

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(6-Bromo-3,4-dihydro-2*H*-1,4-benzoxazin-4-yl)-2,2-dichloroethanone

Fei Ye, Ying Li, Ying Fu,* Li-Xia Zhao and Shuang Gao

College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China

Correspondence e-mail: fuying@neau.edu.cn

Received 19 April 2012; accepted 13 July 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.102; data-to-parameter ratio = 20.2.

The title compound, $C_{10}H_8BrCl_2NO_2$, is a target molecule in our research on herbicide safeners. The oxazine ring has an envelope conformation, with puckering parameters close to ideal values [Q = 0.498 (3) Å, $\theta = 53.7$ (3)° and $\varphi = 253.4$ (4)°]. The crystal structure is stabilized by C–H···O, C–H···Cl and C–H···Br interactions.

Related literature

For general background on 1,4-benzoxazine, see: Mizar & Myrboh (2006); Macias *et al.* (2006); Tang *et al.* (2011). For the herbicide safener activity of *N*-dichloroacetyl benzoxazine derivatives, see: Burton *et al.* (1994); Hatzios & Burgos (2004); Loniovereror (1993); Scarponi & Buono (2005). For the synthetic procedure, see: Fu *et al.* (2011).

Experimental

Crystal data $C_{10}H_8BrCl_2NO_2$ $M_r = 324.97$ Monoclinic, $P2_1/n$ a = 6.8220 (8) Å b = 23.567 (3) Å

c = 7.3746 (9) Å
$\beta = 93.545 (1)^{\circ}$
V = 1183.4 (3) Å ³
Z = 4
Mo $K\alpha$ radiation

 $0.40 \times 0.38 \times 0.28 \text{ mm}$

 $\mu = 3.91 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART APEX CCD11742 measured reflectionsarea-detector diffractometer2924 independent reflectionsAbsorption correction: multi-scan2924 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 2002) $R_{int} = 0.020$ $T_{min} = 0.228, T_{max} = 0.335$ $R_{int} = 0.020$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ 145 parameters $wR(F^2) = 0.102$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.44$ e Å $^{-3}$ 2924 reflections $\Delta \rho_{min} = -0.92$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3-H3···O2 ⁱ	0.98	2.20	3.101 (3)	153
$C12-H12B\cdots Cl2^{i}$	0.97	2.88	3.664 (3)	139
$C11 - H11B \cdots Br1^{ii}$	0.97	2.99	3.853 (3)	148

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z - 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Nature Science Foundation of China (grant No. 31101473), the Science and Technology Research Project of Heilongjiang Education Department (grant No. 12521002), the Research Science Foundation in Technology Innovation of Harbin (grant No. 2012RFXXN002) and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2057).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burton, J. D., Maness, E. P., Monks, D. W. & Robinson, D. K. (1994). Pestic. Biochem. Physiol. 48, 163–172.

Fu, Y., Zhang, S. S. & Ye, F. (2011). Indian J. Heterocycl. Chem. 20, 405–406.

Hatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454–457.

Loniovereror, G. L. (1993). Weed Res. 33, 311-318.

- Macias, F. A., Marin, D., Oliveros-Bastidas, A., Chinchilla, D., Simonet, A. M. & Molinillo, J. M. G. (2006). J. Agric. Food Chem. 54, 991–1000.
- Mizar, P. & Myrboh, B. (2006). Tetrahedron Lett. 47, 7823-7826.
- Scarponi, L. & Buono, D. D. (2005). J. Agric. Food Chem. 53, 2483-2488.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tang, Z. L., Chen, W. W., Zhu, Z. H. & Liu, H. W. (2011). J. Heterocycl. Chem. 48, 255–260.

supplementary materials

Acta Cryst. (2012). E68, o2509 [doi:10.1107/S1600536812032011]

1-(6-Bromo-3,4-dihydro-2H-1,4-benzoxazin-4-yl)-2,2-dichloroethanone

Fei Ye, Ying Li, Ying Fu, Li-Xia Zhao and Shuang Gao

Comment

Substituted benzoxazine derivatives have attracted attention because of their widespread application as fungicides and insecticides (Mizar & Myrboh, 2006; Macias *et al.*, 2006; Tang *et al.*, 2011). *N*-dichloroacetyl benzoxazines have been used as herbicide safeners, which protect the crop from injury by herbicides (Burton *et al.*, 1994; Hatzios & Burgos, 2004; Loniovereror, 1993; Scarponi & Buono, 2005). As a part of our ongoing investigations of different herbicide safeners, we prepared the title compound (Fu *et al.*, 2011).

The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O, C—H···Cl, and C—H···Br interactions to form one-dimensional chains (Fig. 2, Table 1).

Experimental

The title compound was prepared according to the literature procedure (Fu et al., 2011).

The single crystal suitable for X-ray structural analysis was obtained by slow evaporation of a solution of the title compound in petroleum ether and ethyl acetate (v/v = 5:1) at room temperature.

Refinement

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.93–0.98 Å, and with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Computing details

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram for the title compound, showing the intramolecular C-H…Br interaction as dashed lines.

1-(6-Bromo-3,4-dihydro-2H-1,4-benzoxazin-4-yl)-2,2-dichloroethanone

Crystal data			
$C_{10}H_8BrCl_2NO_2$ $M_r = 324.97$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.8220 (8) Å b = 23.567 (3) Å c = 7.3746 (9) Å $\beta = 93.545$ (1)° V = 1183.4 (3) Å ³ Z = 4 F(000) = 640.0	$D_{\rm x} = 1.824 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.824 \text{ Mg m}^{-3}$ $D_{\rm m} \text{ measured by not measured}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4705 reflections $\theta = 2.8-25.8^{\circ}$ $\mu = 3.91 \text{ mm}^{-1}$ $T = 298 \text{ K}$ Block, colourless $0.40 \times 0.38 \times 0.28 \text{ mm}$		
Data collection			
Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2002) $T_{min} = 0.228$, $T_{max} = 0.335$ 11742 measured reflections 2924 independent reflections 2924 reflections with $I > 2\sigma(I)$		

$R_{\rm int} = 0.020$	$k = -31 \rightarrow 30$
$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$	$l = -9 \rightarrow 9$
$h = -9 \rightarrow 9$	

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
<i>S</i> = 1.09	H-atom parameters constrained
2924 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0487P)^2 + 0.7003P]$
145 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.92 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
C11	0.5861 (5)	0.13121 (15)	0.7608 (5)	0.0693 (9)
H11A	0.5504	0.1652	0.8251	0.083*
H11B	0.4856	0.1243	0.6644	0.083*
C12	0.7804 (5)	0.14020 (15)	0.6796 (4)	0.0640 (9)
H12A	0.8180	0.1062	0.6160	0.077*
H12B	0.7708	0.1713	0.5933	0.077*
C13	0.9285 (5)	0.02632 (13)	1.2299 (4)	0.0535 (7)
H13	0.9280	-0.0021	1.3173	0.064*
C1	0.7665 (5)	0.03564 (13)	1.1156 (4)	0.0561 (7)
H1	0.6559	0.0130	1.1240	0.067*
C2	0.7655 (4)	0.07871 (12)	0.9869 (4)	0.0484 (6)
C3	1.0255 (4)	0.23991 (11)	0.6714 (3)	0.0464 (6)
H3	0.8872	0.2438	0.6289	0.056*
01	0.5943 (3)	0.08487 (10)	0.8818 (3)	0.0658 (6)
C5	1.0986 (4)	0.10184 (10)	1.0846 (3)	0.0414 (5)
H5	1.2119	0.1232	1.0742	0.050*
C6	1.0390 (4)	0.20127 (11)	0.8395 (3)	0.0436 (6)
C7	0.9324 (4)	0.11209 (10)	0.9693 (3)	0.0403 (5)
C8	1.0934 (4)	0.05971 (11)	1.2139 (4)	0.0440 (6)
02	1.1457 (3)	0.21396 (9)	0.9706 (3)	0.0601 (6)
N1	0.9288 (3)	0.15339 (9)	0.8282 (3)	0.0477 (5)
Br1	1.31802 (5)	0.046715 (14)	1.37285 (4)	0.06190 (14)
C12	1.12004 (16)	0.30735 (4)	0.72659 (12)	0.0759 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.20811 (5) 0.49693 (13) 0.0834 (3) 1.15557 (16) Atomic displacement parameters $(Å^2)$ U^{11} U^{22} U^{33} U^{12} U^{13} U^{23} C11 0.0554 (18) 0.079(2) -0.0341 (16) 0.069(2) -0.0032(15)-0.0157 (17) C12 0.072(2)0.0626 (18) 0.0528 (16) -0.0159(15)-0.0313(15)-0.0025(14)C13 0.0639 (18) 0.0466 (14) 0.0513 (15) -0.0081(13)0.0138 (13) 0.0011 (12) 0.0524 (16) C1 0.0510(16) 0.0665 (18) -0.0156(13)0.0155 (14) -0.0071(13)C2 0.0414(13)0.0462(14)0.0570(15) -0.0054(11)-0.0018(11)-0.0139(12)C3 0.0450(13) 0.0492 (14) 0.0436(13)0.0012 (11) -0.0083(11)0.0065 (11) **O**1 0.0448 (11) 0.0669 (14) 0.0835 (15) -0.0111(10)-0.0128(10)-0.0057(12)C5 0.0423 (13) 0.0382 (12) 0.0434 (12) -0.0042(10)-0.0004(10)0.0012 (10) C6 0.0411 (12) 0.0449 (13) 0.0430(13) -0.0011(10)-0.0121(10)0.0052 (10) C7 0.0420 (13) 0.0356 (12) 0.0428 (12) -0.0021(10)-0.0022(10)-0.0046(10)C8 0.0512 (14) 0.0406 (13) 0.0405 (12) 0.0024 (11) 0.0043 (11) 0.0002 (10) O2 0.0667 (13) 0.0535 (11) 0.0559(11) -0.0221(10)-0.0302(10)0.0168 (9) N1 0.0520(13) 0.0427 (11) 0.0455 (11) -0.0083(10)-0.0194(10)0.0016 (9) Br1 0.0668 (2) 0.0634 (2) 0.05402 (19) 0.00348 (14) -0.00809(14)0.01693 (13) Cl2 0.1089(7)0.0562(5)0.0599(5)-0.0264(4)-0.0170(4)0.0171 (4) Cl3 0.0936(7) 0.0934(7)0.0651 (5) 0.0173 (5) 0.0213 (5) 0.0018 (5)

Geometric parameters (Å, °)

C11—01	1.409 (4)	С2—С7	1.397 (4)	
C11—C12	1.503 (5)	C3—C6	1.536 (3)	
C11—H11A	0.9700	C3—Cl2	1.754 (3)	
C11—H11B	0.9700	C3—Cl3	1.774 (3)	
C12—N1	1.479 (3)	С3—Н3	0.9800	
C12—H12A	0.9700	C5—C8	1.379 (4)	
C12—H12B	0.9700	C5—C7	1.396 (3)	
C13—C1	1.365 (5)	C5—H5	0.9300	
C13—C8	1.384 (4)	C6—O2	1.211 (3)	
C13—H13	0.9300	C6—N1	1.356 (3)	
C1—C2	1.390 (4)	C7—N1	1.424 (3)	
C1—H1	0.9300	C8—Br1	1.895 (3)	
C2—01	1.369 (3)			
O1—C11—C12	111.1 (3)	C6—C3—C13	109.09 (19)	
O1-C11-H11A	109.4	Cl2—C3—Cl3	110.98 (16)	
C12-C11-H11A	109.4	С6—С3—Н3	108.8	
O1-C11-H11B	109.4	Cl2—C3—H3	108.8	
C12—C11—H11B	109.4	Cl3—C3—H3	108.8	
H11A—C11—H11B	108.0	C2	116.1 (2)	
N1-C12-C11	108.3 (3)	C8—C5—C7	119.5 (2)	
N1-C12-H12A	110.0	C8—C5—H5	120.3	
C11—C12—H12A	110.0	С7—С5—Н5	120.3	
N1-C12-H12B	110.0	O2—C6—N1	123.9 (2)	
C11—C12—H12B	110.0	O2—C6—C3	120.1 (2)	
H12A—C12—H12B	108.4	N1—C6—C3	116.0 (2)	

supplementary materials

C13

C1—C13—C8	119.2 (3)	C5—C7—C2	118.8 (2)
C1-C13-H13	120.4	C5—C7—N1	122.7 (2)
C8—C13—H13	120.4	C2—C7—N1	118.4 (2)
C13—C1—C2	120.6 (3)	C5—C8—C13	121.6 (3)
C13—C1—H1	119.7	C5—C8—Br1	119.3 (2)
C2—C1—H1	119.7	C13—C8—Br1	119.1 (2)
O1—C2—C1	115.6 (3)	C6—N1—C7	122.7 (2)
O1—C2—C7	124.0 (3)	C6—N1—C12	124.9 (2)
C1—C2—C7	120.4 (3)	C7—N1—C12	112.2 (2)
C6—C3—Cl2	110.32 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
C3—H3…O2 ⁱ	0.98	2.20	3.101 (3)	153
C12—H12 <i>B</i> ···Cl2 ⁱ	0.97	2.88	3.664 (3)	139
C11—H11B····Br1 ⁱⁱ	0.97	2.99	3.853 (3)	148

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*-1, *y*, *z*-1.