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Abstract: In order to promote the development of low-carbon logistics and economize logistics
distribution costs, the vehicle routing problem with split deliveries by backpack is studied.
With the help of the model of classical capacitated vehicle routing problem, in this study, a form
of discrete split deliveries was designed in which the customer demand can be split only by
backpack. A double-objective mathematical model and the corresponding adaptive tabu search
(TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty
mechanism, and adopting the random neighborhood selection strategy and reinitialization principle,
the global optimization ability of the new algorithm was enhanced. Comparisons with the results
in the literature show the effectiveness of the proposed algorithm. The proposed method can save
the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable
development of low-carbon logistics.

Keywords: vehicle routing problem; split deliveries; backpack; tabu search; low-carbon logistics;
green economy

1. Introduction

With the deterioration of global climate, many countries have put forward the idea of low-carbon
economy development. For instance, the Chinese government assumes that by 2020, the carbon
emissions per unit of GDP will decline by 40–50% of that in 2005. In the manufacturing industry,
food processing industry, express industry, and other industries closely related to human life,
logistics operation is indispensable. Low-carbon logistics is the foundation of the sustainable
development of the modern economy. Adopting some new green optimization technologies to reduce
energy consumption, decrease carbon emissions, and save transportation costs is an important way of
developing low-carbon logistics. For example, Maden et al. [1] designed a heuristic algorithm to solve
the logistics vehicle routing problem (VRP) and found that their optimization technology can decrease
carbon emissions by 7%. Therefore, the study of vehicle routing optimization is of great significance
for promoting the development of low-carbon logistics and maintaining the sustainable development
of green economy.
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The costs of carbon emissions in transit can be measured indirectly through logistics distribution
costs. In general, the fewer vehicles used and the shorter the travel time, the lower the cost of carbon
emissions in transit. The existing VRP literature shows that using a strategy of split deliveries of
the customer demand can save costs and facilitate the development of low-carbon logistics [2,3].
Dror et al. [2] proposed the vehicle routing problem with split deliveries (VRPSD) in 1989. The authors
discussed the VRPSD and demonstrated that, compared with the non-split VRP (traditional VRP),
the VRP with split deliveries can improve the vehicle loading rate, decrease the number of vehicles used,
and shorten the travel distance. So, the method of split deliveries can also decrease carbon emissions.

Subsequently, by integrating the vehicle load and customer demand as integers, Archetti et al. [3]
constructed the classical VRPSD integer programming model (referred to herein as the K-VRPSD
model) by assuming that the customer demand can be continuously split deliveries by unit,
thus simplifying the solving of VRPSD. The previous VRP with split deliveries literature [3–8] basically
followed the idea that the demand can be continuously split deliveries by unit, and works on the
VRP with discrete split deliveries are relatively few. However, the discrete split form is widespread in
practice. In the practice of logistics distribution, logistics enterprises often implement split packaging
and delivery to save costs [8]. However, the type of goods, quality level, size, and other specifications
are often different, which may not be suitable for one customer with one backpack. That is to say,
each customer’s demand can be made up of multiple backpacks. In addition, enterprise often divides
the orders of customer’s goods into several “backpacks” in e-commerce logistics, which are then
delivered in batches. Once the backpacks of one customer are formed, it is not possible to split
the customer’s demand any further. Compared with the classical customer demand non-split VRP,
the demand of each customer in this paper can be a combination of multiple backpacks and customer
demand can be split, but a single backpack cannot be split. That is to say, every customer’s demand
can only be split deliveries by backpack. In this paper, backpack is defined as the smallest set of weight
of customer demand that cannot be further split, and it is of significance to study the vehicle routing
problem with split deliveries by backpack (VRPSDB).

2. Literature Review

2.1. Low-Carbon Logistics

Many scholars have considered the importance of developing low-carbon logistics technology.
Binford et al. [9] studied the regional logistics carbon budgets in carbon cycling research. By using some
technical means—satellite remote-sensing methods coupled with micrometeorological and biomass
measurements—they estimated the carbon exchange and storage rates. The low-carbon optimization
technology has an important application value in many fields. Li et al. [10] proposed a novel three-stage
network load profiling method to improve low voltage network visibility without extensive monitoring
and to integrate low-carbon technologies in a cost-effective manner. In order to provide a better logistics
service for the fashion apparel, Choi et al. [11] designed a new quick response (QR) system to enhance
inventory management by reducing lead time. In addition to employing a faster delivery mode,
their QR can also be achieved by local sourcing (instead of offshore sourcing). Choi et al. [11] also
studied how the properly designed carbon footprint taxation scheme can be imposed on their QR
system to enhance environmental sustainability via employing a local manufacturer by offsetting the
probable higher total logistics and production costs. Lukman et al. [12] thought heavy-duty vehicles
(HDVs) for winter services (e.g., snow plowing) were challenges to energy resources because HDVs are
responsible for around 25% of CO2 emissions caused by road transportation. Based on a mathematical
graph theory, they presented an optimization approach for the fleet management of winter services.
From the calculated results, their optimization methods had a great effect on reducing carbon emissions
and reducing logistics costs [12].

Some researchers also studied the low-carbon strategies in logistics operation in order to be
compatible with governmental climate change policies to cut greenhouse gas emissions. Mckinnon [13]
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discussed the carbon emission limitation in the process of logistics distribution and put forward
some green logistics operation strategies. He also deemed that freight modal split and a shift to
lower carbon fuels can help the low-carbon development of the goods supply chain. Based on the
evolutionary game theory, Gu et al. [14] added the low-carbon policy into the evolutionary game
model between government and highway logistics enterprises. Combined with the calculation results
of the model, Gu et al. [14] thought that many aspects can have impacts on the implementation of
low-carbon strategies by government and highway logistics enterprises. They also pointed out that
whether highway logistics enterprises implement low-carbon strategies is the consequence of the game
between government and highway logistics enterprises and concerns a variety of issues. In order to
help the e-commerce enterprise develop low-carbon logistics, Ji et al. [15] studied the strategies of
low-carbon transport and service in e-commerce business. They established four decision models with
different carbon confinement intensities and inferred the impact of more detailed carbon constraints on
e-commerce delivery strategies. Perotti et al. [16] studied the strategies of green supply chain practices
(GSCP) to improve company performance from a low-carbon logistics point of view. Melacini et al. [17]
found that the search for synergies between traditional and online flows in both transport activities
and warehouse is a key factor for economic and environmental sustainability. Their research is of great
significance for promoting the sustainable development of enterprises and the construction of a green
economy system [17].

2.2. Vehicle Routing Problem

The VRP has extensive application value in the low-carbon logistics distribution [18].
Toth et al. [18] extensively discussed the method and application of VRP. Kuo [19] pointed out
that reducing carbon emissions has become an important issue, and that fuel consumption is also
an important index in the VRP. Fuel consumption and carbon emissions are positively correlated
with logistics distribution cost. Kuo [19] built a model of the time-dependent vehicle routing
problem (TDVRP) for calculating the total fuel consumption cost. It is necessary to adopt some
green optimization technologies to help the development of low-carbon logistics. Therefore, Kuo [19]
designed a simulated annealing (SA) algorithm to solve the TDVRP. Through numerical experiments,
he found that the proposed method provides a 24.61% improvement in fuel consumption cost.
Through operational decisions—such as determining efficient vehicle routes and delivery schedules by
considering time-varying traffic congestion in the service area—the logistics delivery enterprise can
reduce the CO2 emissions [20]. Xiao et al. [20] studied a model of vehicle routing problem with CO2

emissions optimization and proposed a hybrid solution approach that combined a genetic algorithm
with the exact dynamic programming procedure to solve the problem. Based on carbon tax policy
in China, Wang et al. [21] constructed a green and low-carbon cold chain logistics distribution route
optimization model with minimum cost and a cycle evolutionary genetic algorithm (CEGA) was used
to solve the model. Their numerical experiments showed that the optimization model and algorithm
can reduces costs and are conducive to the development of low-carbon logistics and green economy.

2.3. Vehicle Routing Problem with Split Deliveries

The vehicle routing problem with split deliveries (VRPSD) is a new research area of VRP. In the
classical VRP, the customer’s demand cannot be split and delivered. However, in the VRPSD model,
a customer’s order can usually be delivered in batches by multiple vehicles [2,3]. Archetti et al. [3]
discussed the cost savings of VRPSD and showed that 50% in savings could be achieved under
certain circumstances. Because customer demand can be split and delivered, VRPSD can usually
reduce the number of vehicles used and shorten the travel time. So, we deem that the VRPSD
can also reduce carbon emissions cost. Some scholars have discussed the optimization algorithms
of VRPSD. For instance, Archetti et al. [3] used a tabu search (TS) algorithm. Aleman et al. [4]
constructed a heuristic algorithm. Wilck-IV et al. [5] improved the genetic algorithm. Archetti et al. [6]
proposed branch-and-cut algorithms. Rajappa et al. [7] designed an ant colony optimization and
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hybrid metaheuristics algorithm. Berbotto et al. [22] created a randomized granular tabu search
heuristic algorithm.

Some researchers also studied the expansion types of VRPSD. Ho et al. [23] used a TS algorithm
for the VRPSD with soft time windows (VRPSDTW). Archetti et al. [24] designed a new branch and
price-and-cut algorithm for the VRPSDTW. Belfiore et al. [25] proposed a scatter search (SS) approach
for the fleet size and mix VRPSDTW (FSMVRPSDTW). Wang et al. [26] used a hybrid heuristic
algorithm for the VRPSD with pickups and time windows (VRPSDPTW). Yan et al. [27] created a
classic two-step solution algorithm for the multi-trip VRPSD with soft time windows (MVRPSDSTW).
Nakao et al. [28] designed a dynamic programming based heuristic algorithm for VRP with discrete
split deliveries (VRPDSD). Salani et al. [29] used a branch and price for the VRPDSD with time
windows (VRPDSDTW). From the existing VRPSD literature [30–35], the study of VRP with discrete
split deliveries (VRPDSD) is relatively rare, and the study of VRP with split deliveries by backpack
(VRPSDB) is rarer.

2.4. Comparison of Optimization Algorithms

The optimization algorithm can often help the logistics enterprises or the individual vehicle
drivers make better vehicle scheduling with lower CO2 emissions and fuel consumption. Therefore,
many experts have focused on the research of VRP optimization algorithm [1–45]. The VRP is an
NP-hard problem [33]. An exact algorithm is difficult to use to solve large-scale VRP, so lots of scholars
usually use a metaheuristic algorithm to solve it [1–45]. For example, the survey of metaheuristics
for the VRP by Gendreau et al. [36] shows that a tabu search (TS) algorithm emerges as the most
effective approach. Procedures based on pure genetic algorithms and on neural networks are clearly
outperformed, while those based on simulated or deterministic annealing and on ant systems are
not quite competitive. Fu et al. [37–41] designed a series of TS algorithms to solve the open VRP
and closed VRP. They also compared and analyzed some other optimization algorithms, such as
simulated annealing algorithm, genetic algorithm, ant colony optimization algorithm, particle swarm
optimization algorithm, and so on. Through experiments, they point out that the TS algorithm has
the advantages of simplicity, adaptability, and easy operation, and the TS algorithm usually performs
better for solving large-scale VRP, especially when customer demand can be split and delivered [37–41].
Therefore, we designed a new TS algorithm to solve the VRP with split deliveries by backpack in
this study.

3. Mathematical Model

The capacitated vehicle routing problem (CVRP) is a basic type of the VRP (non-split VRP) [10].
Combining the classical CVRP, in this study, customer demand with the non-split condition was loosened
to be split, but on the condition that it can only be split by backpack. Then, the capacitated vehicle
routing problem with split deliveries by backpack (CVRPSDB) was constructed. The CVRPSDB refers
to making a reasonable route for the vehicle with the lowest cost of low-carbon logistics distribution
for the same type of vehicle, starting from the distribution center (vertex 0) to the customer i (vertex i).
The vehicle must return to vertex 0 at the end, with some constraints: the capacity limitation of vehicles,
split deliveries by backpack, and the limitation of route length (time). The distribution center is numbered
as 0, and customers are numbered as 1, 2, . . . , N. The notations are defined as in Table 1.
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Table 1. Notations of the capacitated vehicle routing problem with split deliveries by
backpack CVRPSDB.

Symbols Notations

N The total number of customers.
Z The total travel time for all vehicles.
K The number of vehicles used (the number of routes).
Q The vehicle load.
T The maximum length of a route.
di The demand of customer i.
di

r The demand of the rth backpack at customer i.
R The maximum number in the number of actual backpacks of every customer.
yij

k When the vehicle k directly goes to customer j from customer i, the value takes 1, otherwise 0.
xir

k If the rth backpack at customer i is distributed by the vehicle k, the value takes 1, otherwise 0.
ti The time when the vehicle reaches the customer i.
tij The direct travel time between the customer i and j.
S A solution to the problem.
Sinitial Initial solution.
Scandi Candidate solution.
Snow The current solution.
Sbest The best solution.
P The number of Candidate solutions.
A Candidate solution set composed of Scandi.
a The upper limit of the total iteration number.
b The upper limit of the iteration number of the “best solution” remaining unchanged.

The total costs of low-carbon logistics distribution (F) in transit can be measured indirectly
through the number of vehicles used and the travel time. Therefore, we can define that F = P1K + P2Z.
Here, P1 and P2 represent the coefficient of weight. In different transit environments, their values
are different. When we calculate the value of K and Z, we only need to get the values of P1 and P2
according to the specific transit environment, and then we can calculate the value of F. So, the key of
logistics cost optimization is to calculate the optimal values of K and Z. Fu et al. [37] pointed out that
the cost caused by the number of vehicles used is far greater than that of the cost of travel time; that is
to say, P1 >> P2. In addition, the multiple objective optimization has become a hot spot in the field of
modern logistics technology. Therefore, we will focus on logistics optimization technology and use
a hierarchical approach to construct a double-objective mathematical model. The total low-carbon
logistics distribution cost here contains two optimization objectives: the first is to minimize the number
of vehicles used, the second is to minimize the travel time. The first one has priority.

Assuming that the travel time between the vertexes coincides with the triangular inequality and
the travel time represents the travel cost, the double-objective mathematical model of the CVRPSDB is
as follows:

min K (1)

min Z =
N

∑
i=0

N

∑
j=0

K

∑
k=1

(tij · yk
ij) (2)

N

∑
i=1

R

∑
r=1

(dr
i · xk

ir) ≤ Q, k = 1, 2, . . . , K (3)

N

∑
i=0

N

∑
j=0

(tij · yk
ij) ≤ T, k = 1, 2, . . . , K (4)

K

∑
k=1

xk
ir = 1, i = 1, 2, . . . , N; r = 1, 2, . . . , R (5)
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K

∑
k=1

R

∑
r=1

(dr
i · xk

ir) = di, i = 1, . . . , N (6)

N

∑
i=0

K

∑
k=1

yk
ij ≥ 1, j = 1, 2, . . . , N (7)

N

∑
i=0

yk
ie =

N

∑
j=0

yk
ej, e = 1, 2, . . . , N; k = 1, 2, . . . , K (8)

K

∑
k=1

N

∑
j=1

yk
0j = K (9)

K

∑
k=1

N

∑
i=1

yk
i0 = K (10)

∑
i,j∈n×n

yk
ij ≤ |n| − 1, n = 1, 2, . . . , N; k = 1, . . . , K (11)

yk
ij ∈ {0, 1}, i, j = 0, 1, . . . , N; k = 1, . . . , K (12)

K ≥ Kmin =

⌊
N

∑
i=1

di/Q

⌋
+ 1 (13)

Equations (1) and (2) are objective functions; Equations (3) and (4) are the constraints for load
and route length (time); Equation (5) limits that each backpack can only be delivered by one vehicle,
that is, the customers’ single backpack cannot be split; Equation (6) is the condition for customer
demand to split deliveries by backpack, that is, a customers’ demand is equal to the sum of its backpack
demand, and every customer’s demand can be delivered by multiple vehicles with split deliveries by
backpack, if needed; Equation (7) ensures that each customer is visited at least once; Equations (8)–(10)
ensure that the intermediate customers have balanced vehicle flow, and all the vehicles return to the
distribution center 0; Equation (11) eliminates constraints for the subloop to ensure that each vehicle
visits a customer up to once; Equation (12) is an integer value constraint of 0 or 1; Equation (13) can
estimate the lower bound of the number of vehicles used.

4. Design of Adaptive Tabu Search Algorithm

The VRP is an NP-hard problem [11], CVRPSDB is more complex than the classical VRP, and is
also an NP-hard problem. It is difficult to effectively solve the large-scale NP-hard problems by using
general exact algorithms [6]. Designing an intelligent heuristic algorithm is the general way to solve
them. Fu et al. [37] pointed out that a TS algorithm is a preferable intelligent algorithm for solving VRP.
In this work, an adaptive tabu search (ATS) algorithm was constructed for the CVRPSDB by adding
adaptive operations and designing multi-neighborhood structures with reinitialization to enhance the
global optimization ability.

4.1. The Expression of Solution and the Initial Solution

A solution is represented by using the arrangement between the vertex 0 and the customer
backpack position, in which the vertex 0 can appear multiple times. A vehicle route can be
formed by the closest two 0s with the backpacks in between. For example, in the solution
S = (0d1

1d1
2d2

2d1
3d2

3d1
40d2

4d3
4d4

4d1
5d2

5d1
6d1

70 · · · 0), the first route is (0d1
1d1

2d2
2d1

3d2
3d1

40). We adopted the
form of initial solution from Fu et al. [37], where the initial feasible solution was randomly generated.
Specifically, we randomly generated the arrangement of customers from 1 to N. Then, under the
vehicle load and work time constraints, followed by the backpacks of customer demand being added
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to the route one by one, a new vehicle route will be opened once there is a breach of the constraints.
The initial solution is not split, that is, the same customer’s backpacks are all put into the same route.

4.2. Design of Multi-Neighborhood Structure

We designed a multi-neighborhood structure and used the random neighborhood transform
strategy, randomly selecting a neighborhood for the current solution transform. Before the
neighborhood operation, two different routes, R1 and R2, are randomly selected, and then a
non-zero weight of customer or backpack in the two routes is randomly selected to carry out the
transform. After each neighborhood operation, each of the adjacent 0s retains only the front-most
one and merges the backpacks of the same customer within the same route. The neighborhood
transform is randomly selected from the following five configurations. For example, in the solution
S = (0d1

1d1
2d2

2d1
3d2

3d1
40d2

4d3
4d4

4d1
5d2

5d1
6d1

70 · · · 0) (the randomly selected backpacks j1 (d2
3) and j2 (d2

5) are
underlined), the transform results are as follows:

• Insert in front of the vertex. Insert the vertex corresponding to backpack j1 in front of the vertex
corresponding to backpack j2, and S′ = (0d1

1d1
2d2

2d1
40d2

4d3
4d4

4d1
3d2

3d1
5d2

5d1
6d1

70 · · · 0).
• Insert following the vertex. Insert the vertex corresponding to backpack j1 following the vertex

corresponding to backpack j2, and S′ = (0d1
1d1

2d2
2d1

40d2
4d3

4d4
4d1

5d2
5d1

3d2
3d1

6d1
70 · · · 0).

• Vertex exchange. Exchange the vertexes corresponding to backpacks j1 and j2, that is,
the backpacks corresponding to vertexes selected out of the two routes are all exchanged,
and S′ = (0d1

1d1
2d2

2d1
5d2

5d1
40d2

4d3
4d4

4d1
3d2

3d1
6d1

70 · · · 0).
• Vertex exchange. Reverse the order of vertexes corresponding to backpacks j1 and j2,

and S′ = (0d1
1d1

2d2
2d2

5d1
5d4

4d3
4d2

40d1
4d2

3d1
3d1

6d1
70 · · · 0).

• Backpack exchange. Exchange backpacks j1 and j2, and S′ = (0d1
1d1

2d2
2d1

3d2
5d1

40d2
4d3

4d4
4d1

5d2
3d1

6d1
70 · · · 0).

4.3. Evaluation of Solutions

In the process of search optimization, some infeasible solutions will help the algorithm to transit
to a more feasible solution. In this paper, the number of candidate solutions generated from each
iteration is p, where p = 50 + N, and candidate solution set A is constructed by deleting the Scandi of
K < Kmin. In order to guide the heuristic algorithm to solve large-scale VRP, ATS uses an adaptive
penalty strategy in the search algorithm, setting the variable Flag to mark whether Scandi is feasible.
If feasible, Flag = 1 is marked, otherwise Flag = 0. According to previous experience from VRP-related
literature [37–41], reduction in the number of vehicles has a greater effect on the shortening of the
travel time and distance. The reduction in the number of vehicles is usually due to the increased
vehicle loading rate and the avoidance of detour, and the feasible route is usually shorter (that is,
the cost of time is usually less).

Setting two levels of evaluation indicators to select the new current solution Snow, the best solution
Sbest (in which Snow allows the violation of part of the constraints) needs to ensure the feasibility. In the
first level of indicators, the number of vehicles K should be as few as possible; in the second level of
indicators, the sum G of travel time costs Z and the penalty Z′ for the violation of Equations (3) and (4)
should be as small as possible. Values are as in the Equations (14) and (15), where δk represents the
overrun of time spent on the kth route, and εk represents the overload of the kth vehicle. After each
iteration, the stratification is used to select the new Snow from the candidate solution set A, and the
non-tabu Scandi with the minimum number of vehicles K is picked to form the solution set B (B ⊆ A),
and then the solution with the minimum G value is selected from the set B. The new Sbest that is better
than the original Sbest is selected from the feasible Scandi (see details in Section 4.4).

G = Z + Z′ (14)



Int. J. Environ. Res. Public Health 2018, 15, 949 8 of 12

Z′ = H · [α · (
K

∑
k=1

δk) + β · (
K

∑
k=1

εk)] (15)

α and β in Equation (15) represent the number of non-zero numbers in δk and εk, H is an adaptive
penalty coefficient, value range H ∈ [20, 2200], the initial value of H is taken as 100. If there are
five iterations having non-feasible solutions in succession, they are multiplied by 2, and if there are
five iterations having feasible solutions in succession, they are divided by 2. The setting of H can
fully exploit the adaptive optimization potential of ATS and guide the algorithm to search alternately
between feasible and non-feasible solutions and try to move closer to the feasible neighborhood.

4.4. Tabu Rules and Termination Conditions

The length of tabu has a great influence on the optimization performance of the TS algorithm.
The larger tabu length can always accelerate the algorithm optimization, and the smaller tabu length
can enhance the random diversity of the solution. In the early stage of the iteration, it is possible
to avoid the repetition of search by increasing the length of tabu. In the middle and latter stages of
iteration, the smaller tabu length can be used to enhance the richness of the neighborhood solution.
In order to avoid cyclic search in the early search and enhance the random diversity of the middle
and latter stages, the ATS sets the mixed tabu length by taking the fixed value 16 in the previous m
iterations, and then takes the random integer from 5 to 16. Let m = 500 + 15N.

Upon each candidate solution set A generated after each iteration, the current solution Snow and
the best solution Sbest corresponding to the next iteration is selected. Tabu list is an N×N matrix, and if
a certain Scandi is determined as Snow, then tabu operation is conducted for the neighborhood exchange
vertexes i and j. That is, the matrix elements (i,j) in the tabu list are filled in with the corresponding
tabu length. The length of the other tabu object minuses 1 after each iteration and is released when it
is reduced to 0. The ATS also designed a tabu-breaking strategy; if a feasible Scandi is better than the
previous Sbest (that is, Scandi ∈ A and Flag = 1, Kcandi < Kbest, or Flag = 1, Kcandi = Kbest, Gcandi < Gbest),
then set the new Snow and Sbest, otherwise the best Scandi (Scandi ∈ B) of non-tabu is set as the new
Snow; if all Scandi are tabued, then release the best Scandi (Scandi ∈ A), and take the new Snow. In order to
further avoid excessive tabu, after m steps of the iteration, reinitialization of the tabu list is carried out
every u iterations, taking u = 50.

There are two strategies to terminate the iteration, and either one can terminate. One is when the
total number of iterations reaches the preset upper limit a; the second is when the iteration number of
Sbest, remaining unchanged, reaches the preset upper limit b. Take a = 5000 + 150N, b = 3000 + 5N.

4.5. Algorithm Description

The basic flow of ATS algorithm is described as follows:

Step 1: Initialize
Step 2: Input the relevant data and parameter values.
Step 3: Generate a feasible initial solution using a random strategy and take it as Snow and Sbest.
Step 4: While the termination condition is not met, do
Step 5: While the number of candidate solution is less than p, do
Step 6: Select a neighborhood in five kinds of neighborhood randomly by using random

selection strategy.
Step 7: Transform Snow by the selected neighborhood to generate a new candidate solution set A,

and build the optimal non-tabu solution set B.
Step 8: End.
Step 9: Combine the previous analysis, if a feasible Scandi is better than the original Sbest, then set

it as Snow and Sbest, otherwise the best non-tabu Scandi (Scandi ∈ B) is set as the new Snow;
if the set B = ∅, release the best Scandi (Scandi ∈ A), and take it as the new Snow.
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Step 10:Update the tabu list.
Step 11:End.

5. Results and Discussion

5.1. Example Description

There are no benchmark problems yet for the VRP with split deliveries by backpack. Aleman used
five CVRP large-scale examples (N ≥ 50, denoted as example a1, a2, a3, a4, a5) provided by Christofides
in the study on the VRP with split deliveries by unit (belonging to the classical K-VRPSD) [4]. In this
paper, the above examples are used to construct the examples for the VRP with split deliveries by
backpack. Every customer’s demand is split into 1–4 backpacks randomly, and the route length (time)
limit is added to construct the example. According to the characteristics of the original example,
the Euclidean distance between the vertexes is used to represent the travel time, and the demand data
of a4 with 150 customers is shown in Table 2.

Table 2. The customer demand data of a4.

Point No. Demand
Backpack No.

Point No. Demand
Backpack No.

Point No. Demand
Backpack No.

1 2 3 4 1 2 3 4 1 2 3 4

1 10 2 2 6 0 51 10 1 3 3 3 101 7 2 3 2 0
2 7 1 3 3 0 52 9 4 5 0 0 102 30 14 12 4 0

. . . . . . . . . . . . . . . . . .
32 23 11 12 0 0 82 16 1 4 9 2 132 12 5 2 5 0
. . . . . . . . . . . . . . . . . .
49 30 2 4 12 12 99 9 1 2 1 5 149 18 1 2 5 10
50 13 6 7 0 0 100 17 3 3 9 2 150 10 3 6 1 0

5.2. Calculation Results

The ATS algorithm proposed was coded in Matlab2014a and implemented on a LENOVO® V3000
laptop with CUP 2.40 GHz and 4 GB AMD. Each example was tested eight times, and the best result
was taken.

The results show that the five examples have good performance. Besides the fact that example a5
needs 1 more vehicle, the rest are reduced to the least number of vehicles. The example a4 is used to
illustrate the solution, with a Z value of 1063.80, where the customer 132 is dispatched by two vehicles
with split deliveries by backpack, and the discrete split weights are 7 and 5. See Table 3 for details.

Table 3. The results of a4.

Route Travel Path Route Length Load Rate

1 0-13-117-97-92-59-95-94-112-0 42.25 72.00%
2 0-98-37-100-119-44-140-38-14-142-42-43-15-57-144-87-137-0 116.42 98.00%
3 0-52-106-7-123-19-47-124-48-82-0 78.68 75.50%
4 0-146-88-148-62-107-11-64-49-143-36-46-8-114-18-0 120.43 89.50%
5 0-96-93-85-91-141-86-16-61-104-99-6-0 74.35 95.00%
6 0-12-110-4-139-39-67-23-56-75-73-40-53-0 103.96 99.00%
7 0-76-77-3-79-129-78-34-135-35-136-65-66-128-20-122-132(5+2)-0 116.62 100.00%
8 0-138-1090-54-130-55-25-134-24-29-121-150-80-68-116-28-0 95.38 100.00%
9 0-27-69-101-70-30-131-32-90-63-126-108-10-31-127-0 83.27 95.00%

10 0-58-2-115-145-41-22-133-74-72-21-149-26-105-0 70.57 95.50%
11 0-89-118-60-83-125-45-17-113-84-5-147-0 77.84 98.50%
12 0-111-50-102-33-81-120-9-71-103-51-1-132(5)-0 84.03 99.50%

Note: The bold data 132 in the table is the split vertex number, with the corresponding split in parentheses.
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5.3. Comparison Analysis

Aleman [4] used some heuristic algorithms to test the VRPSD examples from a1 to a5.
They designed constructive approach (CA), iterative constructive approach (ICA), and iterative
constructive approach plus variable neighborhood descent (ICA + VND). ICA + VND algorithm
uses a two-stage solution, that is, the ICA results are taken as the initial solution of VND. See the
details in literature [4]. The comparison results for Z value of CA, ICA, and ICA + VND, given by
Aleman [4], are shown in Table 4.

In the number of vehicles used in the ATS, apart from example a5 needing 1 more vehicle, the other
four examples all achieved the least number of vehicles used and have the same performance with
the three contrasting algorithms. In travel time cost, the five examples of ATS are better than the
comparative literature, and the saving ratio of CA, ICA, and ICA + VND was 3.66–10.34%, 3.30–8.40%,
and 2.07–4.02%, respectively. Compared with the continuous unit split of Aleman [4], the ATS requires
customer demand to be more stringent in terms of discrete split deliveries by backpack. From the
size of the solution space, the solution set of the example in this paper should be a subset of the
comparative example in the literature. That is, Aleman [4] should theoretically get better results than
the ATS, but the actual results of the three algorithms are not as good as those of ATS. From the test
results, the quality of the ATS solution is higher than that of CA, ICA, and ICA + VND, which indicates
that ATS has a stronger search ability for optimization.

Table 4. Comparison results of the adaptive tabu search (ATS) with others in the literature.

Pr. N T Kmin
ATS CA ICA ICA + VND

Z Z IMP/% Z IMP/% Z IMP/%

a1 50 180 5 524.61 578.83 10.34 568.67 8.40 540.82 3.09
a2 75 144 10 846.22 899.11 6.25 889.05 5.06 880.28 4.02
a3 100 207 8 835.64 873.46 4.53 863.18 3.30 854.13 2.21
a4 150 180 12 1063.80 1121.33 5.41 1108.97 4.25 1088.91 2.36
a5 199 180 16 1362.33 1412.18 3.66 1412.18 3.66 1390.55 2.07

Note: Z represents the distance value of the example; IMP represents the percentage of the comparative literature
value Z (i.e., % greater than the ATS); the bold data represents the best value. CA: constructive approach; ICA:
iterative constructive approach; ICA + VND: iterative constructive approach plus variable neighborhood descent.

6. Conclusions

The VRP with split deliveries by backpack is a type of discrete split deliveries problem, which has
wide application value in the practice of low-carbon logistics distribution. In this study, the VRP
with split deliveries by backpack was studied, and a corresponding double-objective mathematical
model was constructed. An adaptive tabu search algorithm with adaptive penalty mechanism,
random neighborhood selection strategy, and reinitialization principle was designed. The test examples
were constructed based on the benchmark problems. The computational results were compared with
other relevant methods in the literature. Results showed that the model and its ATS algorithm can help
us to find solutions with shorter travel time and lower costs of carbon emissions, and therefore help
the development of low-carbon logistics and green economy. In future research, we can incorporate
more constraints into the basic CVRPSDB model, and further improve the optimization performance
of the ATS algorithm so that it can better serve the logistics practice.
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