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Abstract: Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors ex-
pressed in the skin. Three PPAR isotypes, α (NRC1C1), β or δ (NRC1C2) and γ (NRC1C3), have been
identified. After activation through ligand binding, PPARs heterodimerize with the 9-cis-retinoic
acid receptor (RXR), another nuclear hormone receptor, to bind to specific PPAR-responsive ele-
ments in regulatory regions of target genes mainly involved in organogenesis, cell proliferation,
cell differentiation, inflammation and metabolism of lipids or carbohydrates. Endogenous PPAR
ligands are fatty acids and fatty acid metabolites. In past years, much emphasis has been given to
PPARα and γ in skin diseases. PPARβ/δ is the least studied PPAR family member in the skin despite
its key role in several important pathways regulating inflammation, keratinocyte proliferation and
differentiation, metabolism and the oxidative stress response. This review focuses on the role of
PPARβ/δ in keratinocytes and its involvement in psoriasis and atopic dermatitis. Moreover, the
relevance of targeting PPARβ/δ to alleviate skin inflammation is discussed.
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1. PPARdelta: The Least Studied PPAR Isoform

Peroxisome proliferator-activated receptors (PPARs) are transcription factors belong-
ing to nuclear hormone receptor superfamily. Three PPAR isotypes, α (NRC1C1), β or
δ (NRC1C2) and γ (NRC1C3), have been identified in mammals (henceforth, we refer
to the β/δ isoform simply as PPARδ). After activation through ligand binding, PPARs
heterodimerize with the 9-cis-retinoic acid receptor (RXR), another nuclear hormone re-
ceptor, to bind to specific PPAR-responsive elements in regulatory regions of target genes,
mainly involved in organogenesis, cell proliferation, cell differentiation, inflammation and
metabolism of lipids or carbohydrates. Endogenous PPAR ligands are fatty acids and fatty
acid metabolites.

PPARδ is ubiquitously expressed in murine tissues with highest expression in liver,
muscle, adipose tissue, placenta, small intestine and skin. PPARδ is expressed twofold,
10-fold and 30-fold more in mouse keratinocytes (KCs) compared to mouse liver, quadriceps
muscle and thymus, respectively. In most tissues, PPARδ localizes to the nuclear fraction of
cells and is hardly detectable in the cytoplasm [1]. In humans, PPARδmRNA and protein
are highly abundant in the thyroid gland and placenta whereas high amounts of mRNA
and moderate amounts of protein are detected in the cerebral cortex, skin and esophagus.
Of note, inconsistency between protein and RNA levels of PPARδ has been observed in
many human tissues and cell types (https://www.proteinatlas.org/ENSG00000112033
-PPARD/tissue, accessed on 7 July 2021). There are five human and mouse PPARδ isoforms
generated by alternative splicing, which is a mechanism potentially involved in PPARδ
regulation, as some PPARδ splice isoforms exhibit reduced translation efficiency [2,3].

The ligand-binding pockets of PPARs have a distinct three-armed T shape, which al-
lows not only straight fatty acids to bind them, but also ligands with multiple branches such
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as phospholipids and synthetic fibrates. The ligand-binding pocket of PPARδ is smaller
than that of PPARγ or PPARα, which limits the binding of large ligands when compared to
the other two PPAR isoforms [4]. PPARδ is activated by several endogenous ligands includ-
ing certain long chain fatty acids (regardless of saturation status), dihomo-γ-linolenic acid,
eicosapentaenoic acid, 15(S)-hydroxyeicosatetraenoic acid (HETE), and arachidonic acid,
with affinities in the low micromolar range (Table 1). Supraphysiological doses of 8(S)-,
12(S)-, 12(R)-, and 15(S)-HETE efficiently activate PPARδ. 13(S)-hydroxyoctadecadienoic
acid (HODE) is considered as weak PPARδ activator [5,6]. Controversial results have been
found for prostacyclin (PGI2) and all-trans retinoic acid [7,8]. It has also been reported
that 4-hydroxynonenal (4-HNE) and 4-hydroxydodecadienal (4-HDDE), the peroxidation
products of polyunsaturated fatty acids, can activate PPARδ, although the mechanism re-
mains unknown [9,10]. Synthetic PPARδ ligands include GW501516, GW0742 and L165041,
which preferentially activate PPARδ as compared to PPARα or PPARγ [6]. Recently, 27 new
synthetic PPARδ agonists (13 with low nanomolar EC50 values) have been discovered [11].
However, it is important to stress that preferential ligand does not mean exclusive ligand
and that supraphysiological doses of any of the PPARδ ligands will activate other PPAR
isoforms, and the same is true for all PPAR isoforms. For example, bezafibrate, which is
known as a PPARα ligand, activates all three PPARs at concentrations ranging from 55 to
110 µM [12]. In the absence of ligand binding, the heterodimer PPARδ-RXR is associated
with corepressors and histone deacetylases (HDACs), which inhibit its transcriptional
activity. After ligand binding, PPARδ undergoes conformational changes that induce the
release of the corepressors and allow it to bind coactivators [7].

The transcriptional activity of PPARδ is modulated by several factors, which are
not well characterized but include post-translational modifications such as phosphoryla-
tion. Epidermal growth factor receptor (EGFR) has been recently shown to induce PPARδ
phosphorylation at Y108 in response to epidermal growth factor (EGF) [13]. Although
PPARδ contains several putative phosphorylation sites (Y108, T252, T253, T256), (https:
//www.phosphosite.org/proteinAction.action?id=24004&showAllSites=true (accessed on
9 May 2021)) [14], little is known about phosphoregulation of PPARδ, in contrast to PPARα
and PPARγ. Both cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) ac-
tivators increase the ligand-activated and basal activity of PPARδ and could be upstream sig-
nals that commit PPARδ to the regulation of glucose and lipid metabolism [14]. In contrast,
PPARδ can also be sumoylated at K104, which inhibits its activity [14]. Desumoylation of
PPARδ by small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) promotes the
transcriptional activity of PPARδ, which, in turn, upregulates fatty acid oxidation by enhanc-
ing the expression of long-chain-fatty-acid–CoA ligase 1 (ACSL1), carnitine palmitoyltrans-
ferase Ib (CPT1b) and mitochondrial uncoupling protein 3 (UCP3) in muscles of mice fed a
high fat diet [15]. Moreover, PPARδ contains several ubiquitylation sites, which suggests a
potential role of ubiquitin–proteosome degradation in the regulation of its cellular turnover
(https://www.phosphosite.org/proteinAction.action?id=24004&showAllSites=true (ac-
cessed on 9 May 2021)). Degradation of PPARδ via the proteasome might prevent its
accumulation in the nucleus and thereby moderate its cellular activity [16]. In line with
this, overexpression of PPARδ in fibroblasts leads to its polyubiquitylation and rapid
degradation, a process partially prevented by exposure to the PPARδ synthetic ligand
GW501516 [17].

PPARs can also engage in transrepression of other transcription factors. Although
transrepression between nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), activator protein 1 (AP-1), CCAAT-enhancer-binding protein (C/EBP), signal
transducer and activator of transcription (STAT) and nuclear factor of activated T-cells
(NF-AT) has been well characterized for PPARα and PPARγ, little is known about tran-
srepression in the context of PPARδ [18,19]. L-165041 is a PPARδ ligand that is less potent
and selective than GW501516, yet it promotes the binding of PPARδ to the p65 subunit of
NF-κB exerting anti-inflammatory effects [5,20]. Moreover, in the absence of ligand, PPARδ
binds directly to the transcription factor B-cell lymphoma 6 (BCL-6), leading to increased
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expression of proinflammatory cytokines. Indeed, BCL-6 is a transcription factor repressing
the expression of various inflammatory genes via direct binding to their promoters or via
inhibition of the transcription of nucleotide-binding oligomerization domain-like receptor
(NOD)-like receptor family pyrin domain containing 3 (NLRP3) [21,22]. Binding of PPARδ
to an agonist disrupts the PPARδ-BCL-6 complex, thus reversing the transcriptional repres-
sion of inflammatory genes [23]. Thus, ligand binding to PPARδ alleviates inflammation
by enhancing its binding to NF-kB, hence neutralizing the transcriptional activity of NF-kB
and/or the release of the anti-inflammatory transcription factor BCL-6. However, PPARδ
has also been shown to bind to the N-terminal part of p65 in the absence of exogenous
ligand [5]. Therefore, the pro- vs. anti-inflammatory role of PPARδmight be context- and
ligand-dependent. Moreover, conformational changes experienced by PPARδ after ligand
binding might potentially strengthen or weaken the affinity of PPARδ to p65; however, this
has not been studied to date.

Table 1. PPARδ potential endogenous ligands.

Compounds Weak Ligands Ligands

ω3-PUFA

α-Linolenic acid C18:3

EPA C20:5
γ-Linolenic acid C18:3
Dihomo-γ-linolenic acid
DHA C22:6

ω6-PUFA
Linoleic acid C18:2
Arachidonic acid C20:4

ω9-MUFA

Palmitoleic acid C16:1

Oleic acid C18:1
Elaidic acid C18:1
Erucic acid C22:1
Nervonic acid C24:1

Saturated fatty acids

Myristic acid C14:0

Arachidic acid C20:0
Palmitic acid C16:0
Stearic acid C18:0
Behenic acid C22:0

Eicosanoids

5-HpETE 5(S)-HETE
8(S)-HETE 15(R)HpETE
15(S)HpETE 15(R)-HETE
15(S)-HETE 12-HETE
12-HpETE LTB4
LTA4 LTC4
9(R)-HODE 9(S)-HODE
12-HpODE 5,6-diHETE
13(S)-HODE
5,15-di-HpETE

Prostaglandins

PGA2

PGF1α

PGB1
PGB2
PGD1
PGD2
PGD3
PGF2α
PGF3α
PGI2

Lipoxins LXA4

4-Hydroxyalkenals 4-HDDE
Adapted from [8]. DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; 4-HDDE; 4-hydroxydodecadienal;
HETE: hydroxyeicosatetraenoic acid; HODE: hydroxyoctadecadienoic acid; LT: leukotriene; LX: lipoxin;
PG: prostaglandin.
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Although there is likely a set of core effects and target genes of PPARδ common to all
cell types and organs, PPARδ has also been shown to exert tissue-specific functions. More-
over, some target genes differ between rodents and humans. Canonical PPARδ target genes
are mainly related to lipid metabolism in all cell types [6,19,24–26]. This includes genes
involved in fatty acid oxidation (very long-chain specific acyl-CoA dehydrogenase, mito-
chondrial (ACADVL), acyl-CoA oxidase 1 (ACOX1), acetyl-CoA acyltransferase 2 (ACAA2),
catalase (CAT), enoyl-CoA hydratase 1 (ECH1), pyruvate dehydrogenase kinase 4 (PDK4),
solute carrier family 25 member 20 (SLC25A20), Niemann-Pick C1-like protein 1 (NPC1L1),
thiolase B, CPT1A)) or other aspects of lipid metabolism (angiopoietin Like 4 (ANGPTL4),
fatty acid binding proteins 3-5 (FABP3-5), perilipin 2 (PLIN2), adipocyte protein 2 (aP2)).
Other PPARδ target genes exert non-metabolic functions and are involved in immune
regulation, such as CD300A, CD52, LDL receptor related protein 5 (LRP5), NLRC4 and
phosphatase and actin regulator 1 (PHACTR1) [27]. In muscles, PPARδ controls (i) the entry
of long chain fatty acids into cells via SLC27A1, SLC27A3 and CD36; (ii) their subsequent
activation by forming acyl-CoA via ACSL3, ACSL4, and acyl-CoA synthetases short chain
family member 1 and 2 (ACSS1-2); (iii) mitochondrial β-oxidation via CPT1A, CPT1B,
SLC25A20, ACADVL, and ACADL; (iv) peroxisomal β-oxidation via ACOX1 [28]. In human
macrophages, PPARδ regulates the expression of genes involved in lipid metabolism but
also electron-transfer-flavoprotein, beta subunit (ETFB), electron transfer flavoprotein-
ubiquinone oxidoreductase (ETFDH) and iron-sulfur cluster assembly 1 (ISCA1), which
play important roles in electron transfer and iron-sulfur complex assembly and in the
immune response via upregulation of CD1D, CD36, CD52, CD300A, LRP5, NLRC4 and
PHACTR1 and downregulation of CCL8, CCL13, CXCL1, IL10, IL8 and TNFA [27].

The expression of PPARD is regulated by various cytokines, hormones, lipid metabo-
lites and other transcription factors. The PPARD promoter region contains a vitamin D
receptor (VDR) response element [29,30]. Thus, it is likely that there is cross-talk between
VDR and the PPARδ pathway, but his has not been investigated in detail despite being of
potential pathophysiological interest. AP-1, a transcription factor involved in the inflam-
matory response, and especially junB, both increase PPARD expression [31]. AP-1 mediates
the effects of TNF-α, phorbol 12-myristate 13-acetate (TPA) and ceramides on PPARD/Ppard
expression [32]. Tan et al., in a seminal work, showed that TNF-α promotes the synthe-
sis of ceramides via sphingomyelin hydrolysis, which ultimately activates AP-1 via the
mitogen-activated protein kinase kinase kinase 1 (MEKK1) and stress-activated protein
kinases (SAPK)/Jun amino-terminal kinases (JNK)/p38 mitogen-activated protein kinases
(p38MAPK) pathway [32]. Previous work also showed that PPARD can be upregulated
by T3-thyroid receptor (TR) [33]. The metabolic regulation of PPARδ has been reviewed
elsewhere [7].

2. Metabolic Features of Keratinocytes in Normal Skin

Data on metabolic pathway predominating in keratinocytes is still a controversial
topic. Old literature suggests that, to generate ATP, KCs are predominantly committed
to glycolysis in the presence of glucose or to mitochondrial respiration in its absence [34].
In suprabasal KCs, limited access to glucose from the dermal vasculature is believed to
promote mitochondrial respiration and oxidation of lipids, in contrast to basal KCs, which
preferentially use glucose as their main energy substrate [34–36]. In line with this, GLUT1
is the main GLUT isoform in the epidermis and is abundantly expressed in the basal layer,
although residual expression can be found in suprabasal layers [37–39]. Recent work
showed that decreased glycolysis via inhibition of glucose uptake in KCs promoted cell
differentiation, suggesting a major role of glycolysis in KC fate [40]. However, another
work proposes a predominating role of mitochondrial-derived ROS in basal KCs as a
signal to induce differentiation [41]. This is in line with a recent report showing that
NIX, a transcription factor located in mitochondria, controls mitophagy and, in turn,
KC differentiation, hence emphasizing the role of mitochondria in KC fate [42]. Thus,
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further work is required to clarify the relative contribution of glycolysis versus oxidative
phosphorylation (OXPHOS) in the control of homeostatic processes in the epidermis.

3. PPARdelta in Psoriasis and Atopic Dermatitis

Atopic dermatitis and psoriasis are two chronic and pruritic inflammatory skin dis-
eases exhibiting pathophysiological commonalities, including impaired epidermal barrier
function, immune hyper-responsiveness, and local and systemic symptoms modulated
by environmental factors such as the skin microbiome and stress. Moreover, both dis-
eases are associated with a major genetic risk factor, i.e., Filaggrin (FLG) loss-of-function
mutations in atopic dermatitis and the HLA-Cw0602 allele in psoriasis vulgaris [43,44].
Furthermore, in both atopic dermatitis and psoriasis patients, nonlesional and lesional skin
coexists, but the mechanism of transition from the non-affected to the affected condition
remains unclear. Atopic dermatitis is one of the most common inflammatory skin diseases
worldwide and characterized by skin features such as erythematous and papulovesicular
eruptions with oozing, crusting and pruritus as well as associated systemic signs such as
food allergies, allergic asthma and rhinitis, anxiety and sleep disorders. At the cellular
level, atopic dermatitis is characterized by (a) the complex interplay between impaired
epidermal barrier function owing to altered lipid composition of the stratum corneum lipid
matrix i.e., a reduction in the chain length of structural lipids (fatty acids and ceramides),
(b) a complex Th2-driven inflammation, (c) skin infiltration by eosinophils, basophils and
inflammatory dendritic cells, and (d) an altered skin microbiota [43,45–52]. In psoriasis
vulgaris, genetic risk factors predominantly affect innate immunity, and to some extent
adaptive immunity (IL12p/IL-23R axis, Th1, Th17 cells). Similarly to atopic dermatitis,
skin immunological abnormalities in psoriasis are complex and associated with comor-
bidities (e.g., arthritis and cardiovascular manifestations), pointing to a systemic immune
hyper-responsiveness [44,50,53–56].

PPARδ is expressed in all skin cell types, including KCs, fibroblasts, sebocytes, hair
follicle cells, melanocytes and Langerhans cells [19,57–59]. PPARδ is the predominant
isoform in human KCs and is expressed throughout all epidermal layers [32,60]. Activation
of PPARδ with synthetic ligands promotes the expression of human KC differentiation
markers such as involucrin (INV) and transglutaminase 1 (TGM1) [60]. Although there is
consensus on the pro-differentiative effects of PPARδ ligands and PPARδ activation in KCs,
the effects on KC proliferation are more controversial, with studies showing reduced [60]
or enhanced [31] KC proliferation after treatment with the PPARδ ligand L-165041 or GW-
501516. Treatment of human KCs with L-165041 gave opposite outcomes in two distinct
studies [31,60]. Yet, the use of different treatment regimens of L-165041, i.e., 0.05 µM for
3 days [60] and 1 µM for 7 days [31], might have been responsible for these divergent
results, for example by inducing the recruitment of different cofactors and thus engaging
PPARδ in different metabolic pathways. Moreover, the direct effects of ligands should not
be underestimated because the use of PPARδ siRNA to test the requirement for PPARδ
in the cellular response was not carried out in either studies [31,60]. In line with this,
L-165041 can activate other PPAR isoforms, i.e., PPARα, PPARγ1 and PPARγ2 at doses as
low as 0.05 µM [60]. This underscores that PPAR ligands can exert receptor-independent
effects, that metabolic effects might vary with ligand concentrations (e.g., U- or bell-curves),
and that the relative contribution of other PPAR isoforms after treatment with ligands
might significantly influence experimental results, hence stressing the need for cautious
interpretation of data [46]. Human KCs infected with a lentivirus containing an RNAi
sequence directed toward PPARδ displayed reduced proliferative capacity, suggesting that
PPARδ promotes, rather than dampens, proliferation of human KCs [31]. However, it is
also possible that PPARδ exerts both proliferative and differentiative functions according
to the cellular context, i.e., basal cells (early KCs, progenitor and stem cells) or suprabasal
cells (differentiated cells). As in other cell types, PPARδ is likely a master regulator of fatty
acid metabolism in KCs by increasing the uptake of long-chain fatty acids via upregulation
of CD36 and fatty acid β-oxidation [60] (Table 2). However, the role of PPARδ in epidermal
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lipid and glucose metabolism remains under-investigated. Interestingly, the PPARδ target
genes in KCs are not identical to those in other organs and cell types (Table 2), suggesting
PPARδ has specific cellular functions in the epidermis.

The PPARD/Ppard gene is upregulated in lesional skin of patients with psoriasis
vulgaris [5,31,61–65] and of mouse models of psoriasis [63,64]. However, although PPARD
has been identified as a putative pathogenic gene in psoriasis [65], variants at the PPARD
genomic locus have not been associated with psoriasis. In psoriatic plaques, PPARδ accu-
mulates in KC nuclei in all epidermal layers [5]; however, subcellularly, PPARδ is found
both in the cytoplasm and nucleus of KCs in the basal layer and in the stratum spinosum,
whereas it is strictly found in nuclei in KCs in the stratum granulosum [5,64]. This suggests
that PPARδ is constitutively activated by endogenous ligands in granular KCs of the epi-
dermis in patients with psoriatic lesions [64]. Accordingly, endogenous PPARδ ligands can
be produced in psoriatic lesions from the oxidation of arachidonic acid via ALOX8 (mouse)
or ALOX12 (mouse and human) [64,66], two enzymes located in the stratum granulo-
sum [66–68]. FABP5 is a fatty acid-binding protein expressed in the epidermis and has been
shown to deliver endogenous lipid ligands to PPARδ in KC nuclei and to be a PPARδ target
gene [69]. The expression of FABP5 parallels that of PPARδ at both the mRNA and protein
levels in psoriasis [5,63]. Thus, in the suprabasal epidermis of psoriatic lesions, it is likely
that PPARδ is constitutively activated by endogenous ligands such as arachidonic acid or its
derivatives (eicosanoids), which are transported by FABP5 to the nucleus of granular KCs
to promote PPARδ–mediated KC terminal differentiation and lipid β-oxidation. Specific
overexpression and activation of human PPARδ in suprabasal mouse epidermis has been
achieved by generating transgenic mice expressing a Cyp1A1-driven expression of human
PPARD in KCs followed by topical treatment with the PPARδ agonist GW501516 [62]. In-
terestingly, these mice developed psoriasis-like inflammation associated with an increased
Th17 immune response [62]. In this model, sustained activation of the STAT3 pathway
is critically involved in the development of psoriasis-like disease [62]. The constitutive
activation of PPARδ in suprabasal epidermis not only promotes terminal KC differentiation
but also the production, in KCs, of IL-36 and the pleiotropic pro-inflammatory cytokine
IL-1β. The latter can contribute to the activation of skin dendritic cells, which can in turn,
skew naïve T cells toward a Th17 phenotype [62]. Moreover, suprabasal mouse KCs over-
expressing the constitutively activated human PPARδ probably secrete soluble factors able
to trigger the proliferation of basal KCs [62]. In addition, in psoriatic plaques, some PPARδ
localize to nuclei in basal KCs to potentially sustain KC proliferation [5,64]. In line with
this, previous work suggested that upregulation of PPARδ in the epidermis of psoriatic
lesions might contribute to KC hyperproliferation via the upregulation of heparin-binding
EGF-like growth factor (HB-EGF) at the mRNA and protein levels [31]. HB-EGF is a ligand
that activates EGFR and is expressed in the basal layer of the epidermis, where it has
been shown to accelerate wound healing [70]. This might be relevant for psoriasis because
disease flares can be induced by physical trauma (the isomorphic or Koebner phenomenon)
among other causes. Pioneering work on the pathogenesis of psoriasis showed increased
levels of antimicrobial peptides in psoriatic skin breaks the innate tolerance to self-DNA
which ultimately drives autoimmunity [71]. Moreover, human genomic DNA fragments
enhance TNFA and HBEGF expression as well as KC proliferation, hence mimicking the KC
phenotype in psoriatic skin lesions [72]. Thus, we can speculate that PPARδ in the basal
epidermis of psoriatic plaques sustains KC proliferation via mechanisms involving HB-EGF.
NF-kB has been shown to inhibit PPARδ-dependent transactivation. However, in lesional
psoriasis, p65 NF-kB is sequestered in the cytoplasm of basal KCs, which might allow
PPARδ to exert its transcriptional regulation on various genes, including those involved in
KC proliferation [5].

PPARδ is upregulated in the epidermis of lesional atopic dermatitis when compared
to non-lesional skin but to a lesser extent than in psoriatic lesions [31]. The expression
of FABP5 parallels that of PPARδ in psoriasis and atopic dermatitis [31,73]. Notably, the
expression of Ppard and Fabp5 is markedly increased in the epidermis of mouse models
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of lesional atopic dermatitis [38,74]. Similar to psoriasis, FABP5 is mainly localized to
the nuclei of suprabasal KCs, suggesting efficient local generation of PPARδ ligands to
sustain the activation of PPARδ [38]. Interestingly, the amounts of arachidonic acid, PGF2α
and 5-HETE (PPARδ endogenous ligands) are increased in lesional skin of atopic dermati-
tis patients when compared to healthy skin [75]. The increased cleavage of membrane
phospholipids via cPLA2 in the stratum granulosum can significantly contribute to the
accumulation of arachidonic acid and its derivatives in lesional atopic dermatitis skin
as well as in psoriatic lesions [76–78]. The role of PPARδ has been less investigated in
atopic dermatitis than in psoriasis. However, in both diseases, PPARδ might induce KC
hyperproliferation, enhance differentiation and contribute to inflammatory processes.

However, PPARδ can also be envisaged as a key regulator of metabolism, especially
in the metabolic shift toward anaerobic glycolysis that has been recently evidenced in
psoriatic and atopic lesions [38,79,80]. The production of lactate is largely increased in
the epidermis of flaky tail mice and mice treated with MC903, two mouse models of
lesional atopic dermatitis [38] and of mice treated with imiquimod, a mouse model of
psoriasis [81]. Interestingly, the PPARδ ligand GW610742, when orally administered to
ob/ob mice, induces lactate accumulation in the liver [82]. Indeed, PPARδ has been shown
to regulate the expression of key enzymes involved in glucose metabolism, including in
KCs (Table 2) [83–85]. PPARδ can promote anaerobic glycolysis by upregulating PDK, an
enzyme that inactivates pyruvate dehydrogenase (PDH) via phosphorylation. PDH is the
rate-limiting enzyme involved in pyruvate uptake in mitochondria, which ultimately favors
oxidative phosphorylation [86]. Thus, inactivation of PDH by PPARδ-induced PDK inhibits
pyruvate uptake in mitochondria, which, in turn, promotes anaerobic glycolysis [87]. In
the epidermis of flaky tail mice, there is a shift toward anaerobic glycolysis associated with
an enhanced PPARδ pathway including increased PDK1. In line with this, mitochondrial
function is not enhanced in the epidermis of flaky tail mice despite a dramatic need for
energy to sustain forced KC proliferation and to dampen inflammation [38]. These results
are in line with previous work showing that PPARδ antagonism favors mitochondrial
function [88].

Table 2. PPARδ target genes and associated pathways in keratinocytes.

Upregulated Downregulated

Fatty acid metabolism

FABP5 LASS6
FABP7 GPD1L
ACADVL PRKAB2
ACOX1 CHPT1
CD36
ALOX12B
LDLR
PLA2G3
ECHB
OACT5
BDH1
GDPD3
CRABP2
GM2A

Cholesterol metabolism

HMGCS1
HMGCR
MVD
CYP51
SQLE
FDPS
LSS
FDFT1
DHC7
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Table 2. Cont.

Upregulated Downregulated

KC proliferation HB-EGF

EGFR
EPS15
EPS8
MCC
RBL2
CCNG1
DUSP3
PDGFRA
PDGFC
CDKN1C

KC differentiation

INV DCN
TGM1 KRT15
TGM3 DUSP3
S100A8
S100A9
S100A16
KRT6B
KRT16
KRT17
KRT75
SPRR1B
CNFN
EHF

KC apoptosis CIDEA

Inflammation

MMP9 TGFBR2
IL1F9 TGFBR3
IL1F5 LIFR
IL1B IL1R1
IL1F6
IL1F8
ILA
IL1RA
IL18
IL17
IL23A
IL22
STAT3

Glucose metabolism PDK1 PDK4

Oxidative stress
SOD2
CAT
ABCC3

Other

HAS3 RBL2
GGH AXL
UCK2 RHOC
ATP10B TTC3
CCNB1 LFNG
MAPK13 FXR1
CCNB2 FBLN1
GSPT1 GAB2
XPC

PIK3IP1
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Table 2. Cont.

Upregulated Downregulated

Unknown

AKR1B1 SERINC1
ATP12A EID1
ACPP KLF6
MAP4K4 RAI14
MREG MTCP1
FGFBP1 REEP5
ARL8B NENF
GAS7
CD81
CCDC50
TACC1

OSR2
ABCC3: ATP binding cassette subfamily C member 3; ACAD(V)L: (very) long-chain specific acyl-CoA dehy-
drogenase, mitochondrial; ACOX1: acyl-CoA oxidase 1; ACPP (ACP3): acid phosphatase 3; AKR1B1: aldo-keto
reductase family 1 member B; ALOX: lipoxygenase; ATP10B: ATPase phospholipid transporting 10B; ATP12A: AT-
Pase H+/K+ transporting non-gastric alpha2 subunit; ARL8B: ADP ribosylation factor like GTPase 8B; AXL: AXL
receptor tyrosine kinase; BDH1: 3-hydroxybutyrate dehydrogenase 1; CAT: catalase; CCDC50: coiled-coil do-
main containing 50; CCN: cyclin; CD: cluster of differentiation; CDKN1C: cyclin dependent kinase inhibitor 1C;
CHPT1: choline C phosphotransferase 1; CIDEA: cell death inducing DFFA like effector A; CNFN: cornifelin;
CRABP2: cellular retinoic acid binding protein 2; CYP51: lanosterol 14α-demethylase; DCN: decorin; DHC7
(DNAH1): dynein axonemal heavy chain 1; DUSP3: dual specificity phosphatase 3; ECHB (HADHB): hydroxyacyl-
CoA dehydrogenase trifunctional multienzyme complex subunit beta; EGFR: epidermal growth factor receptor;
EHF: ETS homologous factor; EID1: EP300 interacting inhibitor of differentiation 1; EPS: epidermal growth factor
receptor pathway substrate; FABP: fatty acid binding protein; FBLN1: fibulin 1; FDFT1: farnesyl-diphosphate
farnesyltransferase 1; FDPS: farnesyl diphosphate synthase; FGFBP1: fibroblast growth factor binding protein 1;
FXR1: FMR1 autosomal homolog 1; GAB2: GRB2 associated binding protein 2; GAS7: growth arrest specific 7;
GDPD3: glycerophosphodiester phosphodiesterase domain containing 3; GGH: gamma-glutamyl hydrolase;
GM2A: GM2 ganglioside activator; GPD1L: glycerol-3-phosphate dehydrogenase 1 like; GSPT1: G1 to S phase
transition 1; HAS3: hyaluronan synthase 3; HB-EGF: heparin-binding EGF-like growth factor; HMGCR: 3-
hydroxy-3-methylglutaryl-CoA reductase; HMGCS1: 3-hydroxy-3-methylglutaryl-CoA synthase 1; IL: inter-
leukin; INV: involucrin; KLF6: kruppel like factor 6; KRT: keratin; LASS6 (CERS6): ceramide synthase 6;
LDLR: low density lipoprotein receptor; LFNG: LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase;
LIFR LIF receptor subunit alpha; LSS: lanosterol synthase; MAP4K4: mitogen-activated protein kinase kinase
kinase kinase 4; MAPK13: mitogen-activated protein kinase 13; MCC: MCC regulator of WNT signaling path-
way; MMP9: matrix metalloproteinase 9; MREG: melanoregulin; MTCP1: mature T cell proliferation 1; MVD:
mevalonate diphosphate decarboxylase; NENF: neudesin neurotrophic factor; OACT5 (LPCAT3): lysophos-
phatidylcholine acyltransferase 3; OSR2: odd-skipped related transcription factor 2; PDGFC: platelet derived
growth factor C; PDGFRA: platelet derived growth factor receptor alpha; PDK: pyruvate dehydrogenase kinase;
PIK3IP1: phosphoinositide-3-kinase interacting protein 1; PLA2G3: phospholipase A2 group III; PRKAB2: protein
kinase AMP-activated non-catalytic subunit beta 2; RAI14: retinoic acid induced 14; RBL2: RB transcriptional
corepressor like 2; REEP5: receptor accessory protein 5; RHOC: ras homolog family member C; S100A: S100
calcium-binding protein A; SERINC1: serine incorporator 1; SOD2: superoxide dismutase 2; SPRR1B: small
proline rich protein 1B; SQLE: squalene epoxidase; STAT: signal transducer and activator of transcription;
TACC1: transforming acidic coiled-coil containing protein 1; TGFBR: transforming growth factor beta receptor;
TGM: transglutaminase; TTC3: tetratricopeptide repeat domain 3; UCK2: uridine-cytidine kinase 2; XPC: XPC
complex subunit, DNA damage recognition and repair factor.

PPARδ promotes β-oxidation of fatty acids in all cell types, including KCs (Table 2)
[85,89,90]. In flaky tail mice, peroxisomal β-oxidation is upregulated when compared
to that of healthy mice, with marked increases in the mRNA, protein and activity levels
of ACOX1 [38], a well-known PPARδ downstream target [89,90]. This profile has been
observed in another mouse model of lesional atopic dermatitis, i.e., mice topically treated
with MC903 [38]. This treatment is associated with decreased proportions of very-long
chain fatty acids and ceramides, especially with 24 and 26 carbons [38], as observed in the
epidermis of patients with lesional atopic dermatitis [91]. Interestingly, C24 and C26 fatty
acids are exclusively oxidized in peroxisomes via ACOX1 [92,93]. Thus, the upregulation of
PPARδ in the epidermis of patients with lesional atopic dermatitis might promote peroxiso-
mal β-oxidation of very- and ultra-long-chain fatty acids and ceramides, hence significantly
contributing to disease pathogenesis. Indeed, the efficacy of the stratum corneum barrier
depends, to a large part, on the lipid composition of the lipid matrix surrounding the cor-
neocytes, which consists of more than 50% fatty acids with 24 and 26 carbons. Interestingly,
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the proportion of very-long-chain ceramides is also decreased in the epidermis of psoriatic
lesions [94] and is associated with increased ACOX1 [38] and PPARδ (see above), thus
corroborating the key role of the PPARδ pathway in lipid abnormalities in both lesional
atopic dermatitis and psoriasis. In contrast to lesional AD [38], mitochondrial β-oxidation
might be increased in psoriasis as suggested by previous work [46] and might further
contribute to lipid abnormities.

PPARδ has been shown to be involved in wound healing [95], which might demon-
strate relevance in both psoriasis and atopic dermatitis. Indeed, both diseases are charac-
terized by epidermal barrier impairment that can be considered as superficial wounds. In
wounded epidermis, PPARδ inhibits KC apoptosis via activation of the phosphoinositide-
3-kinase (PI3K)/PKBα/Akt1 pathway and promotes the re-epithelialization of the skin by
enhancing KC adhesion and migration [95]. The upstream signal promoting the expres-
sion and activation of PPARδ in wounded epidermis is believed to be the accompanying
low-grade inflammation, i.e., increased IL-1β and TNF-α, which promotes the synthesis of
lipids and the release of bioactive lipids activating PPARδ [95]. In human epidermal equiva-
lents (HEEs) topically treated with sodium dodecyl sulfate (SDS) to inflict epidermal barrier
impairment, PPARD expression was upregulated at 24 h but not at 6 h post-treatment [96].
This upregulation of PPARD requires a rather strong epidermal barrier impairment because
a milder epidermal barrier impairment induced by topical treatment of HEEs with acetone,
did not result in PPARD upregulation [96]. Furthermore, the relatively late upregulation of
PPARD suggests that it requires the prior synthesis of modulating factors such as lipids
and/or cytokines. In line with this, IL-1β but not TNF-α, which are both upregulated after
epidermal barrier impairment, is capable of upregulating PPARD in KCs [96]. Moreover,
epidermal barrier impairment leads to excessive transepidermal water loss, a phenomenon
described in both lesional atopic dermatitis and psoriatic plaques as well as in wounded
skin. It is thus possible to speculate that, in this context, IL-1β upregulates PPARδ signaling
including anaerobic glycolysis via PDK1 and peroxisomal β-oxidation via ACOX1 [38].
In line with these data, placement of occlusive dressing onto the skin of flaky tail mice to
reduce transepidermal water loss was found to downregulate ACOX1 [38]. Another candi-
date upstream of PPARδ in the basal epidermis might be silent mating type information
regulation 2 homolog 1 (SIRT1), which is known to promote wound healing [97,98] and
enhance PPARδ transcriptional activity [99]. Thus, the chronic epidermal barrier impair-
ment observed in lesional atopic dermatitis and psoriasis might lead to the constitutive
activation of a sequential cellular compensatory response aimed at repairing the barrier;
this could include upregulation of SIRT1 and production of IL-1β and subsequent release of
bioactive lipids to activate PPARδ. This might ultimately lead to uncontrolled inflammation
and disruption of epidermal homeostasis. Indeed, PPARδ has been shown to upregulate
several genes involved in KC differentiation (e.g., INV, S100A8, S100A9, TGM3, TGM1)
and proliferation (e.g., HB-EGF, IL1B, IL17, IL22) and the inflammatory response (e.g., IL1B,
IL18, IL1A, IL1RA, IL1F, IL17, IL22) (Table 2).

KC hyper-proliferation, accelerated differentiation and the inflammatory response in
psoriatic and atopic lesions require energy that might be provided by enhanced peroxiso-
mal fatty acid β-oxidation and glucose utilization in response to PPARδ activation [38,85].
Anaerobic glycolysis via PPARδ upregulation is an advantageous metabolic pathway to
sustain forced KC proliferation because it is a substantial source of ATP, which does not
promote oxidative stress, in contrast to mitochondrial metabolism. The side effect of PPARδ
upregulation might be the consumption, via ACOX1, of structural lipids, i.e., C24 and C26
fatty acids and ceramides destined to the stratum corneum, thus further compromising
the epidermal inside-out barrier. Thus, upregulation of the PPARδ pathway in atopic and
psoriatic lesions might be a double-edged sword, by sustaining KC proliferation without
worsening oxidative stress but, at the same time, changing the composition of the lipid bi-
layer in the stratum corneum, resulting in less efficient barrier function. Thus, antagonizing
PPARδ to correct metabolic abnormalities in lesional atopic dermatitis and psoriasis plaques
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might be a new and effective therapeutic strategy to reduce both epidermal hyperplasia
and consumption of structural lipids of the stratum corneum lipid matrix.

4. PPARδ as a Therapeutic Target in Atopic Dermatitis and Psoriasis

To date, the therapeutic effects of PPARδ targeting in atopic dermatitis and psoriasis
remain underinvestigated. Intriguingly, both PPARδ ligands and antagonists have been
proven to dampen skin inflammation. Antagonism of PPARδ by topical application of
GSK0660 in transgenic mice expressing Cyp1A1-driven expression of human PPARD in
KCs and topically treated with the PPARδ agonist GW501516 (mouse model of psoriasis)
reduced epidermal thickness, dermal inflammatory infiltrates with CD4+ and CD8+ T lym-
phocytes and expression of Il1b and Lce3e but failed to inhibit the expression of Hb-egf [100].
However, because the half-life of GSK0660 is only 90 min, this might be a limiting factor
for its use as a therapeutic. Consequently, topical treatment with an irreversible PPARδ
antagonist would be more appropriate to alleviate psoriasis symptoms. Indeed, a single
topical treatment with GSK3787, which covalently binds and permanently inactivates
PPARδ showed similar therapeutic efficacy as several topical applications with GSK0660
in mice with psoriasis-like skin inflammation [64,100]. Moreover, GSK3787 reduced the
expression of Il17, Il23a, Il22 and Il1b in these mice [64]. On the other hand, the activation
of PPARδwith tetradecylthioacetic acid (TTA) also showed beneficial effects in psoriasis.
In a small pilot study, topical treatment of psoriatic plaques with 0.5% TTA reduced the
Psoriasis Area and Severity Index (PASI) and skin scaling and inflammation [101]. How-
ever, TTA can activate all PPAR isoforms at high doses [60]. Thus, the beneficial effects of
TTA are likely the net result of the combined activation of all PPAR isoforms or a direct
effect of the molecule. In a mouse model of dermatitis (i.e., mice topically treated with
oxazolone, a chemical inducing Th2-predominant inflammation in mouse skin), topical
application of GW1514, a PPARδ agonist, reduced epidermal hyperplasia, KC proliferation,
transepidermal water loss, skin surface pH, skin infiltration by eosinophils and mast cells,
and serum CCL17 [102]. However, it remains to be determined whether these effects
are PPARδ-dependent. Topical treatment with GW1514 did not reduce serum IgE levels
in oxazolone-treated mice [102], suggesting that this molecule does not reach the blood
circulation after topical application. Thus, given the role of PPARδ in psoriasis and atopic
dermatitis, PPARδ antagonism, rather than activation, might be the preferred therapeutic
approach to treat both diseases. This does not mean that PPARδ ligands would be less
advantageous therapeutic options; however, they should be mainly employed for their
direct, i.e., PPAR-independent, beneficial effects.

Excessive oxidative stress overtaking the cellular antioxidant response is involved
in tumorigenic processes, inflammation and skin aging. Accordingly, both psoriasis and
atopic dermatitis are associated with oxidative stress [47,103–105]. The role of PPARδ in the
antioxidant response is equivocal. Activation of PPARδ with GW501516 or other agonists
has been shown to downregulate the mRNA and protein levels of NF-E2–related factor 2
(NRF2), a master transcription factor controlling the expression of key proteins involved in
the cellular detoxification of reactive oxygen species (ROS) [106,107]. In contrast, PPARδ an-
tagonism has been shown to promote the antioxidant response via upregulation of Nrf2 [88]
and to decrease the production of ROS in mitochondria [99]. In line with this, loss of PPARδ
in intestinal fibroblasts delayed tumorigenesis, induced NRF2 and reduced oxidative
stress [108]. The β-oxidation of very-long-chain fatty acids via ACOX1 produces hydrogen
peroxide. In lesional atopic dermatitis and psoriasis, the marked increase in ACOX1 might
outstrip the detoxification ability of the cellular antioxidant response and contribute to the
epidermal oxidative stress observed in both diseases. Thus, overall, PPARδmight promote
oxidative stress in the epidermis. Specifically, PPARδmight promote hydrogen peroxide
release by peroxisomes (via ACOX1 activity) and, at the same time, dampen mitochon-
drial function and, in turn, the production of mitochondria-derived ROS. However, in
non-skin cells, PPARδ ligands have been shown to prevent endoplasmic reticulum stress,
downregulate NOX4 and reduce ROS production and subsequent inflammation [107,109].
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Thus, we can speculate that PPARδ might exert both pro- and antioxidant functions as
reported for other transcription factors [46], depending on pathophysiological context, cell
type and organelle. Here again PPAR-independent antioxidant effects of PPARδ ligands
might be envisaged. Unfortunately, the role of PPARδ in the oxidative response in KCs
has never been investigated; PPARδ antagonism might have a potent antioxidant effect via
mechanisms that remain to be identified.

Topical treatment with PPARδ agonists or antagonists should be critically evaluated
because data on the role of PPARδ in cancer is controversial [19,85,110]. PPARδ has been
shown to inhibit non-melanoma skin cancer by enhancing KC terminal differentiation and
senescence, blocking KCs in the G2/M phase of the cell cycle, and inhibiting endoplasmic
reticulum stress and specific inflammatory pathways [111–113]. However, PPARδ has
also been shown to promote KC proliferation via HB-EGF and to contribute to epidermal
hyperplasia [38,85]. Moreover, PPARδ can interact with β-catenin, a key mediator in the
regulation of the Wnt pathway, which is involved in multiple cellular functions such as
embryogenesis and tumorigenesis [114,115]. The overexpression of cytosolic phospholi-
pase A2α (cPLA2α) promotes the binding of PPARδ to β-catenin and, in turn, the binding
of the complex to the T-cell factor/lymphoid enhancer factor (TCF/LEF) response ele-
ment [114,115]. cPLA2α is the rate-limiting enzyme which releases arachidonic acid from
membrane phospholipids and, thus, playing a central role in the production of bioactive
eicosanoids (including prostaglandins and leukotrienes), some of those are endogenous
PPARδ ligands [116]. Thus, activation of PPARδwith endogenous ligands such as arachi-
donic acid or its derivatives may control cell fate (differentiation vs. proliferation) and
malignant cell transformation. It has recently been shown that the PPARδ-β-catenin com-
plex favors the formation of chromatin loops that regulate the transcription of vascular
endothelial growth factor A (VEGFA), a regulator of angiogenesis during tumorigenesis.
Activation of PPARδ via ligand binding releases the loop, which favors the transcription
of VEGFA [115], and might sustain cancer growth. Furthermore, increased FABP5 is asso-
ciated with various cancers including skin cancer, by promoting the activation of PPARδ
and the upregulation of its oncogenic target genes [19]. It is possible that specific endoge-
nous PPARδ ligands produced during tumorigenic transformation of cells skew PPARδ
toward pro-oncogenic functions. The importance of the nature of ligands in driving PPARδ-
mediated cellular responses is emphasized by work demonstrating the anti-apoptotic
effects of PPARδ after activation with retinoic acid, which was shuttled to KC nuclei by
FABP5 [85]. In tumors, this might help cancer cells escape apoptosis. Thus, activation of
PPARδ in KCs by specific endogenous ligands might promote tumorigenesis by upregu-
lating oncogenic genes, increasing oxidative stress and favoring a metabolic shift toward
anaerobic glycolysis, which might promote non-melanoma skin cancer. Alternatively, com-
petition of synthetic ligands with endogenous ligands to bind to PPARδmight positively
intercede in the cellular response in tumors. Although PPARδ is expressed in melanocytes,
its role in this cell type has never been investigated, which seems a missed opportunity
since ligand-mediated PPARδ activation might protect against melanoma [117,118]. Thus,
the role of PPARδ in skin tumorigenesis remains controversial, and the opposing views
might owe to the use of different cancer cell lines, patient tissues, cancer staging and
progression [7].

An important parameter for the topical utilization of drugs targeting PPARδ to allevi-
ate atopic dermatitis and psoriasis is their transdermal absorption and ability to passage
into the bloodstream. Indeed, systemic administration of GW501516 in a mouse model
of wound healing showed that PPARδ activation promotes angiogenesis and upregulates
matrix metalloproteinase 9 (MMP9) in wounded skin [85,119]. MMP9 is involved in many
biological processes and plays roles in tumor progression and invasion, angiogenesis, and
determining the composition of the tumor microenvironment [120].

Thus, the competition between endogenous and synthetic ligands/antagonists in a
defined pathophysiological context (e.g., inflammation, precancer) might determine the
therapeutic versus detrimental outcome of PPARδ targeting. This might also depend on the
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expression of corepressors/coactivators and other transcription factors engaged in PPARδ
transrepression. Due to the therapeutic potential of PPARδ targeting in atopic dermatitis
and psoriasis, further studies are necessary to elucidate in depth the role of PPARδ in the
skin in various pathophysiological contexts and cell types (e.g., melanocytes) as well as the
complex interplay between PPARδ and other transcription factors. Moreover, it is likely that
synthetic ligands do not entirely activate PPARδ and that a small fraction of PPARδ remains
activated by FABP5-bound endogenous ligands, leading to synergetic or contradictory
signals, within cells. This aspect of PPARδ targeting is completely unexplored.

5. Conclusions

Between the years 2000 and 2010, PPARs were thoroughly studied in various organs
including skin, but then, enthusiasm significantly waned. Moreover, much of the initial
research was focused on PPARα and PPARγ, leaving large gaps in our knowledge of the
role of PPARδ in the skin and especially in KCs. Thus, it remains unknown how PPARδ
controls KC metabolism or the inflammatory response or the oxidative stress response.
Furthermore, PPARδ crosstalk with other receptors such as VDR accentuates its importance
in epidermal homeostasis. Therefore, in light of its clear involvement in KC proliferation,
differentiation, metabolism, oxidative stress and the inflammatory response (Figure 1),
renewed effort should be directed at both basic research and therapeutic strategies targeting
PPARδ, including potential local and systemic side effects in psoriasis and atopic dermatitis.
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Figure 1. Potential role of PPARδ in keratinocytes in lesional atopic dermatitis and psoriasis: Epidermal barrier impairment,
likely originating from (epi)genetic abnormalities, enhances trans-epidermal water loss (TEWL) and the production of IL-1β
in granular keratinocytes (KCs), which upregulates cPLA2 involved in the cleavage of membrane phospholipids (PLs) and
the release of arachidonic acid (AA). AA and its metabolites, produced by oxidation via ALOX5 into bioactive lipids, are
shuttled to the nucleus by FABP5 to activate PPARδ, which, in turn, increases the expression of ACOX1 and ACADVL.
Increased ACOX1 consumes ultra- and very-long-chain fatty acids (UL/VLCFAs) and ceramides (Cers), resulting in the
improper embedding of stratum corneum lipids into lamellar bodies (LBs), which weakens the efficacy of the stratum
corneum barrier, hence perpetuating epidermal barrier impairment. Overactivity of ACOX1 produces excessive hydrogen
peroxide, which might signal within granular KCs as well as through all the epidermal layers to cause oxidative stress
and metabolic changes. This might be amplified by the downregulation of NRF2 by endogenous ligand-bound PPARδ. In
the basal layers, IL-1β, produced either locally or in granular KCs, and SIRT1, which is produced in the lower epidermis,
contribute to the activation of PPARδ via unidentified mechanisms. This results in the upregulation of PDK1 and the shift
toward anaerobic glycolysis, which circumvents mitochondrial function, including the production of mitochondrial ROS.
Anaerobic glycolysis sustains KC hyperproliferation via rapid ATP production.
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