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Abstract

Nonhuman primates are essential for the study of human disease and to explore the safety of 

new diagnostics and therapies proposed for human use. They share similar genetic, physiologic, 

immunologic, reproductive, and developmental features with humans and thus have proven crucial 

for the study of embryonic/fetal development, organ system ontogeny, and the role of the 

maternal-placental-fetal interface in health and disease. The fetus may be exposed to a variety 

of inflammatory stimuli including infectious microbes as well as maternal inflammation, which 

can result from infections, obesity, or environmental exposures. Growing evidence supports that 

inflammation is a mediator of fetal programming and that the maternal immune system is tightly 

integrated with fetal-placental immune responses that may set a postnatal path for future health 

or disease. This review addresses some of the unique features of the nonhuman primate model 

system, specifically the rhesus monkey (Macaca mulatta), and importance of the species for 

studies focused on organ system ontogeny and the impact of viral teratogens in relation to 

development and congenital disorders.

Nonhuman primates, such as the rhesus monkey (Macaca mulatta), are an important animal 

model for the study of human development and disease. Humans and rhesus monkeys share 

many characteristic features because of their close phylogenetic relationship, which includes 

similarities in genetic, physiologic, immunologic, reproductive, and developmental features 

(1–16). For example, the rhesus monkey placenta is discoid and hemochorial, similar to 

the human placenta (12). In humans and rhesus monkeys, trophoblasts erode through the 

maternal endothelium and are in direct contact with maternal blood, which results in the 

hemochorial categorization. In humans, the embryo is completely embedded within the 

uterine stroma, whereas in the rhesus monkey, the blastocyst remains superficially attached 
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and adheres to the side opposite the initial attachment, forming the location of the future 

secondary placental disk (approximately 80% with bidiscoid placenta). Trimesters in rhesus 

monkeys encompass 55 days with the first trimester representing 0 to 55 days of gestation; 

the second trimester, 56 to 110 days of gestation; and the third trimester, 111 to 165 days 

of gestation (term 165±10 days in this species) (15). Developmental similarities include 

the period of organogenesis (17,18), growth trajectory, and organ ontogeny, including the 

hematopoietic and immune systems (2–4,9).

Comparable to humans, the fetal rhesus monkey liver is the primary site of hematopoiesis 

in the first trimester (human fetus approximately 5–6 weeks), with a peak in hematopoiesis 

thereafter (early second trimester; 3–4 months in the human fetus) until bone marrow 

hematopoiesis is established in the mid-second trimester. Early signs of bone marrow 

hematopoiesis begin in the fetal monkey in the early second trimester, with a significant 

decrease in blood islands in fetal liver. This decline continues into the early third trimester 

when bone marrow takes on the primary hematopoietic role (approximately 7 months in the 

human fetus) (9,19).

Given the importance of the human immune system in health and disease, studies that 

focus on the immune system of nonhuman primates further advance translational research. 

Immune ontogeny in the rhesus monkey is similar in temporal and anatomical sequence 

to human development (3) and shows significant differences compared to rodents (20). 

These differences are well documented and highlight crucial disparities that may influence 

outcomes, particularly for the developing fetus and infant, and in relation to, for example, 

the trafficking of cells between the mother and fetus (21–25). Similar trafficking in rhesus 

monkeys and humans is related to the comparable placental structure. The fetus may be 

exposed to a variety of potential inflammatory stimuli including infectious microbes and 

allergenic proteins, as well as maternal inflammation that may result from infections, 

obesity, or environmental influences (26–30). Growing evidence supports that inflammation 

is a mediator of fetal programming and that the maternal immune system is tightly 

integrated with fetal-placental immune responses that can shape postnatal immunity and set 

a path for future health or disease (26,30–37). Development of the immune system begins 

early in gestation and continues through the postnatal period, similar to the developing 

brain (38). It is during this time that the fetus, neonate, and infant are most susceptible to 

pathogenic agents and rely primarily on innate immune responses for protection (39,40).

It has been shown that by the second trimester, the lymphoid tissues of the fetal rhesus 

monkey have a reasonably complete repertoire of appropriately organized B cells, T 

cells, and antigen-presenting cells, which are at least partly functional (3). These and 

other similarities in immune ontogeny when compared to humans have been leveraged 

to provide key insights into fetal-maternal infectious diseases and the role of the placenta. 

The placenta can serve as a modulator with postnatal consequences (36). A wide variety 

of cytokines are synthesized and released by cytotrophoblasts, syncytiotrophoblasts, and 

resident placental macrophages (35,41,42). Immune cells in the decidua (e.g., uterine natural 

killer [NK] cells) and toll-like receptors expressed by syncytiotrophoblasts can stimulate 

production of interferons in response to viruses and maintain placental function (43,44). It 

has been proposed that the interleukin 10 and uterine NK cell balance controls excessive 
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inflammation (45). A placental viral infection may activate both the maternal and the 

fetal immune systems and could promote a fetal inflammatory response resulting in high 

concentrations of inflammatory cytokines that can have a significant effect on the developing 

central nervous system (CNS).

NEURODEVELOPMENT

Nonhuman primates have proven essential to address the development and function of the 

CNS and have led to important insights into the formation of the human cerebral cortex. 

Production of cortical neurons in fetal rhesus monkeys follows an “inside out” sequence, 

and the proliferative zones of the fetal monkey cerebral cortex possess the same classes 

of neural precursor cells (NPCs) that exhibit similar distribution, morphology, protein, and 

transcription factor expression as shown in small animal models (46,47). However, in the 

brain of both fetal rhesus monkeys and humans, the distribution of the NPC pool is more 

complex, and the number of NPCs is greatly expanded compared to commonly used small 

animal species (48). Furthermore, the elaborate folding of sulci and gyri in the mature 

human cerebral cortex is modeled by findings in the rhesus monkey. Consequently, studies 

with fetal rhesus monkeys have been instrumental for developing models that explain how 

cortical lamination and areal differences in the human brain may arise, for example, from a 

proto-map of localized clusters of NPCs in cortical proliferative zones (49).

Recent work has provided evidence of the interplay between key components of the 

developing CNS and immune system during gestation. The foundation for this insight 

was first established through decades of painstaking work that identified and characterized 

the form and function of NPCs in the fetal cerebral cortex. Development of the cerebral 

cortex begins early in gestation with proliferation of NPCs lining the ventricular lumen at 

the anterior end of the neural tube. Two main classes of NPCs, primary and secondary, 

have been identified based on expression of cell-specific molecular markers. Primary NPCs 

express the nuclear transcription factor Pax6 (47,50) and initially undergo self-replicating 

divisions. At the onset of neurogenesis, the Pax6+ primary NPCs undergo asymmetric 

divisions that generate the secondary population of NPCs (47,51–53). The secondary 

NPCs establish a proliferative zone that is called the subventricular zone (54), express 

the cell-specific nuclear transcription factor Tbr2 (47), and play a key role in generating 

telencephalic neurons (52,55–59). Studies in nonhuman primates leveraged previous work in 

small animal models to better predict human CNS development. Proliferative zones in the 

fetal rhesus monkey cerebral cortex are larger and more complex when compared to small 

animal species (60), but the timing and spatial distribution of the Pax6- and Tbr2-expressing 

NPCs are maintained in the rhesus monkey (61) and, importantly, model the pattern that has 

been described in the human fetal brain (46,48).

Primary NPCs in both fetal human and rhesus monkey cortex are distinguished from 

NPCs in smaller animal models by precocious expression of the cytostructural intermediate 

filament glial fibrillary acidic protein (GFAP) (62), which is maintained throughout 

the entire neurogenic period (62–64). Studies performed in fetal rhesus monkeys were 

instrumental in the discovery that newborn cortical neurons migrate from the proliferative 

zones to the developing cortical gray matter by attaching to GFAP+ pial processes and 
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using the pial process as a migratory guide during the journey (65), which also occurs in 

the human fetus (64,66). More recent studies have shown that intercellular communications 

between migrating neurons, the pial process of primary NPCs, and secondary NPCs are 

crucial for regulating the proper functions of these cells (67,68)—further highlighting the 

importance of intercellular relationships in the fetal brain that were revealed in nonhuman 

primate studies.

Cortical neurons are generated in a temporal sequence during gestation, with these neurons 

destined for deep cortical layers generated earliest, followed by neurons destined for 

more superficial cortical layers, as demonstrated nearly 50 years ago in the fetal rhesus 

monkey (69). Experimental studies have not yet determined the precise timing of cortical 

neurogenesis in the human cerebral cortex, but examination of fetal tissue supports that 

development in the rhesus monkey closely models the timing of developmental sequences 

in the fetal human brain (64,66,70). The neurogenic period in rhesus monkey cortex is 

approximately 2 months long, with neurons destined for each layer of the cerebral cortex 

generated over a period of at least a week (69). Similarly, in the human fetus, cortical 

neurogenesis occurs over a protracted period of time (71,72). The length of neurogenesis 

in the human and nonhuman primate contrasts significantly with the shorter 1week-long 

neurogenic period in the mouse or rat (73). Critically, the months-long stages of cortical cell 

production in nonhuman primates allow for a thorough, temporal study of brain structural 

development (60), molecular mechanisms regulating growth (65,74,75), and the intersection 

of critical windows during development of CNS structures with exposure to pathogens.

The neurogenesis of deep brain structures in nonhuman primates has not been as thoroughly 

studied as in rodents. However, available data show that the neurogenic phase of these 

structures extends far longer in nonhuman primates such as the rhesus monkey than in 

small rodent models. For example, neurons destined for the rhesus monkey neostriatum are 

generated over a period of 45 days (76), which is double the entire length of gestation for 

the rat and mouse. As with the longer period of cortical formation, the extended production 

of striatal neurons in human and nonhuman primates may provide greater opportunity for 

interference through pathogen exposure.

MICROGLIA: IMMUNE CELLS OF THE CNS

It has become increasingly clear that the immune system plays a key functional role in 

development of the brain (77). The innate immune cells of the CNS, microglial cells, 

contribute to an array of developmental programs, including axon pathfinding, synapse 

development and maintenance, and cortical layer formation (77–81). Microglia in the fetal 

human and rhesus monkey brain begin to colonize the cerebral cortex at the onset of cortical 

neurogenesis and initially populate the neural proliferative zones (78,82–86). On arriving 

in the fetal cortex, microglia establish connections with NPCs and developing vasculature 

(78,87,88). In particular, the population of microglia located close to the ventricle establish 

numerous contacts with NPCs, envelop mitotic NPCs in a cell cycle–dependent manner 

(87,88), and phagocytose NPCs, which slows production of cortical neurons and glia (78).
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Microglia colonize key structures, such as the telencephalon, in significantly larger numbers 

and at earlier stages of fetal development in nonhuman primates than in small animal 

species (87), and evidence indicates that microglia in the primate brain differ from those 

in rodents (89). Together, these findings highlight the importance of nonhuman primates 

in modeling the intersection between the developing CNS and immune system. Indeed, 

the comparatively early arrival of microglia in proliferative zones of the fetal primate 

telencephalon, particularly during the months-long period of cortical neuron production, 

provides an opportunity for microglia to play a more prominent role in cellular genesis 

and maturation in primates and supports the concept that microglial cells contribute to 

formation of the telencephalon from early stages of development. However, this potential 

developmental benefit may come with risks. Fetal microglia rapidly respond to changes in 

the local environment, injury, and extrinsic factors introduced through maternal exposure 

to viral pathogens (90), which has been demonstrated in the baboon and rhesus monkey 

(91,92). For example, fetal exposure to Zika virus results in profound changes in key 

components of the fetal cerebral cortex. At 3 weeks after fetal Zika virus inoculation, 

microglial distribution in the fetal rhesus monkey was shown to be altered, with microglia 

collected in large heterotopic clusters throughout cortical proliferative zones (see below). 

The microglial clusters were associated with disturbed distribution of NPCs, enlarged blood 

vessels, and a thinner cortical plate that persisted 3 months after Zika virus exposure (92).

Further, we have found that microglia in the typically developing fetal brain exhibit 

multiple phenotypes that are revealed through differential expression of markers such 

as CD68. This includes analysis of morphological features such as an ameboid versus 

ramified cellular phenotype, and extension of phagocytic cups that contact precursor cells 

and differentiating cells in the germinal zones. These analyses have captured distinct 

states of microglial activation at the molecular and morphological levels and the relative 

proportion of these cellular phenotypes during development (78,87). Environmental stimuli 

that induce a maternal immune response are therefore capable of engaging immune cells 

in fetal tissues, including the brain, and potentially altering the normal developmental 

trajectory. These data support the concept that microglia may be one conduit between 

pathogen exposure and atypical outcomes in primate neurodevelopment. Further studies 

on intercellular communications in the prenatal proliferative zones will aid in defining the 

functional roles of microglial cells in the developing brain under typical developmental 

conditions and with respect to neurodevelopmental disorders. These data exemplify why 

rhesus monkeys are an essential model for understanding CNS development and the role of 

viral and other teratogens.

VIRAL TERATOGENS

As noted above, the rhesus monkey closely mirrors human development, including length 

of gestation, growth characteristics, and organ ontogeny. The importance of these features is 

clear in the historical accounting of the thalidomide tragedy (93) and, more recently, viral 

teratogens such as the TORCH (Toxoplasma gondii, other, rubella virus, cytomegalovirus 

[CMV], and herpes simplex virus) agents, Zika virus, and CMV (94–96). The maternal-

placental-fetal interface provides close contact between the uterine mucosa, placenta, and 

fetal membranes. Despite this potential physical and immunologic barrier, microorganisms 

Tarantal et al. Page 5

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can sometimes bypass the host adaptive and innate immune system and lead to congenital 

infection.

Microglia and Zika Virus

Although Zika virus was discovered in 1952 in Uganda (97), it remained little studied 

until the South American outbreak in 2015 (98). Studies in nonhuman primates soon 

followed, which demonstrated features consistent with typical human infections (99,100). 

Most often, infected adult macaques manifest only transient viremia and subclinical disease; 

the infection may be transmitted from dams to their fetuses and can cause adverse 

fetal outcomes. In humans, the congenital sequelae to in utero infection (congenital Zika 

syndrome) develop in approximately 1 in 7 infants born to infected mothers (101).

Our studies have addressed the impact of Zika virus on fetal development more directly, 

by inoculating early-gestation fetal rhesus monkeys using an ultrasound-guided approach 

(intraperitoneal or intracranial) (92). Transient maternal viremia was observed, and sustained 

maternal immune activation was detected by flow cytometry. Maternal T cell activation and 

maturation was assessed by following expression of CCR5, HLA-DR, and memory/effector 

subset markers. Maternal CCR5 expression by CD4+ T cells followed a pattern of early 

upregulation with a later decline, in a pattern similar to maternal viral load; maximum 

maternal viral load and CCR5 expression appeared to be associated. The increased 

expression of CCR5 followed the early spike in maternal viral load by 10 to 30 days. In 

some cases, maternal CCR5 expression was maintained despite resolution of viremia. As 

noted above, significant morphologic changes were observed in the fetal cerebral cortex 

at 3 weeks after Zika virus inoculation, including massive alterations in the distribution, 

density, number, and morphology of microglial cells in proliferative regions of the fetal 

cerebral cortex; an altered distribution of Tbr2+ NPCs; increased diameter and volume of 

blood vessels in the cortical proliferative zones; and a thinner cortical plate. At 3 months 

after inoculation, alterations in morphology, distribution, and microglial cell density were 

also observed with an increase in blood vessel volume and a thinner cortical plate.

One question under study is whether adverse fetal outcomes require direct infection of 

fetal tissues or if placental infection and resulting dysfunction are important contributors. 

Studies in macaques are particularly important in resolving this question because of 

similarities in placental structure as noted above. Placental Zika virus infection in humans 

and rhesus monkeys has been shown to result in placental inflammation and vasculitis 

(31,32,96,99,102,103), providing evidence to support that more studies are needed to 

understand the role of the placenta and the maternal-placental-fetal interface in the range 

of outcomes associated with infection.

CMV and Fetal Immunity

CMV is the most common congenital viral infection in the United States, with 

approximately 1% of newborns infected (103). A primary infection in the first trimester 

has a 40% risk of transmission with 25% resulting in birth defects. Fetal and/or postnatal 

CMV infections can have a profound, permanent impact on immune function and can 

result in postnatal hearing loss and neurodevelopmental delays. CMV infection influences 
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nearly 60% of all immune phenotypes and functional responses, including a major impact 

on the memory T cell pool, with about 10% of the memory T cell repertoire (both 

CD4+ and CD8+) being CMV specific (104). Human CMV infection is associated with 

expansion of and adaptive changes in subsets of NK cells, e.g., g−NK cells, a class of 

cells with memory function that do not rely on germline-encoded, antigen-specific receptors 

(105). Some investigators have argued that g−NK cells are essentially specific to CMV 

infection, as CMV-seronegative individuals with prevalent g−NK cells are frequently shown 

to possess CMV-specific T cells. CMV infection is also associated with expansion of 

adaptive immune cells with innate features, e.g., NK-like cytotoxic T lymphocytes, which 

are CD8+ cytotoxic T lymphocytes with NK-like surface markers and functional activity. We 

recently demonstrated that these cells are equivalent to cells previously identified variously 

as innate memory cells, virtual memory cells, or antimicrobial cytotoxic T lymphocytes, and 

that their expansion is driven by host interleukin 15 production (106). Innate memory cells 

express HLA class I–specific inhibitory receptors most often associated with NK cells (e.g., 

NKG2A) and have the capacity to kill class Ia–deficient targets, such as HIV-infected cells 

and many tumor cells (107).

To assess the potential protective role that transplacentally transferred anti-rhesus CMV 

(RhCMV) immunoglobulin G (IgG) might play in limiting fetal disease, maternal and 

fetal antibodies to RhCMV were analyzed in rhesus monkeys by obtaining paired maternal/

fetal blood samples during gestation, at birth, and postnatally (108). In uninfected control 

fetuses, antiviral IgG titers were first detected in the fetal circulation in the early second 

trimester (approximately 1%–2% of maternal titers), which corresponded to transplacentally 

transferred IgG. Mean titers in the fetus increased to 12.5% of maternal titers by the 

late second trimester and increased further during gestation to approximately 50% of 

maternal titers in the third trimester and at birth. Because maternal RhCMV titers 

remained unchanged during gestation, relative increases in fetal IgG titers reflect increased 

transplacental transfer of maternal IgG. Analyses were then performed in fetuses that 

were directly inoculated intraperitoneally with RhCMV in the late first trimester or early 

second trimester. For fetuses inoculated in the first trimester, titers paralleled those from 

control fetuses during gestation. A distinct pattern was observed in fetuses inoculated in the 

early second trimester when compared to uninoculated: significantly higher RhCMV IgG 

responses were noted in the third trimester, at term, and at 1-month postnatal age. Since 

maternal RhCMV titers remained constant across gestation, the increased titers reflected 

IgG of fetal and neonatal origin. These results demonstrate that fetuses are immunologically 

competent for de novo IgG production and that the fetal primate develops some degree of 

effector function at an early stage, although the contribution of this effector function to 

protection against pathogens remains to be determined.

CONCLUSIONS

The developmental origins of health and disease hypothesis, previously known as the 

Barker hypothesis, proposes that organ systems are shaped prenatally in ways that set 

the stage for health or disease across the lifespan (109). The continued rise in allergic 

and autoimmune diseases highlights the susceptibility of developing immune pathways, 

with inflammation a common theme for many chronic illnesses (28,110,111). The need for 
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nonhuman primates in translational research, particularly related to pregnancy, fetal/neonatal 

development including the CNS, and the role of the immune system, continues to remain a 

high priority (99,112–116). Ongoing studies that explore the role of the maternal-placental-

fetal interface are needed to address new approaches to protect against congenital disease 

and the potential for neurodevelopmental disorders (117–119).
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