia of Cancer; Schwab, M., Ed.; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 1084–1086. ISBN 978-3-642-16483-5.
21. Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs)

in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [CrossRef]
22. Mitsiadis, T.A.; Woloszyk, A. Odyssey of human dental pulp stem cells and their remarkable ability to

survive in extremely adverse conditions. Front. Physiol. 2015, 6. [CrossRef] [PubMed]
23. Shi, S.; Gronthos, S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and

dental pulp. J. Bone Miner. Res. 2003, 18, 696–704. [CrossRef] [PubMed]
24. Kaukua, N.; Shahidi, M.K.; Konstantinidou, C.; Dyachuk, V.; Kaucka, M.; Furlan, A.; An, Z.; Wang, L.;

Hultman, I.; Ahrlund-Richter, L.; et al. Glial origin of mesenchymal stem cells in a tooth model system.
Nature 2014, 513, 551–554. [CrossRef] [PubMed]

25. Yoshida, S.; Wada, N.; Hasegawa, D.; Miyaji, H.; Mitarai, H.; Tomokiyo, A.; Hamano, S.; Maeda, H.
Semaphorin 3A Induces Odontoblastic Phenotype in Dental Pulp Stem Cells. J. Dent. Res. 2016, 95,
1282–1290. [CrossRef] [PubMed]

26. Yang, X.; Zhang, S.; Fan, M.; Li, X.; Liu, T.; Yao, Y. Effects of interleukin-1β on mineralization potential of
dental pulp stem cells. Zhonghua Kou Qiang Yi Xue Za Zhi 2011, 46, 406–411. [PubMed]

27. Rombouts, C.; Jeanneau, C.; Bakopoulou, A.; About, I. Dental Pulp Stem Cell Recruitment Signals within
Injured Dental Pulp Tissue. Dent. J. 2016, 4, 8. [CrossRef]

28. Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells—Current trends and future prospective.
Biosci. Rep. 2015, 35. [CrossRef]

29. Huang, G.T.-J.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other
sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [CrossRef]

30. Ducimetière, F.; Lurkin, A.; Ranchère-Vince, D.; Decouvelaere, A.-V.; Péoc’h, M.; Istier, L.; Chalabreysse, P.;
Muller, C.; Alberti, L.; Bringuier, P.-P.; et al. Incidence of Sarcoma Histotypes and Molecular Subtypes in a
Prospective Epidemiological Study with Central Pathology Review and Molecular Testing. PLoS ONE 2011,
6. [CrossRef]

31. Burningham, Z.; Hashibe, M.; Spector, L.; Schiffman, J.D. The Epidemiology of Sarcoma. Clin. Sarcoma Res.
2012, 2, 14. [CrossRef]

32. Lv, F.-J.; Tuan, R.S.; Cheung, K.M.C.; Leung, V.Y.L. Concise review: The surface markers and identity of
human mesenchymal stem cells. Stem Cells 2014, 32, 1408–1419. [CrossRef] [PubMed]

33. Popov, A.; Scotchford, C.; Grant, D.; Sottile, V. Impact of Serum Source on Human Mesenchymal Stem Cell
Osteogenic Differentiation in Culture. Int. J. Mol. Sci. 2019, 20, 5051. [CrossRef] [PubMed]

34. Liu, Q.; Lü, L.; Sun, H.; Zhang, J.; Ma, W.; Zhang, T. Effect of serum on the differentiation of neural stem cells.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2018, 32, 223–227. [CrossRef] [PubMed]

35. Kermani, S.; Megat Abdul Wahab, R.; Zarina Zainol Abidin, I.; Zainal Ariffin, Z.; Senafi, S.; Hisham Zainal
Ariffin, S. Differentiation capacity of mouse dental pulp stem cells into osteoblasts and osteoclasts. Cell J.
2014, 16, 31–42.

http://dx.doi.org/10.1080/10717544.2019.1616235
http://www.ncbi.nlm.nih.gov/pubmed/31928355
http://dx.doi.org/10.1016/S1470-2045(09)70025-7
http://dx.doi.org/10.1038/nrc2499
http://www.ncbi.nlm.nih.gov/pubmed/18784658
http://dx.doi.org/10.1016/j.critrevonc.2004.04.007
http://dx.doi.org/10.2147/IJN.S38641
http://dx.doi.org/10.1016/S1470-2045(06)71013-0
http://dx.doi.org/10.1073/pnas.240309797
http://dx.doi.org/10.3389/fphys.2015.00099
http://www.ncbi.nlm.nih.gov/pubmed/25859225
http://dx.doi.org/10.1359/jbmr.2003.18.4.696
http://www.ncbi.nlm.nih.gov/pubmed/12674330
http://dx.doi.org/10.1038/nature13536
http://www.ncbi.nlm.nih.gov/pubmed/25079316
http://dx.doi.org/10.1177/0022034516653085
http://www.ncbi.nlm.nih.gov/pubmed/27302880
http://www.ncbi.nlm.nih.gov/pubmed/22041629
http://dx.doi.org/10.3390/dj4020008
http://dx.doi.org/10.1042/BSR20150025
http://dx.doi.org/10.1177/0022034509340867
http://dx.doi.org/10.1371/journal.pone.0020294
http://dx.doi.org/10.1186/2045-3329-2-14
http://dx.doi.org/10.1002/stem.1681
http://www.ncbi.nlm.nih.gov/pubmed/24578244
http://dx.doi.org/10.3390/ijms20205051
http://www.ncbi.nlm.nih.gov/pubmed/31614651
http://dx.doi.org/10.7507/1002-1892.201710113
http://www.ncbi.nlm.nih.gov/pubmed/29806416


Biology 2020, 9, 426 16 of 26

36. Hong, X.; Chedid, K.; Kalkanis, S.N. Glioblastoma cell line-derived spheres in serum-containing medium
versus serum-free medium: A comparison of cancer stem cell properties. Int. J. Oncol. 2012, 41, 1693–1700.
[CrossRef]

37. Pisciotta, A.; Riccio, M.; Carnevale, G.; Beretti, F.; Gibellini, L.; Maraldi, T.; Cavallini, G.M.; Ferrari, A.;
Bruzzesi, G.; De Pol, A. Human serum promotes osteogenic differentiation of human dental pulp stem cells
in vitro and in vivo. PLoS ONE 2012, 7, e50542. [CrossRef]

38. Pisciotta, A.; Bertoni, L.; Riccio, M.; Mapelli, J.; Bigiani, A.; La Noce, M.; Orciani, M.; de Pol, A.; Carnevale, G.
Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human
Dental Pulp Stem Cells. Front. Physiol 2018, 9. [CrossRef]

39. Snippert, H.J.; van Es, J.H.; van den Born, M.; Begthel, H.; Stange, D.E.; Barker, N.; Clevers, H.
Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology
2009, 136, 2187–2194.e1. [CrossRef]

40. Todaro, M.; Perez Alea, M.; Scopelliti, A.; Medema, J.P.; Stassi, G. IL-4-mediated drug resistance in colon
cancer stem cells. Cell Cycle 2008, 7, 309–313. [CrossRef]

41. Choi, D.; Lee, H.-W.; Hur, K.-Y.; Kim, J.-J.; Park, G.-S.; Jang, S.-H.; Song, Y.-S.; Jang, K.-S.; Paik, S.-S.
Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal
adenocarcinoma. World J. Gastroenterol. 2009, 15, 2258–2264. [CrossRef]

42. Florek, M.; Haase, M.; Marzesco, A.-M.; Freund, D.; Ehninger, G.; Huttner, W.B.; Corbeil, D. Prominin-1/CD133,
a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain
types of kidney cancer. Cell Tissue Res. 2005, 319, 15–26. [CrossRef] [PubMed]

43. Pfenninger, C.V.; Roschupkina, T.; Hertwig, F.; Kottwitz, D.; Englund, E.; Bengzon, J.; Jacobsen, S.E.;
Nuber, U.A. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on
embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007, 67, 5727–5736.
[CrossRef] [PubMed]

44. Virant-Klun, I.; Skerl, P.; Novakovic, S.; Vrtacnik-Bokal, E.; Smrkolj, S. Similar Population of CD133+ and
DDX4+ VSEL-Like Stem Cells Sorted from Human Embryonic Stem Cell, Ovarian, and Ovarian Cancer
Ascites Cell Cultures: The Real Embryonic Stem Cells? Cells 2019, 8, 706. [CrossRef] [PubMed]

45. Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer
stem cell in human brain tumors. Cancer Res. 2003, 63, 5821–5828. [PubMed]

46. Viña-Almunia, J.; Mas-Bargues, C.; Borras, C.; Gambini, J.; El Alami, M.; Sanz-Ros, J.; Peñarrocha, M.; Vina, J.
Influence of Partial O2 Pressure on the Adhesion, Proliferation, and Osteogenic Differentiation of Human
Dental Pulp Stem Cells on β-Tricalcium Phosphate Scaffold. Int. J. Oral. Maxillofac. Implants 2017, 32,
1251–1256. [CrossRef] [PubMed]

47. Bonnamain, V.; Thinard, R.; Sergent-Tanguy, S.; Huet, P.; Bienvenu, G.; Naveilhan, P.; Farges, J.-C.;
Alliot-Licht, B. Human dental pulp stem cells cultured in serum-free supplemented medium. Front. Physiol
2013, 4. [CrossRef]

48. Jang, T.J.; Park, J.B.; Lee, J.I. The Expression of CD10 and CD15 Is Progressively Increased during Colorectal
Cancer Development. Korean J. Pathol. 2013, 47, 340–347. [CrossRef]

49. Daynac, M.; Tirou, L.; Faure, H.; Mouthon, M.-A.; Gauthier, L.R.; Hahn, H.; Boussin, F.D.; Ruat, M. Hedgehog
Controls Quiescence and Activation of Neural Stem Cells in the Adult Ventricular-Subventricular Zone.
Stem Cell Rep. 2016, 7, 735–748. [CrossRef]

50. Daynac, M.; Chicheportiche, A.; Pineda, J.R.; Gauthier, L.R.; Boussin, F.D.; Mouthon, M.A. Quiescent neural
stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res.
2013, 11, 516–528. [CrossRef]

51. Son, M.J.; Woolard, K.; Nam, D.-H.; Lee, J.; Fine, H.A. SSEA-1 is an enrichment marker for tumor-initiating
cells in human glioblastoma. Cell Stem Cell 2009, 4, 440–452. [CrossRef]

52. Silvestre, D.C.; Pineda, J.R.; Hoffschir, F.; Studler, J.M.; Mouthon, M.A.; Pflumio, F.; Junier, M.P.; Chneiweiss, H.;
Boussin, F.D. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells 2011, 29, 440–451.
[CrossRef] [PubMed]

53. Mao, X.-G.; Zhang, X.; Xue, X.-Y.; Guo, G.; Wang, P.; Zhang, W.; Fei, Z.; Zhen, H.-N.; You, S.-W.; Yang, H.
Brain Tumor Stem-Like Cells Identified by Neural Stem Cell Marker CD15. Transl. Oncol. 2009, 2, 247–257.
[CrossRef] [PubMed]

http://dx.doi.org/10.3892/ijo.2012.1592
http://dx.doi.org/10.1371/journal.pone.0050542
http://dx.doi.org/10.3389/fphys.2018.00547
http://dx.doi.org/10.1053/j.gastro.2009.03.002
http://dx.doi.org/10.4161/cc.7.3.5389
http://dx.doi.org/10.3748/wjg.15.2258
http://dx.doi.org/10.1007/s00441-004-1018-z
http://www.ncbi.nlm.nih.gov/pubmed/15558321
http://dx.doi.org/10.1158/0008-5472.CAN-07-0183
http://www.ncbi.nlm.nih.gov/pubmed/17575139
http://dx.doi.org/10.3390/cells8070706
http://www.ncbi.nlm.nih.gov/pubmed/31336813
http://www.ncbi.nlm.nih.gov/pubmed/14522905
http://dx.doi.org/10.11607/jomi.5529
http://www.ncbi.nlm.nih.gov/pubmed/28938034
http://dx.doi.org/10.3389/fphys.2013.00357
http://dx.doi.org/10.4132/KoreanJPathol.2013.47.4.340
http://dx.doi.org/10.1016/j.stemcr.2016.08.016
http://dx.doi.org/10.1016/j.scr.2013.02.008
http://dx.doi.org/10.1016/j.stem.2009.03.003
http://dx.doi.org/10.1002/stem.600
http://www.ncbi.nlm.nih.gov/pubmed/21425407
http://dx.doi.org/10.1593/tlo.09136
http://www.ncbi.nlm.nih.gov/pubmed/19956386


Biology 2020, 9, 426 17 of 26

54. Uribe-Etxebarria, V.; Luzuriaga, J.; Garcia-Gallastegui, P.; Agliano, A.; Unda, F.; Ibarretxe, G. Notch/Wnt
cross-signalling regulates stemness of dental pulp stem cells through expression of neural crest and core
pluripotency factors. Eur. Cell Mater. 2017, 34, 249–270. [CrossRef] [PubMed]

55. Barker, N.; Clevers, H. Tracking down the stem cells of the intestine: Strategies to identify adult stem cells.
Gastroenterology 2007, 133, 1755–1760. [CrossRef]

56. de Sousa e Melo, F.; Kurtova, A.V.; Harnoss, J.M.; Kljavin, N.; Hoeck, J.D.; Hung, J.; Anderson, J.E.; Storm, E.E.;
Modrusan, Z.; Koeppen, H.; et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer.
Nature 2017, 543, 676–680. [CrossRef]

57. Satoh, J.; Obayashi, S.; Tabunoki, H.; Wakana, T.; Kim, S.U. Stable expression of neurogenin 1 induces LGR5,
a novel stem cell marker, in an immortalized human neural stem cell line HB1.F3. Cell. Mol. Neurobiol. 2010,
30, 415–426. [CrossRef]

58. Yu, Y.; Moberly, A.H.; Bhattarai, J.P.; Duan, C.; Zheng, Q.; Li, F.; Huang, H.; Olson, W.; Luo, W.; Wen, T.; et al.
The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb. J. Neurosci. 2017,
37, 9403–9414. [CrossRef]

59. Hiraoka, K.; Hayashi, T.; Kaneko, R.; Nasu-Nishimura, Y.; Koyama-Nasu, R.; Kawasaki, Y.; Akiyama, T.
SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity. Biochem. Biophys.
Res. Commun. 2015, 460, 216–221. [CrossRef]

60. Wang, F.; Scoville, D.; He, X.C.; Mahe, M.M.; Box, A.; Perry, J.M.; Smith, N.R.; Lei, N.Y.; Davies, P.S.; Fuller, M.K.;
et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and
colony-formation assay. Gastroenterology 2013, 145, 383–395.e1–21. [CrossRef]

61. Levin, T.G.; Powell, A.E.; Davies, P.S.; Silk, A.D.; Dismuke, A.D.; Anderson, E.C.; Swain, J.R.; Wong, M.H.
Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal
tract. Gastroenterology 2010, 139, 2072–2082.e5. [CrossRef]

62. Fu, L.; Zhu, L.; Huang, Y.; Lee, T.D.; Forman, S.J.; Shih, C.-C. Derivation of Neural Stem Cells from
Mesenchymal Stem Cells: Evidence for a Bipotential Stem Cell Population. Stem Cells Dev. 2008, 17,
1109–1121. [CrossRef] [PubMed]

63. Kijima, N.; Hosen, N.; Kagawa, N.; Hashimoto, N.; Nakano, A.; Fujimoto, Y.; Kinoshita, M.; Sugiyama, H.;
Yoshimine, T. CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor
cells and involved in the regulation of tumor cell invasion. Neuro-Oncology 2012, 14, 1254–1264. [CrossRef]
[PubMed]

64. Hadaegh, Y.; Niknam, M.; Attar, A.; Maharlooei, M.K.; Tavangar, M.S.; Aarabi, A.M.; Monabati, A.
Characterization of stem cells from the pulp of unerupted third molar tooth. Indian J. Dent. Res. 2014, 25,
14–21. [CrossRef] [PubMed]

65. D’ Alimonte, I.; Nargi, E.; Mastrangelo, F.; Falco, G.; Lanuti, P.; Marchisio, M.; Miscia, S.; Robuffo, I.;
Capogreco, M.; Buccella, S.; et al. Vascular endothelial growth factor enhances in vitro proliferation and
osteogenic differentiation of human dental pulp stem cells. J. Biol. Regul. Homeost. Agents 2011, 25, 57–69.

66. Jing, F.; Kim, H.J.; Kim, C.H.; Kim, Y.J.; Lee, J.H.; Kim, H.R. Colon cancer stem cell markers CD44 and CD133
in patients with colorectal cancer and synchronous hepatic metastases. Int. J. Oncol. 2015, 46, 1582–1588.
[CrossRef]

67. Su, W.; Foster, S.C.; Xing, R.; Feistel, K.; Olsen, R.H.J.; Acevedo, S.F.; Raber, J.; Sherman, L.S. CD44
Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and
Differentiation. J. Biol. Chem. 2017, 292, 4434–4445. [CrossRef]

68. Nishikawa, M.; Inoue, A.; Ohnishi, T.; Kohno, S.; Ohue, S.; Matsumoto, S.; Suehiro, S.; Yamashita, D.; Ozaki, S.;
Watanabe, H.; et al. Significance of Glioma Stem-Like Cells in the Tumor Periphery That Express High Levels
of CD44 in Tumor Invasion, Early Progression, and Poor Prognosis in Glioblastoma. Stem Cells Int. 2018,
2018, 5387041. [CrossRef]

69. Rimkus, T.K.; Carpenter, R.L.; Sirkisoon, S.; Zhu, D.; Pasche, B.C.; Chan, M.D.; Lesser, G.J.; Tatter, S.B.; Watabe, K.;
Debinski, W.; et al. Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates Mesenchymal
Glioblastoma via Transcriptional Activation of CD44. Cancer Res. 2018, 78, 2589–2600. [CrossRef]

70. Wang, H.-H.; Liao, C.-C.; Chow, N.-H.; Huang, L.L.-H.; Chuang, J.-I.; Wei, K.-C.; Shin, J.-W. Whether CD44 is
an applicable marker for glioma stem cells. Am. J. Transl Res. 2017, 9, 4785–4806.

71. Macrin, D.; Alghadeer, A.; Zhao, Y.T.; Miklas, J.W.; Hussein, A.M.; Detraux, D.; Robitaille, A.M.; Madan, A.;
Moon, R.T.; Wang, Y.; et al. Metabolism as an early predictor of DPSCs aging. Sci. Rep. 2019, 9, 2195. [CrossRef]

http://dx.doi.org/10.22203/eCM.v034a16
http://www.ncbi.nlm.nih.gov/pubmed/29092089
http://dx.doi.org/10.1053/j.gastro.2007.10.029
http://dx.doi.org/10.1038/nature21713
http://dx.doi.org/10.1007/s10571-009-9466-3
http://dx.doi.org/10.1523/JNEUROSCI.0500-17.2017
http://dx.doi.org/10.1016/j.bbrc.2015.03.012
http://dx.doi.org/10.1053/j.gastro.2013.04.050
http://dx.doi.org/10.1053/j.gastro.2010.08.053
http://dx.doi.org/10.1089/scd.2008.0068
http://www.ncbi.nlm.nih.gov/pubmed/18426339
http://dx.doi.org/10.1093/neuonc/nor202
http://www.ncbi.nlm.nih.gov/pubmed/22166264
http://dx.doi.org/10.4103/0970-9290.131048
http://www.ncbi.nlm.nih.gov/pubmed/24748292
http://dx.doi.org/10.3892/ijo.2015.2844
http://dx.doi.org/10.1074/jbc.M116.774109
http://dx.doi.org/10.1155/2018/5387041
http://dx.doi.org/10.1158/0008-5472.CAN-17-2933
http://dx.doi.org/10.1038/s41598-018-37489-4


Biology 2020, 9, 426 18 of 26

72. Karpus, O.N.; Westendorp, B.F.; Vermeulen, J.L.M.; Meisner, S.; Koster, J.; Muncan, V.; Wildenberg, M.E.;
van den Brink, G.R. Colonic CD90+ Crypt Fibroblasts Secrete Semaphorins to Support Epithelial Growth.
Cell Rep. 2019, 26, 3698–3708.e5. [CrossRef] [PubMed]

73. Hirashima, K.; Yue, F.; Kobayashi, M.; Uchida, Y.; Nakamura, S.; Tomotsune, D.; Matsumoto, K.;
Takizawa-Shirasawa, S.; Yokoyama, T.; Kanno, H.; et al. Cell biological profiling of reprogrammed
cancer stem cell-like colon cancer cells maintained in culture. Cell Tissue Res. 2019, 375, 697–707. [CrossRef]
[PubMed]

74. Zhang, Q.; Yi, D.-Y.; Xue, B.-Z.; Wen, W.-W.; Lu, Y.-P.; Abdelmaksou, A.; Sun, M.-X.; Yuan, D.-T.; Zhao, H.-Y.;
Xiong, N.-X.; et al. CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with
different roles in tumour progression. Cell Death Dis. 2018, 9, 1101. [CrossRef] [PubMed]

75. Luzuriaga, J.; Pineda, J.R.; Irastorza, I.; Uribe-Etxebarria, V.; García-Gallastegui, P.; Encinas, J.M.; Chamero, P.;
Unda, F.; Ibarretxe, G. BDNF and NT3 Reprogram Human Ectomesenchymal Dental Pulp Stem Cells to
Neurogenic and Gliogenic Neural Crest Progenitors Cultured in Serum-Free Medium. Cell. Physiol. Biochem.
2019, 52, 1361–1380. [CrossRef] [PubMed]

76. Hilkens, P.; Gervois, P.; Fanton, Y.; Vanormelingen, J.; Martens, W.; Struys, T.; Politis, C.; Lambrichts, I.;
Bronckaers, A. Effect of isolation methodology on stem cell properties and multilineage differentiation
potential of human dental pulp stem cells. Cell Tissue Res. 2013, 353, 65–78. [CrossRef]

77. Wang, Y.; Jiang, C.-Q.; Fan, L.-F. Correlation of Musashi-1, Lgr5, and pEGFR expressions in human small
intestinal adenocarcinomas. Tumour Biol. 2015, 36, 6075–6082. [CrossRef]

78. Zhang, S.; Han, Z.; Jing, Y.; Tao, S.; Li, T.; Wang, H.; Wang, Y.; Li, R.; Yang, Y.; Zhao, X.; et al. CD133(+)CXCR4(+)
colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med. 2012, 10, 85.
[CrossRef]

79. Ho, S.-Y.; Ling, T.-Y.; Lin, H.-Y.; Liou, J.T.-J.; Liu, F.-C.; Chen, I.-C.; Lee, S.-W.; Hsu, Y.; Lai, D.-M.; Liou, H.-H.
SDF-1/CXCR4 Signaling Maintains Stemness Signature in Mouse Neural Stem/Progenitor Cells. Stem Cells Int.
2017, 2017, 2493752. [CrossRef]

80. Yi, L.; Zhou, X.; Li, T.; Liu, P.; Hai, L.; Tong, L.; Ma, H.; Tao, Z.; Xie, Y.; Zhang, C.; et al. Notch1 signaling
pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine
system CXCL12/CXCR4. J. Exp. Clin. Cancer Res. 2019, 38, 339. [CrossRef]

81. Li, M.; Sun, X.; Ma, L.; Jin, L.; Zhang, W.; Xiao, M.; Yu, Q. SDF-1/CXCR4 axis induces human dental pulp stem
cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways. Sci. Rep. 2017, 7, 40161. [CrossRef]

82. Li, Y.; Wang, L.; Pappan, L.; Galliher-Beckley, A.; Shi, J. IL-1β promotes stemness and invasiveness of colon
cancer cells through Zeb1 activation. Mol. Cancer 2012, 11, 87. [CrossRef] [PubMed]

83. Ehrmann, J.; Kolár, Z.; Mokry, J. Nestin as a diagnostic and prognostic marker: Immunohistochemical
analysis of its expression in different tumours. J. Clin. Pathol. 2005, 58, 222–223. [CrossRef] [PubMed]

84. Park, S.; DiMaio, T.A.; Scheef, E.A.; Sorenson, C.M.; Sheibani, N. PECAM-1 regulates proangiogenic properties
of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am. J. Physiol. Cell Physiol.
2010, 299, C1468–C1484. [CrossRef] [PubMed]

85. Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.;
Dirks, P.B. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401. [CrossRef]
[PubMed]

86. Potten, C.S.; Booth, C.; Tudor, G.L.; Booth, D.; Brady, G.; Hurley, P.; Ashton, G.; Clarke, R.; Sakakibara, S.;
Okano, H. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation
2003, 71, 28–41. [CrossRef] [PubMed]

87. Chiou, G.-Y.; Yang, T.-W.; Huang, C.-C.; Tang, C.-Y.; Yen, J.-Y.; Tsai, M.-C.; Chen, H.-Y.; Fadhilah, N.; Lin, C.-C.;
Jong, Y.-J. Musashi-1 promotes a cancer stem cell lineage and chemoresistance in colorectal cancer cells.
Sci. Rep. 2017, 7, 2172. [CrossRef] [PubMed]

88. Sakakibara, S.; Imai, T.; Hamaguchi, K.; Okabe, M.; Aruga, J.; Nakajima, K.; Yasutomi, D.; Nagata, T.;
Kurihara, Y.; Uesugi, S.; et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the
mammalian CNS stem cell. Dev. Biol. 1996, 176, 230–242. [CrossRef] [PubMed]

89. Chen, H.-Y.; Lin, L.-T.; Wang, M.-L.; Lee, S.-H.; Tsai, M.-L.; Tsai, C.-C.; Liu, W.-H.; Chen, T.-C.; Yang, Y.-P.;
Lee, Y.-Y.; et al. Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance
in glioblastoma. Oncotarget 2016, 7, 42485–42501. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.celrep.2019.02.101
http://www.ncbi.nlm.nih.gov/pubmed/30917322
http://dx.doi.org/10.1007/s00441-018-2933-8
http://www.ncbi.nlm.nih.gov/pubmed/30284085
http://dx.doi.org/10.1038/s41419-018-1140-6
http://www.ncbi.nlm.nih.gov/pubmed/30368520
http://dx.doi.org/10.33594/000000096
http://www.ncbi.nlm.nih.gov/pubmed/31075188
http://dx.doi.org/10.1007/s00441-013-1630-x
http://dx.doi.org/10.1007/s13277-015-3288-3
http://dx.doi.org/10.1186/1741-7015-10-85
http://dx.doi.org/10.1155/2017/2493752
http://dx.doi.org/10.1186/s13046-019-1319-4
http://dx.doi.org/10.1038/srep40161
http://dx.doi.org/10.1186/1476-4598-11-87
http://www.ncbi.nlm.nih.gov/pubmed/23174018
http://dx.doi.org/10.1136/jcp.2004.021238
http://www.ncbi.nlm.nih.gov/pubmed/15677549
http://dx.doi.org/10.1152/ajpcell.00246.2010
http://www.ncbi.nlm.nih.gov/pubmed/20810911
http://dx.doi.org/10.1038/nature03128
http://www.ncbi.nlm.nih.gov/pubmed/15549107
http://dx.doi.org/10.1046/j.1432-0436.2003.700603.x
http://www.ncbi.nlm.nih.gov/pubmed/12558601
http://dx.doi.org/10.1038/s41598-017-02057-9
http://www.ncbi.nlm.nih.gov/pubmed/28526879
http://dx.doi.org/10.1006/dbio.1996.0130
http://www.ncbi.nlm.nih.gov/pubmed/8660864
http://dx.doi.org/10.18632/oncotarget.9890
http://www.ncbi.nlm.nih.gov/pubmed/27285760


Biology 2020, 9, 426 19 of 26

90. Padial-Molina, M.; de Buitrago, J.G.; Sainz-Urruela, R.; Abril-Garcia, D.; Anderson, P.; O’Valle, F.;
Galindo-Moreno, P. Expression of Musashi-1 During Osteogenic Differentiation of Oral MSC: An In
Vitro Study. Int. J. Mol. Sci. 2019, 20, 2171. [CrossRef]

91. Lundberg, I.V.; Edin, S.; Eklöf, V.; Öberg, Å.; Palmqvist, R.; Wikberg, M.L. SOX2 expression is associated
with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer. BMC Cancer 2016, 16, 471.
[CrossRef]

92. Zhang, S.; Cui, W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J.
Stem Cells 2014, 6, 305–311. [CrossRef] [PubMed]

93. Hattermann, K.; Flüh, C.; Engel, D.; Mehdorn, H.M.; Synowitz, M.; Mentlein, R.; Held-Feindt, J. Stem cell
markers in glioma progression and recurrence. Int. J. Oncol. 2016, 49, 1899–1910. [CrossRef] [PubMed]

94. Liu, T.; Xu, H.; Huang, M.; Ma, W.; Saxena, D.; Lustig, R.A.; Alonso-Basanta, M.; Zhang, Z.; O’Rourke, D.M.;
Zhang, L.; et al. Circulating Glioma Cells Exhibit Stem Cell-like Properties. Cancer Res. 2018, 78, 6632–6642.
[CrossRef] [PubMed]

95. Uribe-Etxebarria, V.; Agliano, A.; Unda, F.; Ibarretxe, G. Wnt signaling reprograms metabolism in dental
pulp stem cells. J. Cell. Physiol. 2019, 234, 13068–13082. [CrossRef] [PubMed]

96. Uribe-Etxebarria, V.; García-Gallastegui, P.; Pérez-Garrastachu, M.; Casado-Andrés, M.; Irastorza, I.; Unda, F.;
Ibarretxe, G.; Subirán, N. Wnt-3a Induces Epigenetic Remodeling in Human Dental Pulp Stem Cells. Cells
2020, 9, 652. [CrossRef] [PubMed]

97. Wen, K.; Fu, Z.; Wu, X.; Feng, J.; Chen, W.; Qian, J. Oct-4 is required for an antiapoptotic behavior of
chemoresistant colorectal cancer cells enriched for cancer stem cells: Effects associated with STAT3/Survivin.
Cancer Lett. 2013, 333, 56–65. [CrossRef]

98. Vincent, P.H.; Benedikz, E.; Uhlén, P.; Hovatta, O.; Sundström, E. Expression of Pluripotency Markers in
Nonpluripotent Human Neural Stem and Progenitor Cells. Stem Cells Dev. 2017, 26, 876–887. [CrossRef]

99. Asadi, M.H.; Khalifeh, K.; Mowla, S.J. OCT4 spliced variants are highly expressed in brain cancer tissues and
inhibition of OCT4B1 causes G2/M arrest in brain cancer cells. J. Neurooncol. 2016, 130, 455–463. [CrossRef]

100. Luzuriaga, J.; Pastor-Alonso, O.; Encinas, J.M.; Unda, F.; Ibarretxe, G.; Pineda, J.R. Human Dental Pulp Stem
Cells Grown in Neurogenic Media Differentiate Into Endothelial Cells and Promote Neovasculogenesis in
the Mouse Brain. Front. Physiol. 2019, 10, 347. [CrossRef]

101. Zhang, M.; Xu, C.; Wang, H.-Z.; Peng, Y.-N.; Li, H.-O.; Zhou, Y.-J.; Liu, S.; Wang, F.; Liu, L.; Chang, Y.; et al.
Soft fibrin matrix downregulates DAB2IP to promote Nanog-dependent growth of colon tumor-repopulating
cells. Cell Death Dis. 2019, 10, 151. [CrossRef]

102. Gregorian, C.; Nakashima, J.; Le Belle, J.; Ohab, J.; Kim, R.; Liu, A.; Smith, K.B.; Groszer, M.; Garcia, A.D.;
Sofroniew, M.V.; et al. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis.
J. Neurosci. 2009, 29, 1874–1886. [CrossRef] [PubMed]

103. Groszer, M.; Erickson, R.; Scripture-Adams, D.D.; Lesche, R.; Trumpp, A.; Zack, J.A.; Kornblum, H.I.; Liu, X.;
Wu, H. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene
in vivo. Science 2001, 294, 2186–2189. [CrossRef] [PubMed]

104. He, X.C.; Yin, T.; Grindley, J.C.; Tian, Q.; Sato, T.; Tao, W.A.; Dirisina, R.; Porter-Westpfahl, K.S.; Hembree, M.;
Johnson, T.; et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 2007, 39,
189–198. [CrossRef] [PubMed]

105. Roy, S.; Yu, Y.; Padhye, S.B.; Sarkar, F.H.; Majumdar, A.P.N. Difluorinated-curcumin (CDF) restores PTEN
expression in colon cancer cells by down-regulating miR-21. PLoS ONE 2013, 8, e68543. [CrossRef] [PubMed]

106. Duan, S.; Yuan, G.; Liu, X.; Ren, R.; Li, J.; Zhang, W.; Wu, J.; Xu, X.; Fu, L.; Li, Y.; et al. PTEN deficiency
reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat. Commun.
2015, 6, 10068. [CrossRef]

107. Shen, W.-C.; Lai, Y.-C.; Li, L.-H.; Liao, K.; Lai, H.-C.; Kao, S.-Y.; Wang, J.; Chuong, C.-M.; Hung, S.-C.
Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces
oncogenesis. Nat. Commun. 2019, 10, 2226. [CrossRef]

108. Shmelkov, S.V.; Butler, J.M.; Hooper, A.T.; Hormigo, A.; Kushner, J.; Milde, T.; St Clair, R.; Baljevic, M.;
White, I.; Jin, D.K.; et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133-
metastatic colon cancer cells initiate tumors. J. Clin. Investig. 2008, 118, 2111–2120. [CrossRef]

http://dx.doi.org/10.3390/ijms20092171
http://dx.doi.org/10.1186/s12885-016-2509-5
http://dx.doi.org/10.4252/wjsc.v6.i3.305
http://www.ncbi.nlm.nih.gov/pubmed/25126380
http://dx.doi.org/10.3892/ijo.2016.3682
http://www.ncbi.nlm.nih.gov/pubmed/27600094
http://dx.doi.org/10.1158/0008-5472.CAN-18-0650
http://www.ncbi.nlm.nih.gov/pubmed/30322863
http://dx.doi.org/10.1002/jcp.27977
http://www.ncbi.nlm.nih.gov/pubmed/30549037
http://dx.doi.org/10.3390/cells9030652
http://www.ncbi.nlm.nih.gov/pubmed/32156036
http://dx.doi.org/10.1016/j.canlet.2013.01.009
http://dx.doi.org/10.1089/scd.2016.0346
http://dx.doi.org/10.1007/s11060-016-2255-1
http://dx.doi.org/10.3389/fphys.2019.00347
http://dx.doi.org/10.1038/s41419-019-1309-7
http://dx.doi.org/10.1523/JNEUROSCI.3095-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19211894
http://dx.doi.org/10.1126/science.1065518
http://www.ncbi.nlm.nih.gov/pubmed/11691952
http://dx.doi.org/10.1038/ng1928
http://www.ncbi.nlm.nih.gov/pubmed/17237784
http://dx.doi.org/10.1371/journal.pone.0068543
http://www.ncbi.nlm.nih.gov/pubmed/23894315
http://dx.doi.org/10.1038/ncomms10068
http://dx.doi.org/10.1038/s41467-019-10197-x
http://dx.doi.org/10.1172/JCI34401


Biology 2020, 9, 426 20 of 26

109. Paschall, A.V.; Yang, D.; Lu, C.; Redd, P.S.; Choi, J.-H.; Heaton, C.M.; Lee, J.R.; Nayak-Kapoor, A.; Liu, K.
CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype. Oncotarget 2016, 7,
78698–78712. [CrossRef]

110. Glumac, P.M.; LeBeau, A.M. The role of CD133 in cancer: A concise review. Clin. Transl. Med. 2018, 7, 18.
[CrossRef]

111. Uchida, N.; Buck, D.W.; He, D.; Reitsma, M.J.; Masek, M.; Phan, T.V.; Tsukamoto, A.S.; Gage, F.H.;
Weissman, I.L. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 2000,
97, 14720–14725. [CrossRef]

112. Schwartz, P.H.; Bryant, P.J.; Fuja, T.J.; Su, H.; O’Dowd, D.K.; Klassen, H. Isolation and characterization of
neural progenitor cells from post-mortem human cortex. J. Neurosci. Res. 2003, 74, 838–851. [CrossRef]
[PubMed]

113. Beckervordersandforth, R.; Tripathi, P.; Ninkovic, J.; Bayam, E.; Lepier, A.; Stempfhuber, B.; Kirchhoff, F.;
Hirrlinger, J.; Haslinger, A.; Lie, D.C.; et al. In vivo fate mapping and expression analysis reveals molecular
hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 2010, 7, 744–758. [CrossRef]
[PubMed]

114. Lottaz, C.; Beier, D.; Meyer, K.; Kumar, P.; Hermann, A.; Schwarz, J.; Junker, M.; Oefner, P.J.; Bogdahn, U.;
Wischhusen, J.; et al. Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell
lines suggest different cells of origin. Cancer Res. 2010, 70, 2030–2040. [CrossRef] [PubMed]

115. Lee, T.-C.; Lee, T.-H.; Huang, Y.-H.; Chang, N.-K.; Lin, Y.-J.; Chien, P.-W.C.; Yang, W.-H.; Lin, M.H.-C.
Comparison of surface markers between human and rabbit mesenchymal stem cells. PLoS ONE 2014, 9,
e111390. [CrossRef] [PubMed]

116. Feng, B.-H.; Liu, A.-G.; Gu, W.-G.; Deng, L.; Cheng, X.-G.; Tong, T.-J.; Zhang, H.-Z. CD133+ subpopulation
of the HT1080 human fibrosarcoma cell line exhibits cancer stem-like characteristics. Oncol. Rep. 2013, 30,
815–823. [CrossRef]

117. Irollo, E.; Pirozzi, G. CD133: To be or not to be, is this the real question? Am. J. Transl Res. 2013, 5, 563–581.
118. Sokol, S.Y. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development 2011, 138,

4341–4350. [CrossRef]
119. Barraud, P.; Stott, S.; Møllgård, K.; Parmar, M.; Björklund, A. In vitro characterization of a human neural

progenitor cell coexpressing SSEA4 and CD133. J. Neurosci. Res. 2007, 85, 250–259. [CrossRef]
120. Patru, C.; Romao, L.; Varlet, P.; Coulombel, L.; Raponi, E.; Cadusseau, J.; Renault-Mihara, F.; Thirant, C.;

Leonard, N.; Berhneim, A.; et al. CD133, CD15/SSEA-1, CD34 or side populations do not resume
tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal
tumors. BMC Cancer 2010, 10, 66. [CrossRef]

121. Kahlert, U.D.; Bender, N.O.; Maciaczyk, D.; Bogiel, T.; Bar, E.E.; Eberhart, C.G.; Nikkhah, G.; Maciaczyk, J.
CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem
cell-related gene expression profile in in vitro propagated glioblastoma multiforme-derived cell line with a
PNET-like component. Folia Neuropathol. 2012, 50, 357–368. [CrossRef]

122. Friedman, G.K.; Moore, B.P.; Nan, L.; Kelly, V.M.; Etminan, T.; Langford, C.P.; Xu, H.; Han, X.; Markert, J.M.;
Beierle, E.A.; et al. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and
CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro-Oncology 2016, 18, 227–235.
[CrossRef] [PubMed]

123. Ariza, A.; López, D.; Castellà, E.M.; Muñoz, C.; Zújar, M.J.; Mate, J.L. Expression of CD15 in normal and
metaplastic Paneth cells of the digestive tract. J. Clin. Pathol. 1996, 49, 474–477. [CrossRef] [PubMed]

124. Bakopoulou, A.; Apatzidou, D.; Aggelidou, E.; Gousopoulou, E.; Leyhausen, G.; Volk, J.; Kritis, A.; Koidis, P.;
Geurtsen, W. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade,
GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Res. Ther. 2017, 8, 247.
[CrossRef] [PubMed]

125. Yudoh, K.; Matsui, H.; Tsuji, H. Nitric oxide induced by tumor cells activates tumor cell adhesion to
endothelial cells and permeability of the endothelium in vitro. Clin. Exp. Metastasis 1997, 15, 557–567.
[CrossRef]

126. Carmon, K.S.; Lin, Q.; Gong, X.; Thomas, A.; Liu, Q. LGR5 interacts and cointernalizes with Wnt receptors to
modulate Wnt/β-catenin signaling. Mol. Cell. Biol. 2012, 32, 2054–2064. [CrossRef]

http://dx.doi.org/10.18632/oncotarget.12168
http://dx.doi.org/10.1186/s40169-018-0198-1
http://dx.doi.org/10.1073/pnas.97.26.14720
http://dx.doi.org/10.1002/jnr.10854
http://www.ncbi.nlm.nih.gov/pubmed/14648588
http://dx.doi.org/10.1016/j.stem.2010.11.017
http://www.ncbi.nlm.nih.gov/pubmed/21112568
http://dx.doi.org/10.1158/0008-5472.CAN-09-1707
http://www.ncbi.nlm.nih.gov/pubmed/20145155
http://dx.doi.org/10.1371/journal.pone.0111390
http://www.ncbi.nlm.nih.gov/pubmed/25380245
http://dx.doi.org/10.3892/or.2013.2486
http://dx.doi.org/10.1242/dev.066209
http://dx.doi.org/10.1002/jnr.21116
http://dx.doi.org/10.1186/1471-2407-10-66
http://dx.doi.org/10.5114/fn.2012.32365
http://dx.doi.org/10.1093/neuonc/nov123
http://www.ncbi.nlm.nih.gov/pubmed/26188016
http://dx.doi.org/10.1136/jcp.49.6.474
http://www.ncbi.nlm.nih.gov/pubmed/8763261
http://dx.doi.org/10.1186/s13287-017-0705-0
http://www.ncbi.nlm.nih.gov/pubmed/29096714
http://dx.doi.org/10.1023/A:1018487213157
http://dx.doi.org/10.1128/MCB.00272-12


Biology 2020, 9, 426 21 of 26

127. Xu, L.; Lin, W.; Wen, L.; Li, G. Lgr5 in cancer biology: Functional identification of Lgr5 in cancer progression
and potential opportunities for novel therapy. Stem Cell Res. Ther. 2019, 10, 219. [CrossRef]

128. Barker, N.; van Es, J.H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.;
Begthel, H.; Peters, P.J.; et al. Identification of stem cells in small intestine and colon by marker gene Lgr5.
Nature 2007, 449, 1003–1007. [CrossRef]

129. Snyder, J.C.; Rochelle, L.K.; Marion, S.; Lyerly, H.K.; Barak, L.S.; Caron, M.G. Lgr4 and Lgr5 drive the
formation of long actin-rich cytoneme-like membrane protrusions. J. Cell Sci. 2015, 128, 1230–1240. [CrossRef]

130. Schoumacher, M.; Goldman, R.D.; Louvard, D.; Vignjevic, D.M. Actin, microtubules, and vimentin
intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 2010, 189, 541–556. [CrossRef]

131. Lin, W.; Xu, L.; Lin, S.; Shi, L.; Wang, B.; Pan, Q.; Lee, W.Y.W.; Li, G. Characterisation of multipotent stem cells
from human peripheral blood using an improved protocol. J. Orthop. Translat. 2019, 19, 18–28. [CrossRef]

132. Kim, J.-H.; Jeon, M.; Song, J.-S.; Lee, J.-H.; Choi, B.-J.; Jung, H.-S.; Moon, S.J.; DenBesten, P.K.; Kim, S.-O.
Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.
PLoS ONE 2014, 9, e102893. [CrossRef] [PubMed]

133. Rot, S.; Taubert, H.; Bache, M.; Greither, T.; Würl, P.; Eckert, A.W.; Schubert, J.; Vordermark, D.; Kappler, M.
A novel splice variant of the stem cell marker LGR5/GPR49 is correlated with the risk of tumor-related death
in soft-tissue sarcoma patients. BMC Cancer 2011, 11, 429. [CrossRef] [PubMed]

134. Yadav, V.N.; Zamler, D.; Baker, G.J.; Kadiyala, P.; Erdreich-Epstein, A.; DeCarvalho, A.C.; Mikkelsen, T.;
Castro, M.G.; Lowenstein, P.R. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation
induced apoptosis: A genetic knockdown study. Oncotarget 2016, 7, 83701–83719. [CrossRef] [PubMed]

135. Wu, W.; Cao, J.; Ji, Z.; Wang, J.; Jiang, T.; Ding, H. Co-expression of Lgr5 and CXCR4 characterizes cancer
stem-like cells of colorectal cancer. Oncotarget 2016, 7, 81144–81155. [CrossRef]

136. Ganju, R.K.; Brubaker, S.A.; Meyer, J.; Dutt, P.; Yang, Y.; Qin, S.; Newman, W.; Groopman, J.E.
The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled
CXCR-4 receptor and activates multiple signal transduction pathways. J. Biol. Chem. 1998, 273, 23169–23175.
[CrossRef]

137. Xiu, G.; Li, X.; Yin, Y.; Li, J.; Li, B.; Chen, X.; Liu, P.; Sun, J.; Ling, B. SDF-1/CXCR4 Augments the Therapeutic
Effect of Bone Marrow Mesenchymal Stem Cells in the Treatment of Lipopolysaccharide-Induced Liver
Injury by Promoting Their Migration Through PI3K/Akt Signaling Pathway. Cell Transplant. 2020, 29,
963689720929992. [CrossRef]

138. Hermann, A.; Gastl, R.; Liebau, S.; Popa, M.O.; Fiedler, J.; Boehm, B.O.; Maisel, M.; Lerche, H.; Schwarz, J.;
Brenner, R.; et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal
cells. J. Cell. Sci. 2004, 117, 4411–4422. [CrossRef]

139. Shafaei, S.; Sharbatdaran, M.; Kamrani, G.; Khafri, S. The association between CD166 detection rate and
clinicopathologic parameters of patients with colorectal cancer. Caspian J. Intern. Med. 2013, 4, 768–772.

140. Kumar, A.; Bhanja, A.; Bhattacharyya, J.; Jaganathan, B.G. Multiple roles of CD90 in cancer. Tumour Biol.
2016, 37, 11611–11622. [CrossRef]

141. Parry, P.V.; Engh, J.A. CD90 is identified as a marker for cancer stem cells in high-grade gliomas using tissue
microarrays. Neurosurgery 2012, 70, N23–N24. [CrossRef]

142. Park, D.; Xiang, A.P.; Mao, F.F.; Zhang, L.; Di, C.-G.; Liu, X.-M.; Shao, Y.; Ma, B.-F.; Lee, J.-H.; Ha, K.-S.; et al.
Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 2010, 28, 2162–2171. [CrossRef]
[PubMed]

143. Yang, X.H.; Wu, Q.L.; Yu, X.B.; Xu, C.X.; Ma, B.F.; Zhang, X.M.; Li, S.N.; Lahn, B.T.; Xiang, A.P. Nestin
expression in different tumours and its relevance to malignant grade. J. Clin. Pathol. 2008, 61, 467–473.
[CrossRef] [PubMed]

144. Lv, D.; Lu, L.; Hu, Z.; Fei, Z.; Liu, M.; Wei, L.; Xu, J. Nestin Expression Is Associated with Poor
Clinicopathological Features and Prognosis in Glioma Patients: An Association Study and Meta-analysis.
Mol. Neurobiol. 2017, 54, 727–735. [CrossRef] [PubMed]

145. Chen, J.; Li, Y.; Yu, T.-S.; McKay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A restricted cell population
propagates glioblastoma growth after chemotherapy. Nature 2012, 488, 522–526. [CrossRef]

146. Li, J.; Wang, R.; Yang, L.; Wu, Q.; Wang, Q.; Nie, Z.; Yu, Y.; Ma, J.; Pan, Q. Knockdown of Nestin inhibits
proliferation and migration of colorectal cancer cells. Int. J. Clin. Exp. Pathol. 2015, 8, 6377–6386.

http://dx.doi.org/10.1186/s13287-019-1288-8
http://dx.doi.org/10.1038/nature06196
http://dx.doi.org/10.1242/jcs.166322
http://dx.doi.org/10.1083/jcb.200909113
http://dx.doi.org/10.1016/j.jot.2019.02.003
http://dx.doi.org/10.1371/journal.pone.0102893
http://www.ncbi.nlm.nih.gov/pubmed/25047033
http://dx.doi.org/10.1186/1471-2407-11-429
http://www.ncbi.nlm.nih.gov/pubmed/21978106
http://dx.doi.org/10.18632/oncotarget.13295
http://www.ncbi.nlm.nih.gov/pubmed/27863376
http://dx.doi.org/10.18632/oncotarget.13214
http://dx.doi.org/10.1074/jbc.273.36.23169
http://dx.doi.org/10.1177/0963689720929992
http://dx.doi.org/10.1242/jcs.01307
http://dx.doi.org/10.1007/s13277-016-5112-0
http://dx.doi.org/10.1227/01.neu.0000413227.80467.92
http://dx.doi.org/10.1002/stem.541
http://www.ncbi.nlm.nih.gov/pubmed/20963821
http://dx.doi.org/10.1136/jcp.2007.047605
http://www.ncbi.nlm.nih.gov/pubmed/17873113
http://dx.doi.org/10.1007/s12035-016-9689-5
http://www.ncbi.nlm.nih.gov/pubmed/26768429
http://dx.doi.org/10.1038/nature11287


Biology 2020, 9, 426 22 of 26

147. Amoh, Y.; Yang, M.; Li, L.; Reynoso, J.; Bouvet, M.; Moossa, A.R.; Katsuoka, K.; Hoffman, R.M. Nestin-linked
green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res. 2005,
65, 5352–5357. [CrossRef]

148. Gervois, P.; Struys, T.; Hilkens, P.; Bronckaers, A.; Ratajczak, J.; Politis, C.; Brone, B.; Lambrichts, I.;
Martens, W. Neurogenic maturation of human dental pulp stem cells following neurosphere generation
induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015,
24, 296–311. [CrossRef]

149. Martens, W.; Sanen, K.; Georgiou, M.; Struys, T.; Bronckaers, A.; Ameloot, M.; Phillips, J.; Lambrichts, I.
Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth
in an aligned tissue-engineered collagen construct in vitro. FASEB J. 2014, 28, 1634–1643. [CrossRef]

150. Ibarretxe, G.; Crende, O.; Aurrekoetxea, M.; García-Murga, V.; Etxaniz, J.; Unda, F. Neural crest stem cells
from dental tissues: A new hope for dental and neural regeneration. Stem Cells Int. 2012, 2012, 103503.
[CrossRef]

151. Aurrekoetxea, M.; Garcia-Gallastegui, P.; Irastorza, I.; Luzuriaga, J.; Uribe-Etxebarria, V.; Unda, F.; Ibarretxe, G.
Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial
tissues. Front. Physiol. 2015, 6. [CrossRef]

152. Pagella, P.; Miran, S.; Neto, E.; Martin, I.; Lamghari, M.; Mitsiadis, T.A. Human dental pulp stem cells exhibit
enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB J. 2020.
[CrossRef] [PubMed]

153. Fan, L.-F.; Dong, W.-G.; Jiang, C.-Q.; Xia, D.; Liao, F.; Yu, Q.-F. Expression of putative stem cell genes
Musashi-1 and beta1-integrin in human colorectal adenomas and adenocarcinomas. Int. J. Colorectal Dis.
2010, 25, 17–23. [CrossRef] [PubMed]

154. Kaneko, Y.; Sakakibara, S.; Imai, T.; Suzuki, A.; Nakamura, Y.; Sawamoto, K.; Ogawa, Y.; Toyama, Y.;
Miyata, T.; Okano, H. Musashi1: An evolutionally conserved marker for CNS progenitor cells including
neural stem cells. Dev. Neurosci. 2000, 22, 139–153. [CrossRef] [PubMed]

155. Chen, H.-Y.; Lin, L.-T.; Wang, M.-L.; Laurent, B.; Hsu, C.-H.; Pan, C.-M.; Jiang, W.-R.; Chen, P.-Y.; Ma, H.-I.;
Chen, Y.-W.; et al. Musashi-1 Enhances Glioblastoma Cell Migration and Cytoskeletal Dynamics through
Translational Inhibition of Tensin3. Sci. Rep. 2017, 7, 8710. [CrossRef]

156. Lin, J.-C.; Tsai, J.-T.; Chao, T.-Y.; Ma, H.-I.; Liu, W.-H. Musashi-1 Enhances Glioblastoma Migration by
Promoting ICAM1 Translation. Neoplasia 2019, 21, 459–468. [CrossRef] [PubMed]

157. Hill, R.; Wu, H. PTEN, Stem Cells, and Cancer Stem Cells. J. Biol. Chem. 2009, 284, 11755–11759. [CrossRef]
[PubMed]

158. Li, L.; Liu, F.; Ross, A.H. PTEN regulation of neural development and CNS stem cells. J. Cell Biochem. 2003,
88, 24–28. [CrossRef]

159. Amiri, A.; Cho, W.; Zhou, J.; Birnbaum, S.G.; Sinton, C.M.; McKay, R.M.; Parada, L.F. Pten Deletion in
Adult Hippocampal Neural Stem/Progenitor Cells Causes Cellular Abnormalities and Alters Neurogenesis.
J. Neurosci. 2012, 32, 5880–5890. [CrossRef]

160. Potdar, P.D.; Jethmalani, Y.D. Human dental pulp stem cells: Applications in future regenerative medicine.
World J. Stem Cells 2015, 7, 839–851. [CrossRef]

161. Schubert, M.; Holland, L.Z. The Wnt Gene Family and the Evolutionary Conservation of Wnt Expression; Landes
Bioscience: Austin, TX, USA, 2013.

162. González-Sancho, J.M.; Aguilera, O.; García, J.M.; Pendás-Franco, N.; Peña, C.; Cal, S.; García de Herreros, A.;
Bonilla, F.; Muñoz, A. The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF
and is downregulated in human colon cancer. Oncogene 2005, 24, 1098–1103. [CrossRef]

163. Jung, Y.-S.; Park, J.-I. Wnt signaling in cancer: Therapeutic targeting of Wnt signaling beyond β-catenin and
the destruction complex. Exp. Mol. Med. 2020, 52, 183–191. [CrossRef] [PubMed]

164. Duchartre, Y.; Kim, Y.-M.; Kahn, M. The Wnt signaling pathway in cancer. Crit. Rev. Oncol. Hematol. 2016,
99, 141–149. [CrossRef] [PubMed]

165. Zhang, L.; Shay, J.W. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J. Natl.
Cancer Inst. 2017, 109. [CrossRef] [PubMed]

166. de Roo, J.J.D.; Breukel, C.; Chhatta, A.R.; Linssen, M.M.; Vloemans, S.A.; Salvatori, D.; Mikkers, H.M.M.;
Verbeek, S.J.; Staal, F.J.T. Axin2-mTurquoise2: A novel reporter mouse model for the detection of canonical
Wnt signalling. Genesis 2017, 55. [CrossRef] [PubMed]

http://dx.doi.org/10.1158/0008-5472.CAN-05-0821
http://dx.doi.org/10.1089/scd.2014.0117
http://dx.doi.org/10.1096/fj.13-243980
http://dx.doi.org/10.1155/2012/103503
http://dx.doi.org/10.3389/fphys.2015.00289
http://dx.doi.org/10.1096/fj.201902482R
http://www.ncbi.nlm.nih.gov/pubmed/32096581
http://dx.doi.org/10.1007/s00384-009-0791-2
http://www.ncbi.nlm.nih.gov/pubmed/19714342
http://dx.doi.org/10.1159/000017435
http://www.ncbi.nlm.nih.gov/pubmed/10657706
http://dx.doi.org/10.1038/s41598-017-09504-7
http://dx.doi.org/10.1016/j.neo.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30959276
http://dx.doi.org/10.1074/jbc.R800071200
http://www.ncbi.nlm.nih.gov/pubmed/19117948
http://dx.doi.org/10.1002/jcb.10312
http://dx.doi.org/10.1523/JNEUROSCI.5462-11.2012
http://dx.doi.org/10.4252/wjsc.v7.i5.839
http://dx.doi.org/10.1038/sj.onc.1208303
http://dx.doi.org/10.1038/s12276-020-0380-6
http://www.ncbi.nlm.nih.gov/pubmed/32037398
http://dx.doi.org/10.1016/j.critrevonc.2015.12.005
http://www.ncbi.nlm.nih.gov/pubmed/26775730
http://dx.doi.org/10.1093/jnci/djw332
http://www.ncbi.nlm.nih.gov/pubmed/28423402
http://dx.doi.org/10.1002/dvg.23068
http://www.ncbi.nlm.nih.gov/pubmed/28875532


Biology 2020, 9, 426 23 of 26

167. Kim, B.-M.; Mao, J.; Taketo, M.M.; Shivdasani, R.A. Phases of canonical Wnt signaling during the development
of mouse intestinal epithelium. Gastroenterology 2007, 133, 529–538. [CrossRef]

168. Haegebarth, A.; Clevers, H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am. J. Pathol. 2009,
174, 715–721. [CrossRef]

169. Kahlert, U.D.; Mooney, S.M.; Natsumeda, M.; Steiger, H.-J.; Maciaczyk, J. Targeting cancer stem-like cells in
glioblastoma and colorectal cancer through metabolic pathways. Int. J. Cancer 2017, 140, 10–22. [CrossRef]

170. Lie, D.-C.; Colamarino, S.A.; Song, H.-J.; Désiré, L.; Mira, H.; Consiglio, A.; Lein, E.S.; Jessberger, S.;
Lansford, H.; Dearie, A.R.; et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005, 437,
1370–1375. [CrossRef]

171. Zhou, F.; Cao, W.; Xu, R.; Zhang, J.; Yu, T.; Xu, X.; Zhi, T.; Yin, J.; Cao, S.; Liu, N.; et al. MicroRNA-206
attenuates glioma cell proliferation, migration, and invasion by blocking the WNT/β-catenin pathway via
direct targeting of Frizzled 7 mRNA. Am. J. Transl Res. 2019, 11, 4584–4601.

172. Augustin, I.; Goidts, V.; Bongers, A.; Kerr, G.; Vollert, G.; Radlwimmer, B.; Hartmann, C.; Herold-Mende, C.;
Reifenberger, G.; von Deimling, A.; et al. The Wnt secretion protein Evi/Gpr177 promotes glioma
tumourigenesis. EMBO Mol. Med. 2012, 4, 38–51. [CrossRef]

173. Yu, J.M.; Jun, E.S.; Jung, J.S.; Suh, S.Y.; Han, J.Y.; Kim, J.Y.; Kim, K.W.; Jung, J.S. Role of Wnt5a in the
proliferation of human glioblastoma cells. Cancer Lett. 2007, 257, 172–181. [CrossRef] [PubMed]

174. Zuccarini, M.; Giuliani, P.; Ziberi, S.; Carluccio, M.; Iorio, P.D.; Caciagli, F.; Ciccarelli, R. The Role of Wnt
Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the
Therapy of This Tumor. Genes 2018, 9, 105. [CrossRef] [PubMed]

175. Shevchenko, V.; Arnotskaya, N.; Korneyko, M.; Zaytsev, S.; Khotimchenko, Y.; Sharma, H.; Bryukhovetskiy, I.
Proteins of the Wnt signaling pathway as targets for the regulation of CD133+ cancer stem cells in glioblastoma.
Oncol. Rep. 2019, 41, 3080–3088. [CrossRef]

176. Gonçalves, C.S.; Vieira de Castro, J.; Pojo, M.; Martins, E.P.; Queirós, S.; Chautard, E.; Taipa, R.; Pires, M.M.;
Pinto, A.A.; Pardal, F.; et al. WNT6 is a novel oncogenic prognostic biomarker in human glioblastoma.
Theranostics 2018, 8, 4805–4823. [CrossRef] [PubMed]

177. Portela, M.; Venkataramani, V.; Fahey-Lozano, N.; Seco, E.; Losada-Perez, M.; Winkler, F.; Casas-Tintó, S.
Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances
glioblastoma progression and neurodegeneration. PLoS Biol. 2019, 17, e3000545. [CrossRef]

178. Rajakulendran, N.; Rowland, K.J.; Selvadurai, H.J.; Ahmadi, M.; Park, N.I.; Naumenko, S.; Dolma, S.;
Ward, R.J.; So, M.; Lee, L.; et al. Wnt and Notch signaling govern self-renewal and differentiation in a subset
of human glioblastoma stem cells. Genes Dev. 2019, 33, 498–510. [CrossRef]

179. Oskarsson, T.; Batlle, E.; Massagué, J. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell
2014, 14, 306–321. [CrossRef]

180. Valdor, R.; García-Bernal, D.; Riquelme, D.; Martinez, C.M.; Moraleda, J.M.; Cuervo, A.M.; Macian, F.;
Martinez, S. Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of
chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 2019, 116, 20655–20665. [CrossRef]

181. Sakaki-Yumoto, M.; Katsuno, Y.; Derynck, R. TGF-β family signaling in stem cells. Biochim. Biophys. Acta
2013, 1830, 2280–2296. [CrossRef]

182. Weiss, A.; Attisano, L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev. Dev. Biol. 2013, 2,
47–63. [CrossRef]

183. Daynac, M.; Pineda, J.R.; Chicheportiche, A.; Gauthier, L.R.; Morizur, L.; Boussin, F.D.; Mouthon, M.-A.
TGFβ lengthens the G1 phase of stem cells in aged mouse brain. Stem Cells 2014, 32, 3257–3265. [CrossRef]
[PubMed]

184. Pineda, J.R.; Daynac, M.; Chicheportiche, A.; Cebrian-Silla, A.; Sii Felice, K.; Garcia-Verdugo, J.M.;
Boussin, F.D.; Mouthon, M.-A. Vascular-derived TGF-β increases in the stem cell niche and perturbs
neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol. Med. 2013, 5,
548–562. [CrossRef] [PubMed]

185. Mani, S.A.; Guo, W.; Liao, M.-J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.;
Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell
2008, 133, 704–715. [CrossRef] [PubMed]

186. Flanders, K.C.; Ren, R.F.; Lippa, C.F. Transforming growth factor-betas in neurodegenerative disease.
Prog. Neurobiol. 1998, 54, 71–85. [CrossRef]

http://dx.doi.org/10.1053/j.gastro.2007.04.072
http://dx.doi.org/10.2353/ajpath.2009.080758
http://dx.doi.org/10.1002/ijc.30259
http://dx.doi.org/10.1038/nature04108
http://dx.doi.org/10.1002/emmm.201100186
http://dx.doi.org/10.1016/j.canlet.2007.07.011
http://www.ncbi.nlm.nih.gov/pubmed/17709179
http://dx.doi.org/10.3390/genes9020105
http://www.ncbi.nlm.nih.gov/pubmed/29462960
http://dx.doi.org/10.3892/or.2019.7043
http://dx.doi.org/10.7150/thno.25025
http://www.ncbi.nlm.nih.gov/pubmed/30279739
http://dx.doi.org/10.1371/journal.pbio.3000545
http://dx.doi.org/10.1101/gad.321968.118
http://dx.doi.org/10.1016/j.stem.2014.02.002
http://dx.doi.org/10.1073/pnas.1903542116
http://dx.doi.org/10.1016/j.bbagen.2012.08.008
http://dx.doi.org/10.1002/wdev.86
http://dx.doi.org/10.1002/stem.1815
http://www.ncbi.nlm.nih.gov/pubmed/25098224
http://dx.doi.org/10.1002/emmm.201202197
http://www.ncbi.nlm.nih.gov/pubmed/23526803
http://dx.doi.org/10.1016/j.cell.2008.03.027
http://www.ncbi.nlm.nih.gov/pubmed/18485877
http://dx.doi.org/10.1016/S0301-0082(97)00066-X


Biology 2020, 9, 426 24 of 26

187. Derynck, R.; Goeddel, D.V.; Ullrich, A.; Gutterman, J.U.; Williams, R.D.; Bringman, T.S.; Berger, W.H.
Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth
factor receptor by human tumors. Cancer Res. 1987, 47, 707–712.

188. Derynck, R.; Akhurst, R.J.; Balmain, A. TGF-beta signaling in tumor suppression and cancer progression.
Nat. Genet. 2001, 29, 117–129. [CrossRef]

189. Platten, M.; Wick, W.; Weller, M. Malignant glioma biology: Role for TGF-beta in growth, motility,
angiogenesis, and immune escape. Microsc. Res. Tech. 2001, 52, 401–410. [CrossRef]

190. TGFβ Promotes Immune Evasion to Limit the Efficacy of Anti-PD-1/PD-L1. Cancer Discov 2018, 8, OF10.
[CrossRef]

191. Bellomo, C.; Caja, L.; Moustakas, A. Transforming growth factor β as regulator of cancer stemness and
metastasis. Br. J. Cancer 2016, 115, 761–769. [CrossRef]

192. Vallier, L.; Mendjan, S.; Brown, S.; Chng, Z.; Teo, A.; Smithers, L.E.; Trotter, M.W.B.; Cho, C.H.-H.; Martinez, A.;
Rugg-Gunn, P.; et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression.
Development 2009, 136, 1339–1349. [CrossRef]

193. Liu, J.; Jin, T.; Chang, S.; Ritchie, H.H.; Smith, A.J.; Clarkson, B.H. Matrix and TGF-beta-related gene
expression during human dental pulp stem cell (DPSC) mineralization. In Vitro Cell. Dev. Biol. Anim. 2007,
43, 120–128. [CrossRef] [PubMed]

194. Qi, Z.; Li, Y.; Zhao, B.; Xu, C.; Liu, Y.; Li, H.; Zhang, B.; Wang, X.; Yang, X.; Xie, W.; et al. BMP restricts
stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat. Commun. 2017, 8,
13824. [CrossRef] [PubMed]

195. Ahmadi, A.; Najafi, M.; Farhood, B.; Mortezaee, K. Transforming growth factor-β signaling: Tumorigenesis
and targeting for cancer therapy. J. Cell. Physiol. 2019, 234, 12173–12187. [CrossRef] [PubMed]

196. Zhou, X.; Geng, L.; Wang, D.; Yi, H.; Talmon, G.; Wang, J. R-Spondin1/LGR5 Activates TGFβ Signaling and
Suppresses Colon Cancer Metastasis. Cancer Res. 2017, 77, 6589–6602. [CrossRef]

197. Calon, A.; Espinet, E.; Palomo-Ponce, S.; Tauriello, D.V.F.; Iglesias, M.; Céspedes, M.V.; Sevillano, M.;
Nadal, C.; Jung, P.; Zhang, X.H.-F.; et al. Dependency of colorectal cancer on a TGF-β-driven program in
stromal cells for metastasis initiation. Cancer Cell 2012, 22, 571–584. [CrossRef]

198. Ulaner, G.A.; Hu, J.F.; Vu, T.H.; Giudice, L.C.; Hoffman, A.R. Telomerase activity in human development
is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of
hTERT transcripts. Cancer Res. 1998, 58, 4168–4172. [PubMed]

199. Chen, K.; Chen, L.; Li, L.; Qu, S.; Yu, B.; Sun, Y.; Wan, F.; Chen, X.; Liang, R.; Zhu, X. A positive feedback
loop between Wnt/β-catenin signaling and hTERT regulates the cancer stem cell-like traits in radioresistant
nasopharyngeal carcinoma cells. J. Cell. Biochem. 2020. [CrossRef]

200. Park, J.-I.; Venteicher, A.S.; Hong, J.Y.; Choi, J.; Jun, S.; Shkreli, M.; Chang, W.; Meng, Z.; Cheung, P.; Ji, H.;
et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009, 460,
66–72. [CrossRef]

201. Saha, A.; Shree Padhi, S.; Roy, S.; Banerjee, B. HCT116 colonospheres shows elevated expression of hTERT
and β-catenin protein—A short report. J. Stem Cells 2014, 9, 243–251.

202. Kerem Terali, K. On the Far Side of Telomeres: The Many Roles of Telomerase in the Acquisition and
Retention of Cancer Stemness. In Telomere—A Complex End of a Chromosome; Intechopen: London, UK, 2016;
pp. 1–28. ISBN 978-953-51-2753-6.

203. Rhyu, M.S. Telomeres, telomerase, and immortality. J. Natl. Cancer Inst. 1995, 87, 884–894. [CrossRef]
204. Beck, S.; Jin, X.; Sohn, Y.-W.; Kim, J.-K.; Kim, S.-H.; Yin, J.; Pian, X.; Kim, S.-C.; Nam, D.-H.; Choi, Y.-J.;

et al. Telomerase Activity-Independent Function of TERT Allows Glioma Cells to Attain Cancer Stem Cell
Characteristics by Inducing EGFR Expression. Mol. Cells 2011, 31, 9–15. [CrossRef] [PubMed]

205. Gunes, C.; Avila, A.I.; Rudolph, K.L. Telomeres in cancer. Differentiation 2018, 99, 41–50. [CrossRef] [PubMed]
206. Tanaka, K.; Hirota, T. Chromosomal instability: A common feature and a therapeutic target of cancer.

Biochim. Biophys. Acta 2016, 1866, 64–75. [CrossRef] [PubMed]
207. McClelland, S.E. Role of chromosomal instability in cancer progression. Endocr. Relat. Cancer 2017, 24,

T23–T31. [CrossRef]
208. Ishaq, A.; Hanson, P.S.; Morris, C.M.; Saretzki, G. Telomerase Activity is Downregulated Early During

Human Brain Development. Genes 2016, 7, 27. [CrossRef]
209. Hiyama, E.; Hiyama, K. Telomere and telomerase in stem cells. Br. J. Cancer 2007, 96, 1020–1024. [CrossRef]

http://dx.doi.org/10.1038/ng1001-117
http://dx.doi.org/10.1002/1097-0029(20010215)52:4&lt;401::AID-JEMT1025&gt;3.0.CO;2-C
http://dx.doi.org/10.1158/2159-8290.CD-RW2018-034
http://dx.doi.org/10.1038/bjc.2016.255
http://dx.doi.org/10.1242/dev.033951
http://dx.doi.org/10.1007/s11626-007-9022-8
http://www.ncbi.nlm.nih.gov/pubmed/17516126
http://dx.doi.org/10.1038/ncomms13824
http://www.ncbi.nlm.nih.gov/pubmed/28059064
http://dx.doi.org/10.1002/jcp.27955
http://www.ncbi.nlm.nih.gov/pubmed/30537043
http://dx.doi.org/10.1158/0008-5472.CAN-17-0219
http://dx.doi.org/10.1016/j.ccr.2012.08.013
http://www.ncbi.nlm.nih.gov/pubmed/9751630
http://dx.doi.org/10.1002/jcb.29681
http://dx.doi.org/10.1038/nature08137
http://dx.doi.org/10.1093/jnci/87.12.884
http://dx.doi.org/10.1007/s10059-011-0008-8
http://www.ncbi.nlm.nih.gov/pubmed/21193962
http://dx.doi.org/10.1016/j.diff.2017.12.004
http://www.ncbi.nlm.nih.gov/pubmed/29291448
http://dx.doi.org/10.1016/j.bbcan.2016.06.002
http://www.ncbi.nlm.nih.gov/pubmed/27345585
http://dx.doi.org/10.1530/ERC-17-0187
http://dx.doi.org/10.3390/genes7060027
http://dx.doi.org/10.1038/sj.bjc.6603671


Biology 2020, 9, 426 25 of 26

210. Schepers, A.G.; Vries, R.; van den Born, M.; van de Wetering, M.; Clevers, H. Lgr5 intestinal stem cells
have high telomerase activity and randomly segregate their chromosomes. EMBO J. 2011, 30, 1104–1109.
[CrossRef]

211. Ninagawa, N.; Murakami, R.; Isobe, E.; Tanaka, Y.; Nakagawa, H.; Torihashi, S. Mesenchymal stem cells
originating from ES cells show high telomerase activity and therapeutic benefits. Differentiation 2011, 82,
153–164. [CrossRef]

212. Horibe, H.; Murakami, M.; Iohara, K.; Hayashi, Y.; Takeuchi, N.; Takei, Y.; Kurita, K.; Nakashima, M. Isolation
of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs) with high proliferation, migration,
and regeneration potential is independent of age. PLoS ONE 2014, 9, e98553. [CrossRef]

213. Jeon, B.-G.; Kang, E.-J.; Kumar, B.M.; Maeng, G.-H.; Ock, S.-A.; Kwack, D.-O.; Park, B.-W.; Rho, G.-J.
Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem
cells. Cell Transplant. 2011, 20, 1693–1705. [CrossRef]

214. Caporaso, G.L.; Lim, D.A.; Alvarez-Buylla, A.; Chao, M.V. Telomerase activity in the subventricular zone of
adult mice. Mol. Cell Neurosci. 2003, 23, 693–702. [CrossRef]

215. Ferrón, S.; Mira, H.; Franco, S.; Cano-Jaimez, M.; Bellmunt, E.; Ramírez, C.; Fariñas, I.; Blasco, M.A. Telomere
shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells.
Development 2004, 131, 4059–4070. [CrossRef] [PubMed]

216. Ferrón, S.R.; Marqués-Torrejón, M.A.; Mira, H.; Flores, I.; Taylor, K.; Blasco, M.A.; Fariñas, I. Telomere
shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J. Neurosci. 2009, 29,
14394–14407. [CrossRef] [PubMed]

217. Liu, M.-Y.; Nemes, A.; Zhou, Q.-G. The Emerging Roles for Telomerase in the Central Nervous System.
Front. Mol. Neurosci. 2018, 11, 160. [CrossRef] [PubMed]

218. Miura, T.; Katakura, Y.; Yamamoto, K.; Uehara, N.; Tsuchiya, T.; Kim, E.H.; Shirahata, S. Neural stem cells
lose telomerase activity upon differentiating into astrocytes. Cytotechnology 2001, 36, 137–144. [CrossRef]

219. Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; Coviello, G.M.; Wright, W.E.;
Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer.
Science 1994, 266, 2011–2015. [CrossRef] [PubMed]

220. Zhao, S.; Wang, F.; Liu, L. Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells.
Genes 2019, 10, 1030. [CrossRef]

221. Arnoult, N.; Karlseder, J. ALT telomeres borrow from meiosis to get moving. Cell 2014, 159, 11–12. [CrossRef]
222. Farooqi, A.; Yang, J.; Sharin, V.; Ezhilarasan, R.; Danussi, C.; Alvarez, C.; Dharmaiah, S.; Irvin, D.; Huse, J.;

Sulman, E.P. Identification of patient-derived glioblastoma stem cell (GSC) lines with the alternative
lengthening of telomeres phenotype. Acta Neuropathol. Commun 2019, 7, 76. [CrossRef]

223. Lafferty-Whyte, K.; Cairney, C.J.; Will, M.B.; Serakinci, N.; Daidone, M.-G.; Zaffaroni, N.; Bilsland, A.;
Keith, W.N. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT
regulatory network and suggests a mesenchymal stem cell origin for ALT. Oncogene 2009, 28, 3765–3774.
[CrossRef]

224. Pompili, L.; Maresca, C.; Dello Stritto, A.; Biroccio, A.; Salvati, E. BRCA2 Deletion Induces Alternative
Lengthening of Telomeres in Telomerase Positive Colon Cancer Cells. Genes 2019, 10, 697. [CrossRef]
[PubMed]

225. Heaphy, C.M.; Subhawong, A.P.; Hong, S.-M.; Goggins, M.G.; Montgomery, E.A.; Gabrielson, E.; Netto, G.J.;
Epstein, J.I.; Lotan, T.L.; Westra, W.H.; et al. Prevalence of the Alternative Lengthening of Telomeres Telomere
Maintenance Mechanism in Human Cancer Subtypes. Am. J. Pathol. 2011, 179, 1608–1615. [CrossRef]
[PubMed]

226. Lawlor, R.T.; Veronese, N.; Pea, A.; Nottegar, A.; Smith, L.; Pilati, C.; Demurtas, J.; Fassan, M.; Cheng, L.;
Luchini, C. Alternative lengthening of telomeres (ALT) influences survival in soft tissue sarcomas:
A systematic review with meta-analysis. BMC Cancer 2019, 19, 232. [CrossRef] [PubMed]

227. Venturini, L.; Motta, R.; Gronchi, A.; Daidone, M.; Zaffaroni, N. Prognostic relevance of ALT-associated
markers in liposarcoma: A comparative analysis. BMC Cancer 2010, 10, 254. [CrossRef] [PubMed]

228. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer
J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/emboj.2011.26
http://dx.doi.org/10.1016/j.diff.2011.07.001
http://dx.doi.org/10.1371/journal.pone.0098553
http://dx.doi.org/10.3727/096368911X565001
http://dx.doi.org/10.1016/S1044-7431(03)00103-9
http://dx.doi.org/10.1242/dev.01215
http://www.ncbi.nlm.nih.gov/pubmed/15269166
http://dx.doi.org/10.1523/JNEUROSCI.3836-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19923274
http://dx.doi.org/10.3389/fnmol.2018.00160
http://www.ncbi.nlm.nih.gov/pubmed/29867352
http://dx.doi.org/10.1023/A:1014016315003
http://dx.doi.org/10.1126/science.7605428
http://www.ncbi.nlm.nih.gov/pubmed/7605428
http://dx.doi.org/10.3390/genes10121030
http://dx.doi.org/10.1016/j.cell.2014.09.013
http://dx.doi.org/10.1186/s40478-019-0732-4
http://dx.doi.org/10.1038/onc.2009.238
http://dx.doi.org/10.3390/genes10090697
http://www.ncbi.nlm.nih.gov/pubmed/31510074
http://dx.doi.org/10.1016/j.ajpath.2011.06.018
http://www.ncbi.nlm.nih.gov/pubmed/21888887
http://dx.doi.org/10.1186/s12885-019-5424-8
http://www.ncbi.nlm.nih.gov/pubmed/30871494
http://dx.doi.org/10.1186/1471-2407-10-254
http://www.ncbi.nlm.nih.gov/pubmed/20525266
http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593


Biology 2020, 9, 426 26 of 26

229. International Agency for Research on Cancer, World Health Organization. Cancer Today. Available online:
https://gco.iarc.fr/today/home (accessed on 10 October 2020).
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