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METHODOLOGY

Differentiating anomalous disease intensity 
with confounding variables in space
Chih‑Chieh Wu1*   and Sanjay Shete2

Abstract 

Background:  The investigation of perceived geographical disease clusters serves as a preliminary step that expedites 
subsequent etiological studies and analysis of epidemicity. With the identification of disease clusters of statistical 
significance, to determine whether or not the detected disease clusters can be explained by known or suspected risk 
factors is a logical next step. The models allowing for confounding variables permit the investigators to determine if 
some risk factors can explain the occurrence of geographical clustering of disease incidence and to investigate other 
hidden spatially related risk factors if there still exist geographical disease clusters, after adjusting for risk factors.

Methods:  We propose to develop statistical methods for differentiating incidence intensity of geographical dis‑
ease clusters of peak incidence and low incidence in a hierarchical manner, adjusted for confounding variables. The 
methods prioritize the areas with the highest or lowest incidence anomalies and are designed to recognize hierarchi‑
cal (in intensity) disease clusters of respectively high-risk areas and low-risk areas within close geographic proximity 
on a map, with the adjustment for known or suspected risk factors. The data on spatial occurrence of sudden infant 
death syndrome with a confounding variable of race in North Carolina counties were analyzed, using the proposed 
methods.

Results:  The proposed Poisson model appears better than the one based on SMR, particularly at facilitating discrimi‑
nation between the 13 counties with no cases. Our study showed that the difference in racial distribution of live births 
explained, to a large extent, the 3 previously identified hierarchical high-intensity clusters, and a small region of 4 
mutually adjacent counties with the higher race-adjusted rates, which was hidden previously, emerged in the south‑
west, indicating that unobserved spatially related risk factors may cause the elevated risk. We also showed that a large 
geographical cluster with the low race-adjusted rates, which was hidden previously, emerged in the mid-east.

Conclusion:  With the information on hierarchy in adjusted intensity levels, epidemiologists and public health officials 
can better prioritize the regions with the highest rates for thorough etiologic studies, seeking hidden spatially related 
risk factors and precisely moving resources to areas with genuine highest abnormalities.
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Introduction
An important issue in spatial and temporal statistics 
is whether a set of discrete points are distributed ran-
domly or they show a variety of signs of clustering. One 

of its major applications is in epidemiology; in particu-
lar, detecting and, more importantly, characterizing 
spatial and temporal clusters of adverse health events 
using existing health data collected on a basis of geo-
graphic units such as counties. The investigation of per-
ceived incidence clusters or paucity of a certain disease is 
interesting in mathematics and probability per se. More 
importantly, we are interested in whether a finding indi-
cating the presence of incidence anomalies (including 
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clustering and paucity of disease incidence) will lead to 
a greater understanding of the etiology and underlying 
causal mechanism of disease or the identification of a 
common causal exposure for disease. With the identifica-
tion of disease clusters of statistical significance, to deter-
mine whether or not the detected disease clusters can be 
explained by known or suspected risk factors is a logical 
next step.

The purpose of this paper is to develop and illustrate 
new statistical methods for differentiating incidence 
intensity of geographical disease clusters of peak inci-
dence and low incidence, adjusted for covariates that are 
known or hypothesized risk factors, as well as testing for 
the presence of clustering. The methods are designed to 
recognize and construct hierarchical (in intensity) dis-
ease clusters of respectively high-risk areas and low-risk 
areas within close geographic proximity or contiguity on 
a map, including confounding variables as covariates. The 
hierarchy in covariate-adjusted intensity permits to occur 
between and within distinct geographical disease clus-
ters. We propose to adjust for covariates by enumerat-
ing expected incidence of disease in each county through 
indirect standardization, conditioning on the total num-
ber of disease observed. The basic analysis is the one 
with no covariates. By including exactly one covariate 
at one time in further analyses, we can examine how 
the incorporated covariate affects the geographical dis-
ease incidence pattern. With information on geographi-
cal covariate-adjusted incidence clustering patterns on 
a map, we can determine whether or not the previously 
detected geographical disease clusters of peak incidence 
or paucity of incidence can be explained by the covari-
ates incorporated. We are further interested if there still 
exist geographical disease clusters of incidence anoma-
lies, after adjusting for known or hypothesized risk fac-
tors, which could lead to further investigation into other 
spatially related risk factors that are hidden otherwise.

The existing statistical methods for epidemiologic inci-
dence anomaly patterns generally focus on detecting and 
characterizing large or peak incidence over a time, space, 
or space–time series. The statistical methods that we 
introduce in this paper focus on geographical incidence 
paucity of as well as peak incidence of adverse health 
events, including confounding variables as covariates. In 
epidemiology, testing for disease aggregations is used to 
identify the association between the possible risk factors 
and the incidence of disease. In contrast, the detection of 
an unusually low incidence of disease indicates the pres-
ence of protective factors or the absence of risk factors 
associated with the disease. We and others previously 
proposed and formulated statistical methods for detect-
ing an unusually low incidence of disease in a unit of time 
in a discrete time series and evaluated their sensitivity, 

power, and applicability, using a temporal series of data 
on adolescent suicide from the US National Center for 
Health Statistics and on childhood Langerhans cell his-
tiocytosis patients in Taiwan [1, 2]. We articulated that 
statistical methods that are sensitive to incidence pau-
city in a unit of time characterize opposite aspects of an 
observed incidence pattern and can be as meaningful and 
useful in epidemiology as the methods that focus on inci-
dence clustering in our articles. The same rationales hold 
true for statistical methods for spatial epidemiology and 
spatial statistics, as proposed here.

We illustrate proposed statistical methods, using the 
data on the spatial occurrence of sudden infant death 
syndrome (SIDS) in North Carolina counties over a 
4  year period, 1974–1978. One possible confounding 
variable for SIDS is race. Information on racial distribu-
tion of live births is available. This data set has been ana-
lyzed in a variety of statistical and epidemiologic reports 
[3–9]. We choose this data set for orientation in order 
to readily illustrate the difference in utilities and appli-
cability among these spatial statistical methods. Atkin-
son provides an early review of the SIDS incidence and 
notes the statistically non-significant clustering of inci-
dence in time within county by single years of calendar 
time, using the Ederer-Myers-Mantel test [3]. Cressie 
and his colleagues develop methods to model the spatial 
trend (large-scale variation) and spatial interdependence 
and autocorrelation (small-scale variation) in explora-
tory and confirmatory incidence analyses of this data 
[4–6]. Specifically, Cressie and Chan (1989) perform 
both unweighted and weighted linear regression and 
logistic regression of Freeman-Tukey transformed SIDS 
incidence on 5 explanatory variables, including popula-
tion density, percentage urban, number of hospital beds, 
median family income, and Freeman-Tukey transformed 
non-white live birth rates, in modeling large-scale vari-
ation. They use the Markov random field in modeling 
small-scale variation [4]. Instead of classifying the coun-
ties at high risk or medium risk to SIDS, according to the 
magnitude and ranking of the observed rate of incidence 
alone, Symons, Grimson, and Yuan propose to determine 
the classification of the incidence risk level, accounting 
for the variance of the estimate of the rate in a Poisson 
process [9]. They employ a mixture of Poisson distribu-
tions to model the disease incidence and determine cri-
teria for classification, using maximum likelihood and 
Bayesian methods. These authors all focus on relevant 
but different respects of the spatial statistics problems 
from what we propose here.

Both the map-based pattern recognition procedure [7] 
and the spatial scan statistic [8] can be used to identify 
disease clustering or disease clusters in a spatial point 
process in general. But they are designed for evaluating 
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and characterizing different respects of spatially char-
acteristic incidence clustering patterns and provide dif-
ferent information on spatial clustering. The spatial 
scan statistic is widely used for spatial cluster detection 
analysis and has been extended to a variety of models 
for detecting spatial, temporal, and space–time clusters, 
retrospectively or prospectively, using ordinal, survival-
time, multi-nominal, normal, and longitudinal data etc.. 
The spatial scan statistic searches for spatial disease 
clusters not explained by a baseline spatial point process 
without specifying their size or location a priori. It is able 
to identify the approximate location and range of the 
most likely disease clusters and secondary disease clus-
ters and to perform a significance test for each cluster, 
based on the maximum likelihood ratio and using Monte 
Carlo hypothesis testing. While the identified most likely 
disease clusters may not be the areas with the highest 
incidence by the spatial scan statistic. In contrast, the 
pattern recognition procedure prioritizes the areas with 
the highest rates and is designed to determine hierarchi-
cal incidence intensity levels of mutually adjacent areas 
with the highest rates geographically. It is noted that this 
procedure exclusively focuses on peak incidence and 
does not allow for covariates in determining the hierar-
chical intensity levels. We previously used the pattern 
recognition procedure to investigate the spatial cluster-
ing patterns of dengue outbreaks in Taiwan [10].

Our proposed methods generalize the pattern recogni-
tion procedure in several respects and have following fea-
tures to address important problems:

1.	 We introduce the method for differentiating intensity 
of geographical disease clusters of low incidence in 
a hierarchical manner as well as testing for the pres-
ence of clustering.

2.	 We propose the methods for taking into account 
covariates that are known or hypothesized risk fac-
tors of disease in constructing hierarchical (in 
adjusted intensity) clusters of high-risk areas and 
low-risk areas close within geographic proximity, 
respectively.

3.	 The use of indirectly covariate-adjusted expected 
incidence permits the incorporation of covariates 
without the need of information on covariate-spe-
cific numbers of incidence in each area under study.

4.	 Two distinct probability models are proposed to 
assess the deviation between the observed incidence 
and covariate-adjusted expected incidence in each 
area.

5.	 Two distinct neighborhood systems, adjacency-based 
and distance-based in the definition of close geo-
graphical proximity, are used for proposed models.

Instead of dividing the counties into high- and 
medium-risk categories on the basis of the incidence 
rates used in the practice and in the existing literature, we 
propose to divide the counties into high-, medium-, and 
low-risk categories, then proceed to further differentiate 
incidence level of counties close within geographic prox-
imity in the high- and low-risk categories respectively 
with and without the adjustment for confounding vari-
ables in a hierarchical manner.

The statistical methods that we propose in this report 
are not limited to advancing and generating studies of 
etiology of disease of interest with unknown causes. With 
the information on hierarchy in adjusted intensity lev-
els, epidemiologists and public health officials can better 
prioritize the regions with the highest rates for thorough 
etiologic studies, seeking hidden spatially related risk fac-
tors, and precisely moving resources to areas with genu-
ine highest abnormalities.

Methods
In this section, we first introduce the method for dif-
ferentiating intensity of geographical disease clusters 
of low incidence as well as testing for the presence of 
clustering. It is based on the extension of the existing 
pattern recognition procedure, which focuses on hier-
archical clusters of high incidence [7]. Next, we general-
ize these methods by taking into account covariates that 
are known or hypothesized risk factors of the disease. 
We consider a covariate of race for SIDS in this appli-
cation. Thirdly, we consider two distinct neighborhood 
systems for the North Carolina counties in the applica-
tion of the proposed spatial statistical models, which are 
adjacency-based and distance-based in the definition of 
geographical proximity. We illustrate proposed statisti-
cal methods, using the data on the spatial occurrence of 
SIDS in North Carolina counties in 1974–1978.

Study population
The data on SIDS patients with a confounding variable of 
race in 100 North Carolina counties provide an opportu-
nity to illustrate the applications of the methods that we 
propose for geographical disease anomalies. SIDS is the 
third leading cause of all infant mortality in the US and 
remains the leading cause of death in infants aged from 
1 month to 1 year. Its exact cause remains unknown. The 
frequency of SIDS appears to be influenced by social, 
economic, and cultural factors, such as maternal educa-
tion, race or ethnicity, and poverty. Racial disparity in 
infants who died of SIDS has persisted. The rate of SIDS 
in non-Hispanic African American infants and American 
Indian/Alaskan Native infants remains more than twice 
that of non-Hispanic white infants in 2016 [11].
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The data on the spatial occurrence of SIDS in North 
Carolina counties over a 4  year period, from July 01, 
1974 to June 30, 1978, is used for illustration of our pro-
posed methods. The information contained in this data 
set include the number of SIDS and the number of live 
births during this period for each of the 100 counties of 
North Carolina, as well as the county-seat locations. The 
number of live births was stratified into whites and non-
whites for each of the 100 counties. The total number of 
live births was 329,962, in which the numbers of white 
and non-white births were 224,881 and 105,081, respec-
tively. The total number of SIDS was 667, in which the 
numbers of white and non-white SIDS were 268 and 399, 
respectively. The state-wide incidence rate was 2.021 in 
deaths per 1000 live births. The overall incidence rates 
for the entire state by race were 1.192 for white children 
and 3.797 for non-white children per 1000 live births. 
Non-white SIDS rate was more than 3 times higher than 
that of whites, with the result that although non-whites 
accounted for only 31.85% of the live births in the state 
during the study period, they accounted for 59.82% of all 

the SIDS cases reported. Details of the data sources and 
data collection methods have been described elsewhere 
[4].

Two distinct neighborhood systems for the North Car-
olina counties systems, distance-based and adjacency-
based in the definition of close geographical proximity, 
are used for proposed models. They were determined by 
the criteria of being within 30 miles between the seats 
of 2 counties [4] and of sharing common geographical 
boundaries between 2 counties [5], respectively. The map 
on the 100 counties of North Carolina with county names 
is presented in Fig. 1a.

Existing map‑based pattern recognition procedure
The method developed by Mantel [12] was generalized by 
Cliff and Ord, who proposed the test statistic B1 = (1/2) Σ 
ω1

ij xi xj where xi = 1 if area i is a high-risk area for some 
disease and 0 otherwise, and where ω1

ij = 1 if areas i and 
j are mutually adjacent geographically and 0 otherwise, 
ω1

ij = ω1
ji, ω1

ii = 0 [13]. The sum ranges over all pairs of 
areas. It is an adjacency-based test statistic that measures 

incidence
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Fig. 1  a County-specific SIDS incidence intensity map in North Carolina with county names. b County-specific SIDS incidence intensity-level map 
in North Carolina
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spatial autocorrelation for binary data and uses the distri-
bution of the number of adjacencies of geographic units. 
When high-risk areas tend to be geographically adjacent 
to each other, the value of B1 tends to be large. Using the 
test statistic B1, one can test the null hypothesis of the 
random allocation of high-risk areas over the geographi-
cal region; that is, high-risk areas do not cluster. Cliff and 
Ord derived the expressions for the mean and variance 
of B1 under the assumptions of binomial and hypergeo-
metric distributions [14]. We note that lower p values of 
B1 indicate high degrees of clustering or tight clustering, 
which conform to the adjacency-based definition of a 
cluster rather than being interpreted in the usual sense in 
this context.

Instead of selecting a specific threshold rate of inci-
dence, the procedure proposes to first list the areas under 
study in rank order based on the disease intensity rates. It 
starts with classifying the 2 top ranking areas as high-risk 
areas and calculates the value of B1. The procedure pro-
ceeds, letting the threshold rate of incidence vary down-
wards continuously, in which case it includes exactly one 
area with high rate at one time, up to an upper limit, 
such that at most we include, say, 25% of the total areas 
under study. Thus, the procedure subsequently includes 
the area with the 3rd highest rate and the other 2 areas 
with higher rates as high-risk areas and calculates the 
corresponding value of B1. The p value is the probability 
that B1 is equal to or higher than the observed number 
of adjacencies involved between these 3 areas with the 
highest disease intensity rates. Therefore, the procedure 
provides the p value of B1 when the k top ranking areas 
among all areas under study are classified as high-risk 
areas for each k where k = 2, 3, 4….. The main feature of 
the procedure is to determine the hierarchical incidence 
intensity pattern through the distribution of p values of 
B1 for k = 2, 3, 4…., which is illustrated in an application 
to the SIDS data in North Carolina in 1974–1978 [7]. Fig-
ure 1a presents the county-specific SIDS incidence inten-
sity map in this period.

Instead of relying on the assumptions associated with 
the asymptotically normal distribution [14] or using 
Monte Carlo method [7], we propose to use simulation-
based permutations using 1 million replicates based on 
the exact county boundary map, defined by ω1, to obtain 
the null distribution of B1. The basic geographic unit used 
in this report is a county. The distribution was simulated 
by randomly selecting exactly k counties among the 100 
counties of North Carolina 1 million times and counting 
the number of the adjacent pairs appearing among the k 
counties for each of the 1 million replicates. The informa-
tion on sharing common boundaries among North Caro-
lina counties that we use here is available in the literature 
[5]. This process was applied for k = 2, 3, 4… 25. Each of 

the 24 distributions of B1 for k = 2, 3, 4… 25 is given in 
Table  1. We also used simulation-based permutations 
using 1 million replicates based on the exact district 
boundary map under study to obtain the null distribution 
of B1 in a study of dengue fever in Taiwan previously [10].

Hierarchical clusters of neighboring low‑risk areas
In the existing map-based pattern recognition proce-
dure, k indicates the number of top ranking counties of 
North Carolina with the higher intensity rates, classified 
as high-risk counties. While focusing on geographical 
disease clusters of incidence paucity, we propose to use 
k to indicate the number of top ranking counties with 
the lower intensity rates, classified as low-risk counties. 
Using the pattern recognition procedure, we can deter-
mine the hierarchical (in intensity) spatial clusters of 
incidence paucity correspondingly.

Methods with adjustment of covariates
We propose to adjust for the effects of confounding vari-
ables by enumerating expected incidence (or number) of 
disease in each county through indirect standardization, 
conditioning on the total number of disease observed. 
We define a measure to be the expected number of 
patients with disease of interest in a spatial unit of the 
study region, a county of North Carolina in this applica-
tion, with μ(Ai) = expected number of patients in county 
Ai. Assuming that the incidence for sub-population j 
equals Ej in the entire study region and the size of sub-
population j in county Ai is aij, the expected incidence in 
county Ai is equal to the summation of the products of Ej 
and aij, across all j, μ(Ai) = 

∑
jaijEj . This indirectly covar-

iate-adjusted expected incidence for a county permits us 
to incorporate covariates with no need of information on 
covariate-specific numbers of incidence in every county. 
With the use of indirect standardization, the generaliza-
tion to multiple covariates, adjusted for multiple con-
founding variables, is immediate.

The overall incidence rates for the state of North Caro-
lina by race were 1.192 for white children and 3.797 for 
non-white children per 1000 live births in 1974–1978. 
With the information on the white and non-white 
numbers of live births for each of the 100 North Caro-
lina counties [4], an expression of the race-adjusted 
expected incidence in county Ai is μ(Ai) = 1.192 × white 
births + 3.797 × non-white births, which is proportional 
to the expected number of SIDS.

We propose two models for assessing the discrepancy 
between the observed incidence and the county-spe-
cific expected covariate-adjusted incidence: the stand-
ardized morbidity ratio (SMR) and a Poisson model. 
The SMR, the ratio of the observed number of inci-
dence to the expected number of incidence, provides a 
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direct quantitative measure of the overall discrepancies 
between the observed incidence and expected covari-
ate-adjusted incidence per county.

Alternatively, we propose a Poisson probability model 
for assessing the probability of the deviation of a par-
ticular frequency to be attributed to sampling fluctua-
tions. We propose to adjust for covariates under the 
assumption of Poisson random variables, which provide 
a crude way to account for the unequal variances of the 
county rates. The rank order is based on the probabil-
ity associated with the assessment of the discrepancy 
between the observed incidence and county-specific 
expected covariate-adjusted incidence in a county. The 
Poisson distributional assumptions were previously 
employed by several investigators in studies of SIDS 
data [5, 6, 8, 9]. The existing literature generally assume 
a batch of independently and identically distributed 
Poisson random variables for distinct counties with the 
null hypothesis of homogeneity of state-wide incidence 
[5, 6, 9]. In this report, we assume county-specific Pois-
son probability models whose mean depends on the 
expected covariate-adjusted incidence for each county.

Using the same expression of the race-adjusted 
expected incidence μ(Ai) for county Ai, we calculate the 
probability of departure from expected race-adjusted 
incidence for each county, based on the assumption of 
Poisson distribution. It is defined as follows, Ni = the 
number of incidence in county Ai,

A small value of this probability Di indicates that the 
SIDS incidence at county Ai is unusually high beyond 
the effect of race, if the observed incidence large than 
expected race-adjusted incidence, or that the SIDS inci-
dence at county Ai is unusually low beyond the effect 
of race, if the observed incidence smaller than expected 
race-adjusted incidence.

The step-by-step guidelines for the use of the pro-
posed SMR models are:

1.	 Compute covariate-adjusted expected incidence for 
each area under study.

2.	 List the areas with the highest (lowest) rates of SMR 
in rank order, up to an upper limit, say, 25 percent of 
the total areas under study.

3.	 Like the ordinary map-based pattern recognition 
procedure, start with classifying the 2 top ranking 

Di =
∑

k≥Ni

exp(−µ(Ai))µ(Ai)
k/k! forNi ≥ µ(Ai);

Di =
∑

k≤Ni

exp(−µ(Ai))µ(Ai)
k/k! for Ni ≤ µ(Ai).

areas as high-risk (low-risk) areas and calculate the 
value of B1.

4.	 Proceed successively, including exactly one area with 
the high (low) rate of SMR next according to the rank 
order and the other areas with higher (lower) rates as 
high-risk (low-risk) areas at each step with the use of 
B1.

5.	 Determine the areas with the lowest p values of B1 
relative to surrounding p values in the ranking.

6.	 The hierarchical characterization is constructed, 
based on the use of the inclusion points of these 
areas determined in the previous step.

The step-by-step guidelines for the use of the pro-
posed Poisson models are:

1.	 Compute covariate-adjusted expected incidence for 
each area under study.

2.	 Calculate the probability of departure from expected 
covariate-adjusted incidence for each area based on 
the assumption of Poisson distribution.

3.	 List the areas with the smallest probabilities in rank 
order and the observed incidence larger (smaller) 
than expected incidence, up to an upper limit, say, 25 
percent of the total areas under study.

4.	 Like the ordinary map-based pattern recognition 
procedure, start with classifying the 2 top ranking 
areas as high-risk (low-risk) areas and calculate the 
value of B1.

5.	 Proceed successively, including exactly one area with 
the small probability of Poisson distribution next 
according to the rank order and the other areas with 
smaller probabilities and the observed incidence 
larger (smaller) than expected incidence as high-risk 
(low-risk) areas at each step with the use of B1.

6.	 Determine the areas with the lowest p values of B1 
relative to surrounding p values in the ranking.

7.	 The hierarchical characterization is constructed, 
based on the use of the inclusion points of these 
areas determined in the previous step.

Results
In this section, we first present the analysis of high-risk 
areas and low-risk areas close within geographic prox-
imity without adjustment of race, respectively. Sec-
ondly, we present the analysis with adjustment of race, 
using the proposed SMR model and Poisson model. 
Thirdly, in addition to an adjacency-based definition 
of geographical proximity, we consider and present the 
analysis based on the use of a distance-based neighbor-
hood system.
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Analysis without adjustment for race
We first repeated the analysis, which was previously per-
formed [7]. We present the cluster statistics for 25 coun-
ties with the higher rates in Table  2. Our results were 
slightly different from those presented in Table 3 of their 
article: (1) the test statistic B1 in Table 2 was smaller than 
the corresponding one in Table 3 by 1 between Warren 
(12th in rank) and Lenoir (20th in rank) because the rec-
ognition of sharing common boundaries among North 
Carolina counties was different in certain counties by the 
authors; (2) the p values of B1 in Table 2 were obtained by 
the simulation-based permutations using 1 million repli-
cates shown in Table 1, rather than by the 2000 replicates 
of the Monte Carlo method in their article.

The largest downward peaks in p values relative to sur-
rounding p values occurred at the inclusion points of 
Bertie (8th in rank), Robeson (14th in rank), Pender (18th 
in rank), and Wayne (24th in rank) counties, shown in the 
p value1 column of Table 2. Robeson and Pender are close 
in location and on the rank scale. So the construction 
of the hierarchical characterization used the downward 

peaks at inclusion points of Bertie, Pender, and Wayne 
counties. Correspondingly, we determined the 3 groups 
of counties to use in constructing hierarchical clusters of 
mutually neighboring high-risk counties with 3 different 
levels of intensity. Level-H1 counties are the 8 top rank-
ing counties; Level-H2, 10 counties ranking from 9 to 18; 
Level-H3, 6 counties ranking from 19 to 24. The overall 
incidence of the 8 Level-H1, 10 Level-H2, and 6 Level-H3 
counties combined are 5.57, 3.95, and 2.79 per 1000 live 
births, respectively.

When the level-specific intensity is placed on the map, 
3 hierarchical intensity clusters of high SIDS emerge and 
are respectively located in the northeast (6 counties: 5 
Level-H1 and 1 Level-H2 counties) with incidence of 
4.98, the south (6 counties: 1 Level-H1 and 5 Level-H2 
counties) with incidence of 4.06, and the mid-east (6 
counties: 1 Level-H1 and 5 Level-H3 counties) with inci-
dence of 3.09 per 1000 live births, as shown in Fig.  1b. 
This hierarchical characterization is identical to the one 
in the previous study [7].

Table 2  Cluster statistics for counties with the higher rates

Rank order County Rate B1 P value1 Risk level B2 P value2

1 Anson 9.55 – H1 –

2 Northampton 6.33 0 1 H1 0 1

3 Washington 5.05 0 1 H1 0 9.97×10
−1

4 Halifax 4.99 1 2.68×10
−1 H1 1 2.20×10

−1

5 Hertford 4.82 2 7.27×10
−2 H1 2 4.87×10

−2

6 Hoke 4.69 2 1.53×10
−1 H1 2 1.06×10

−1

7 Greene 4.60 2 2.65×10
−1 H1 2 1.89×10

−1

8 Bertie 4.53 6 3.21×10
−3 H1 4 2.34×10

−2

9 Bladen 4.49 6 9.06×10
−3 H2 4 4.99×10

−2

10 Columbus 4.48 7 7.43×10
−3 H2 5 3.06×10

−2

11 Swain 4.44 7 1.85×10
−2 H2 5 6.13×10

−2

12 Warren 4.13 8 1.61×10
−2 H2 5 1.11×10

−1

13 Rutherford 4.01 8 3.63×10
−2 H2 5 1.85×10

−1

14 Robeson 3.93 11 5.73×10
−3 H2 8 2.62×10

−2

15 Lincoln 3.61 11 1.43×10
−2 H2 8 5.25×10

−2

16 Rockingham 3.60 11 3.27×10
−2 H2 8 9.45×10

−2

17 Scotland 3.55 13 1.61×10
−2 H2 9 8.30×10

−2

18 Pender 3.26 15 8.43×10
−3 H2 9 1.42×10

−1

19 Wilson 2.97 16 9.73×10
−3 H3 10 1.30×10

−1

20 Lenoir 2.79 17 1.15×10
−2 H3 11 1.22×10

−1

21 Alamance 2.78 18 1.42×10
−2 H3 11 1.97×10

−1

22 Pitt 2.75 21 4.54×10
−3 H3 13 1.16×10

−1

23 Edgecombe 2.73 24 1.52×10
−3 H3 16 3.80×10

−2

24 Wayne 2.71 27 4.92×10
−4 H3 19 1.19×10

−2

25 Madison 2.61 27 1.59×10
−3 19 2.47×10

−2
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Previously, k indicates the number of top ranking 
counties of North Carolina with the higher intensity 
rates, classified as high-risk counties, given in Table 2. 
While focusing on geographical disease clusters of 
incidence paucity, k indicates the number of top rank-
ing counties with the lower intensity rates, classified as 
low-risk counties. The 25 counties with the lowest rates 
were listed by rank according to their rates in Table 3. 
There were 13 counties with 0 SIDS but different num-
bers of live births. Because the larger the population 
base for the rate, the more stable and reliable the rate 
will be, we discriminated between these 13 counties 
according to the numbers of live births: the ones with 
larger numbers of live births were considered higher in 
ranking. The original test statistic B1 = (1/2) Σ ω1

ij xi 
xj was revised to be where xi = 1 if area i is a low-risk 
county for disease and 0 otherwise, and where ω1

ij = 1 
if counties i and j are mutually adjacent geographically 
and 0 otherwise, ω1

ij = ω1
ji, ω1

ii = 0. It is noted that, 
with each k, the test statistic B1 in Table 3 was smaller 
than the corresponding one in Table 2, indicating that 

the high-risk counties show higher degrees of cluster-
ing geographically than the low-risk counties.

Similarly, the method starts with classifying the 2 top 
ranking counties as low-risk counties and calculates the 
value of B1. We proceed successively, including exactly 
one county with the low rate next according to the rank 
order and the other counties with lower rates as low-risk 
counties at each step with the use of B1. We observed the 
large downward peaks in p values relative to surrounding 
p values at including Tyrrell (88th in rank), Ashe (79th in 
rank), and Iredell (77th in rank) counties, shown in the 
p value1 column of Table  3. Ashe and Iredell are close 
on the rank scale. So the hierarchical characterization 
was determined using the downward peaks at inclusion 
points of Tyrrell and Iredell counties.

The use of the lowest p values at various counties in 
the rankings means to capture the groups of counties 
with highly tight clustering. The hierarchical (in inten-
sity) spatial clusters of incidence paucity were optimally 
determined by using the inclusion points of Tyrrell and 
Iredell counties. We, therefore, determined the 2 groups 

Table 3  Cluster statistics for counties with the lower rates

Rank order County Rate New birth B1 P value1 Risk level B2 P value2

100 Alexander 0 1333 – L1 –

99 Macon 0 797 0 1 L1 0 1

98 Avery 0 781 0 1 L1 0 1

97 Yancey 0 770 0 1 L1 1 2.20×10
−1

96 Mitchell 0 671 2 7.27×10
−2 L1 3 7.62×10

−3

95 Dare 0 521 2 1.53×10
−1 L1 3 2.04×10

−2

94 Alleghany 0 487 2 2.65×10
−1 L1 3 4.57×10

−2

93 Gates 0 420 2 4.00×10
−1 L1 3 9.06×10

−2

92 Graham 0 415 3 2.49×10
−1 L1 4 4.99×10

−2

91 Hyde 0 338 4 1.70×10
−1 L1 4 9.47×10

−2

90 Camden 0 286 5 1.26×10
−1 L1 4 1.62×10

−1

89 Clay 0 284 6 9.92×10
−2 L1 6 4.31×10

−2

88 Tyrrell 0 248 7 8.36×10
−2 L1 7 3.31×10

−2

87 Stokes 0.62 1612 7 1.52×10
−1 L2 7 6.33×10

−2

86 Rowan 0.65 4606 7 2.50×10
−1 L2 7 1.14×10

−1

85 Cabarrus 0.73 4099 7 3.75×10
−1 L2 8 9.45×10

−2

84 Watauga 0.76 1323 8 3.49×10
−1 L2 10 4.00×10

−2

83 Yadkin 0.79 1269 8 4.86×10
−1 L2 10 7.46×10

−2

82 Davie 0.83 1207 10 3.27×10
−1 L2 12 3.53×10

−2

81 Forsyth 0.84 11,858 13 1.34×10
−1 L2 15 8.03×10

−3

80 Catawba 0.87 5754 14 1.43×10
−1 L2 16 8.58×10

−3

79 Ashe 0.92 1091 16 9.69×10
−2 L2 18 4.53×10

−3

78 Haywood 0.95 2110 16 1.72×10
−1 L2 18 1.03×10

−2

77 Iredell 0.97 4139 21 2.74×10
−2 L2 23 6.70×10

−4

76 Union 1.02 3915 22 3.45×10
−2 24 8.03×10

−4
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of counties to use in constructing hierarchical clusters of 
mutually neighboring low-risk counties with 2 different 
levels of intensity. Level-L1 counties are the 13 top rank-
ing counties with 0 SIDS; Level-L2, 11 counties ranking 
from 87 to 77. The overall incidence of the 13 Level-L1 
and 11 Level-L2 counties combined are 0 and 0.81 per 
1000 live births, respectively. The 3 hierarchical low-
intensity clusters appear respectively in the northwest-
ern region (6 counties: 4 Level-L1 and 2 Level-L2) with 
incidence of 0.28, the mid-western region (9 counties: 1 
Level-L1 and 8 Level-L2) with incidence of 0.70, and the 
eastern coastal region (3 counties: 3 Level-L1) with inci-
dence of 0 per 1000 live births. Figure  1b presents the 
county-specific SIDS incidence intensity-level map.

Standardized morbidity ratio with adjustment for race
Table 4 presents the rank order and cluster statistics for 
25 counties with the highest rates of SMR. The test sta-
tistic B1 in Table  4 was smaller than the B1 in Table  2 
for each on rank order, suggesting that the counties with 
the higher SMR appear relatively disperse, compared 
with the counties with the higher raw incidence rates. 

Figure  2a presents the county-specific SMR-adjusted 
intensity map.

Previously detected geographical high-intensity clus-
ters in the northeast and south appeared less intensive in 
terms of rank order and smaller in size, after adjusting for 
race. It indicates that the high percentage of non-white 
births alone is not sufficient to explain the excess of SIDS 
risk thoroughly in the northeastern and southern regions. 
In addition, the previous cluster in the mid-east disap-
peared after adjusting for race. On the other side, a small 
area, which was hidden previously, emerged in the south-
west, comprising Rutherford (2nd in rank), McDowell 
(10th in rank), Transylvania (12th in rank), and Hender-
son (21st in rank) counties. The raw incidence and SMR 
of these 4 counties combined are 2.88 per 1000 live births 
and 1.977, respectively. It indicates that an excess of SIDS 
risk is observed in this region, after adjusting for race. 
The p values of B1 for the 25 top ranking counties do not 
appear cyclic over the rates, and no hierarchy in high 
SMR-adjusted intensity would be recognized.

In the investigation of the geographical disease 
clustering pattern of low SMR-adjusted intensity, we 

Table 4  Cluster statistics for counties with the higher SMR

Rank order County SMR SIDS E(SIDS) B1 P value1 B2 P value2

1 Anson 3.45 15 4.35 – –

2 Rutherford 2.47 12 4.86 0 1 0 1

3 Lincoln 2.33 8 3.43 0 1 0 1

4 Madison 2.16 2 0.92 0 1 0 1

5 Northampton 2.01 9 4.47 0 1 0 1

6 Washington 1.97 5 2.54 0 1 0 1

7 Swain 1.95 3 1.54 0 1 0 1

8 Columbus 1.94 15 7.72 0 1 0 1

9 Bladen 1.88 8 4.26 1 8.61×10
−1 1 7.89×10

−1

10 McDowell 1.874 5 2.67 2 6.73×10
−1 2 5.42×10

−1

11 Rockingham 1.873 16 8.54 2 7.83×10
−1 2 6.59×10

−1

12 Transylvania 1.83 3 1.64 2 8.67×10
−1 2 7.60×10

−1

13 Halifax 1.72 18 10.46 3 7.67×10
−1 3 6.10×10

−1

14 Hertford 1.66 7 4.22 4 6.78×10
−1 4 4.88×10

−1

15 Greene 1.65 4 2.43 4 7.90×10
−1 4 6.10×10

−1

16 Hoke 1.61 7 4.35 4 8.75×10
−1 4 7.22×10

−1

17 Cherokee 1.53 2 1.31 5 8.33×10
−1 4 8.14×10

−1

18 Onslow 1.52 29 19.08 5 9.05×10
−1 4 8.84×10

−1

19 Bertie 1.51 6 3.98 9 4.70×10
−1 6 6.91×10

−1

20 Alamance 1.48 13 8.81 10 4.64×10
−1 6 7.92×10

−1

21 Henderson 1.44 5 3.48 12 3.34×10
−1 8 6.06×10

−1

22 Scotland 1.37 8 5.83 13 3.45×10
−1 9 5.76×10

−1

23 Pender 1.34 4 2.97 16 1.72×10
−1 9 6.95×10

−1

24 Carteret 1.328 5 3.766 17 1.91×10
−1 9 7.96×10

−1

25 Stanly 1.325 5 3.772 18 2.13×10
−1 10 7.82×10

−1
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present the rank order and cluster statistics for 25 
counties with the lowest SMR in Table 5. The discrimi-
nation between the 13 counties with 0 SIDS was based 
on the race-adjusted expected numbers of SIDS. The 
larger the covariate-adjusted expected incidence, the 
higher in rank order the county will be. The large down-
ward peaks in p values relative to surrounding p values 
occurred at including Clay (88th in rank) and Davie 
(79th in rank) counties, shown in the p value1 col-
umn of Table 5. We, thus, determined the 2 groups of 
counties to use in constructing hierarchical clusters of 
mutually neighboring race-adjusted low-risk counties 
beyond the effect of race: Level-LS1 counties for the 13 
top ranking counties with 0 SIDS; Level-LS2 for the 9 
counties ranking from 87 to 79, as shown in Fig. 3b. The 
geographical disease clustering pattern of low SMR-
adjusted intensity, shown in Fig. 2a, b, does not appear 
very different from the geographical clustering pattern 
of low incidence intensity without adjustment, shown 
in Fig.  1a, b. One major reason was that the 13 coun-
ties with 0 SIDS were among the 13 top ranking coun-
ties in both settings. The use of SMR does not seem to 

effectively discriminate between the 13 counties with 0 
SIDS.

Poisson‑model with adjustment for race
We list the counties in rank order based on Di and pre-
sent the cluster statistics for 25 top ranking counties 
with the smallest Di and Ni ≥ μ(Ai) in Table 6. The 10 top 
ranking counties in Table 6 had significantly higher inci-
dence than the expected race-adjusted incidence each at 
a nominal significance level of 0.05 under the assumption 
of Poisson distribution, suggesting that the departure 
from expected race-adjusted incidence for each of these 
10 counties is too large to be attributed to chance alone. 
All but 2 top ranking counties in Table 6 also appear on 
the list of the 25 top ranking counties with the high-
est SMR in Table  4, except Robeson (18th in rank) and 
Wayne (24th in rank) in Table 6 vs. Pender (23rd in rank) 
and Stanly (25th in rank) in Table  4. So the geographi-
cal race-adjusted high-intensity clustering patterns, 
characterized by the Poisson model and SMR, are simi-
lar, shown in Figs. 2a and 3a. The smaller the value of Di 
with Ni ≥ μ(Ai), the darker in red the county is, shown in 

SMR
2.5

0

1.5

1

0.5
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b

Fig. 2  a County-specific SMR adjusted-for-race SIDS intensity map in North Carolina. b County-Specific SMR adjusted-for-race SIDS intensity-level 
map in North Carolina
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Fig. 3a. The conclusion based on the Poisson model was 
similar to the one based on the higher SMR rates. The 
p values of B1 for these 25 top ranking counties do not 
appear cyclic. No hierarchy in high race-adjusted inten-
sity would be recognized beyond the effect of race by the 
Poisson model.

While the geographical race-adjusted low-intensity 
clustering pattern based on the Poisson model appears 
very different from the one based on the low SMR rates. 
The smaller the value of Di with Ni ≤ μ(Ai), the darker in 
blue the county is, shown in Fig.  3a. There were only 3 
counties (Alexander, Gates, and Macon) with 0 SIDS 
among the 25 top ranking counties with the smallest Di 
and Ni ≤ μ(Ai) in Table 7. Although only the 4 top rank-
ing counties had significantly lower incidence than the 
race-adjusted expected incidence each at a nominal sig-
nificance level of 0.05, it remained meaningful and useful 
to search for and determine regions of several (or many) 
mutually adjacent counties with the low race-adjusted 
rates geographically, beyond the effect of race. Regions 
of similar low incidence may reveal information on the 

presence of protective factors or the absence of risk fac-
tors associated with SIDS.

The large downward peaks in p values of B1 relative 
to surrounding p values occurred at including Alexan-
der (92nd in rank), Stokes (80th in rank), and Johnson 
(77th in rank) counties, shown in the p value1 column of 
Table 7. We determined the 3 groups of counties to use in 
constructing hierarchical clusters of mutually neighbor-
ing race-adjusted low-risk counties with 3 different levels 
of intensity, after adjusting for the effect of race. Level-
LP1 counties are the 9 top ranking counties (92nd–100th 
in rank); Level-LP2, 12 counties ranking from 80 to 91; 
Level-LP3, 3 counties ranking from 77 to 79. The raw 
incidence of the 9 Level-LP1, 12 Level-LP2, and 3 Level-
LP3 counties are 0.85, 1.24, and1.65 per 1000 live births, 
respectively. The 3 hierarchical race-adjusted low-inten-
sity clusters appear in the north (3 counties: 2 Level-LP1 
and 1 Level-LP2) with raw incidence of 0.96, the mid-
west (6 Level-LP1 counties) with raw incidence of 0.71, 
and the mid-east (10 counties: 1 Level-LP1, 6 Level-LP2, 
and 3 Level-LP3) with raw incidence of 1.40 per 1000 live 

Table 5  Cluster statistics for counties with the lower SMR

Rank order County SMR SIDS E(SIDS) Live birth B1 P value1 Risk level B2 P value2

100 Alexander 0 0 1.92 1333 - LS1 -

99 Gates 0 0 1.16 420 0 1 LS1 0 1

98 Macon 0 0 0.97 797 0 1 LS1 0 1

97 Yancey 0 0 0.95 770 0 1 LS1 0 1

96 Avery 0 0 0.94 781 0 1 LS1 1 3.41×10
−1

95 Mitchell 0 0 0.80 671 2 1.53×10
−1 LS1 3 2.04×10

−2

94 Hyde 0 0 0.75 338 2 2.65×10
−1 LS1 3 4.57×10

−2

93 Dare 0 0 0.73 521 3 1.47×10
−1 LS1 3 9.06×10

−2

92 Camden 0 0 0.64 286 4 9.29×10
−2 LS1 3 1.59×10

−1

91 Alleghany 0 0 0.61 487 4 1.70×10
−1 LS1 3 2.53×10

−1

90 Graham 0 0 0.599 415 5 1.26×10
−1 LS1 4 1.62×10

−1

89 Tyrrell 0 0 0.598 248 6 9.92×10
−2 LS1 5 1.11×10

−1

88 Clay 0 0 0.34 284 7 8.36×10
−2 LS1 7 3.31×10

−2

87 Rowan 0.36 3 8.24 4606 7 1.52×10
−1 LS2 7 6.33×10

−2

86 Forsyth 0.41 10 24.34 11,858 7 2.50×10
−1 LS2 7 1.14×10

−1

85 Cabarrus 0.42 3 7.12 4099 8 2.30×10
−1 LS2 8 9.45×10

−2

84 Stokes 0.43 1 2.34 1612 9 2.17×10
−1 LS2 9 8.30×10

−2

83 Martin 0.48 2 4.15 1549 9 3.34×10
−1 LS2 9 1.42×10

−1

82 Iredell 0.51 4 7.91 4139 12 1.28×10
−1 LS2 11 6.99×10

−2

81 Chowan 0.539 1 1.85 751 13 1.34×10
−1 LS2 14 1.70×10

−2

80 Union 0.543 4 7.36 3915 14 1.43×10
−1 LS2 15 1.78×10

−2

79 Davie 0.548 1 1.82 1207 17 5.72×10
−2 LS2 18 4.53×10

−3

78 Sampson 0.552 4 7.24 3025 17 1.10×10
−1 18 1.03×10

−2

77 Wake 0.557 16 28.72 14,484 17 1.91×10
−1 18 2.24×10

−2

76 Franklin 0.558 2 3.58 1399 18 2.13×10
−1 19 2.47×10

−2
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births. Figure 3b presents this county-specific intensity-
level map, by the Poisson model.

Our analysis showed that the difference in racial distri-
bution of live births across North Carolina explained, to a 
large extent, the 3 previously identified hierarchical high-
intensity clusters in the northeast, south, and mid-east, 
shown in Fig. 1a, b. None p value of B1 for all k was sta-
tistically significant at a nominal significance level of 0.05 
in the testing for the presence of clustering of the coun-
ties with the higher race-adjusted incidence intensity, 
characterized by both the models. It was because these 
25 top ranking counties with the highest adjusted inten-
sity rates in the settings of either models were allocated 
sequentially and alternatively across the 3 relatively high 
adjusted-intensity regions in the northeast, south, and 
southwest, shown in Figs. 2a and 3a. It indicates that the 
counties with the higher race-adjusted rates did not show 
high degree of clustering geographically. No hierarchy in 
high race-adjusted intensity would be recognized.

Intriguingly, a small region of 4 mutually adjacent 
counties with the higher race-adjusted rates, which 
was hidden previously, emerged in the southwest. The 

combined raw incidence and SMR of this region are 2.88 
per 1000 live births and 1.977, respectively. The com-
bined SMR of 1.977 in this small region was higher than 
the 95 of the 100 counties, shown in Table 4. Unobserved 
spatially related risk factors may cause the elevated risk 
in this region.

In contrast, the Poisson model appeared more appro-
priate than the model based on SMR in the study of geo-
graphical race-adjusted low-intensity clustering patterns, 
particularly at facilitating discrimination between the 13 
counties with 0 SIDS but different numbers of live births. 
In the comparison of Fig.  1a, b with Fig.  3a, b, uneven 
distribution of the race-specific live births substantially 
changed the geographical race-adjusted low-intensity 
clustering patterns, too. The previously detected geo-
graphical low-intensity clusters in the northwest and 
the eastern coast disappeared, indicating that high per-
centage of white births alone was sufficient to explain 
the excess of SIDS risk in these 2 regions. The previ-
ously detected geographical low-intensity cluster in the 
mid-west remained, but divided into 2 smaller distinct 
geographical clusters. A large geographical cluster of 10 

0.377

0.2

0

0.71

O>E O<E

0.4

0
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b

Fig. 3  a County-specific Poisson adjusted-for-race SIDS intensity map in North Carolina. b County-specific Poisson adjusted-for-race SIDS 
intensity-level map in North Carolina
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mutually adjacent counties with the low race-adjusted 
rates, which was hidden previously, emerged in the mid-
east. It suggests that unidentified spatially related protec-
tive factors could explain the unusually low-risk clusters 
in the mid-west and the mid-east. A summary of hierar-
chical cluster analysis based on different models is pre-
sented in Table 8.

Analysis with different neighborhood systems
The definition of neighborhood systems may govern the 
analysis outcomes. Because of the irregularity in shape, 
contour, size, and location among distinct areas under 
study, special spatial configurations of certain sam-
pled areas may be intuitively clustering, but not all of 
which are actually adjacent geographically. Due to the 
inherent irregular nature of most spatial data, we con-
sider two distinct neighborhood systems for the North 
Carolina counties in illustrating the spatial statistical 
models that we propose in this report. In addition to 
the one based on geographical adjacency that we have 
used previously, we extended the proposed methods by 

using a distance-based neighborhood system, in which 
the neighbor of counties is defined with being within 30 
miles between the seats of the 2 counties in this appli-
cation. The neighborhood information based on this 
criterion is available in the existing literature [4].

We propose the use of a distance-based definition of 
neighbors as follows: within 30 miles between the seats 
of the 2 counties, denoted by ω2, in this application. We 
carried out the analysis with the test statistic B2 = (1/2) 
Σ ω2

ij xi xj, where xi = 1 if county i is a high-risk (or 
low-risk) county for some disease and 0 otherwise, and 
where ω2

ij = 1 if counties i and j whose seats are closer 
less than 30 miles and 0 otherwise, ω2

ij = ω2
ji, ω2

ii = 0. 
The sum ranges over all pairs of counties. Again, we 
used simulation-based permutations using 1 million 
replicates based on ω2 and obtained the null distribu-
tion of B2. Each of the 24 distributions of B2 for k = 2, 
3, 4… 25 is given in Additional file 1. Table S1. The val-
ues of the test statistic B2 and the associated p value, 
denoted by p value2, are presented on the right panel of 
Tables 2, 3, 4, 5, 6 and7.

Table 6  Cluster statistics for counties with the smaller poisson probability for Ni ≥ μ(Ai) 

Rank order County SMR SIDS E(SIDS) Poisson B1 P value1 B2 P value2

1 Anson 3.45 15 4.35 1.36×10
−5 – –

2 Rutherford 2.47 12 4.86 1.57×10
−3 0 1 0 1

3 Columbus 1.94 15 7.72 6.00×10
−3 0 1 0 1

4 Rockingham 1.87 16 8.54 6.92×10
−3 0 1 0 1

5 Lincoln 2.33 8 3.43 8.72×10
−3 0 1 0 1

6 Halifax 1.72 18 10.46 1.11×10
−2 0 1 0 1

7 Onslow 1.52 29 19.08 1.24×10
−2 0 1 0 1

8 Northampton 2.01 9 4.47 1.64×10
−2 1 7.81×10

−1 1 6.98×10
−1

9 Bladen 1.88 8 4.26 3.00×10
−2 2 5.40×10

−1 2 4.17×10
−1

10 Washington 1.97 5 2.54 4.46×10
−2 2 6.73×10

−1 2 5.42×10
−1

11 McDowell 1.87 5 2.67 5.43×10
−2 3 5.16×10

−1 3 3.65×10
−1

12 Alamance 1.48 13 8.81 6.45×10
−2 4 4.05×10

−1 3 4.88×10
−1

13 Hertford 1.66 7 4.22 6.50×10
−2 5 3.32×10

−1 4 3.65×10
−1

14 Madison 2.16 2 0.92 6.70×10
−2 5 4.67×10

−1 4 4.88×10
−1

15 Swain 1.95 3 1.54 7.03×10
−2 5 6.05×10

−1 4 6.10×10
−1

16 Hoke 1.61 7 4.35 7.49×10
−2 5 7.32×10

−1 4 7.22×10
−1

17 Transylvania 1.83 3 1.64 8.41×10
−2 5 8.33×10

−1 4 8.14×10
−1

18 Robeson 1.25 31 24.78 9.23×10
−2 8 4.86×10

−1 7 3.96×10
−1

19 Greene 1.65 4 2.43 9.94×10
−2 8 6.25×10

−1 7 5.21×10
−1

20 Bertie 1.51 6 3.98 1.08×10
−1 12 2.17×10

−1 9 3.29×10
−1

21 Scotland 1.37 8 5.83 1.36×10
−1 14 1.43×10

−1 11 1.97×10
−1

22 Henderson 1.44 5 3.48 1.40×10
−1 16 9.69×10

−2 13 1.16×10
−1

23 Cherokee 1.53 2 1.31 1.45×10
−1 17 1.10×10

−1 13 1.89×10
−1

24 Wayne 1.23 18 14.67 1.58×10
−1 18 1.26×10

−1 14 1.90×10
−1

25 Carteret 1.33 5 3.77 1.79×10
−1 19 1.44×10

−1 14 2.89×10
−1



Page 16 of 18Wu and Shete ﻿Int J Health Geogr           (2020) 19:37 

The geographical incidence intensity clustering pat-
terns characterized by B2 and p value2 were generally in 
close agreement with those by B1 and p value1 with and 

without the adjustment for race. It is not surprising in 
this particular application as the neighborhood system, 
defined using the 30-mile criterion, corresponds nearly 

Table 7  Cluster statistics for counties with the smaller poisson probability for Ni ≤ μ(Ai) 

Rank order County SMR SIDS E(SIDS) Poisson B1 P value1 Risk level B2 P value2

100 Forsyth 0.41 10 24.34 8.80×10
−4 – LP1 –

99 Wake 0.56 16 28.72 7.23×10
−3 0 1 LP1 0 1

98 Guilford 0.69 23 33.57 3.53×10
−2 1 1.43×10

−1 LP1 1 1.16×10
−1

97 Rowan 0.36 3 8.24 3.59×10
−2 1 2.68×10

−1 LP1 1 2.20×10
−1

96 Cabarrus 0.42 3 7.12 7.59×10
−2 2 7.27×10

−2 LP1 2 4.87×10
−2

95 Iredell 0.51 4 7.91 1.05×10
−1 4 6.70×10

−3 LP1 3 2.04×10
−2

94 Catawba 0.56 5 8.92 1.21×10
−1 5 4.36×10

−3 LP1 4 9.59×10
−3

93 Union 0.54 4 7.36 1.43×10
−1 6 3.21×10

−3 LP1 5 5.45×10
−3

92 Alexander 0.00 0 1.92 1.46×10
−1 8 6.85×10

−4 LP1 7 8.79×10
−4

91 Sampson 0.55 4 7.24 1.52×10
−1 8 2.25×10

−3 LP2 7 2.52×10
−3

90 Gaston 0.75 11 14.71 2.05×10
−1 8 6.44×10

−3 LP2 8 1.98×10
−3

89 Martin 0.48 2 4.15 2.17×10
−1 8 1.61×10

−2 LP2 8 5.24×10
−3

88 Cumberland 0.89 38 42.62 2.69×10
−1 9 1.46×10

−2 LP2 9 4.46×10
−3

87 Durham 0.83 16 19.22 2.75×10
−1 10 1.40×10

−2 LP2 10 3.80×10
−3

86 Richmond 0.67 4 6.00 2.85×10
−1 10 3.25×10

−2 LP2 10 8.98×10
−3

85 Buncombe 0.79 9 11.38 3.01×10
−1 10 6.75×10

−2 LP2 10 1.94×10
−2

84 Franklin 0.56 2 3.58 3.05×10
−1 11 6.68×10

−2 LP2 11 1.80×10
−2

83 Gates 0.00 0 1.16 3.13×10
−1 11 1.25×10

−1 LP2 11 3.68×10
−2

82 Orange 0.69 4 5.79 3.14×10
−1 12 1.28×10

−1 LP2 12 3.53×10
−2

81 Chatham 0.57 2 3.50 3.21×10
−1 15 4.36×10

−2 LP2 15 8.03×10
−3

80 Stokes 0.43 1 2.34 3.22×10
−1 17 2.70×10

−2 LP2 16 8.58×10
−3

79 Duplin 0.70 4 5.72 3.24×10
−1 18 3.22×10

−2 LP3 17 9.38×10
−3

78 Vance 0.71 4 5.67 3.32×10
−1 19 3.89×10

−2 LP3 18 1.03×10
−2

77 Johnston 0.77 6 7.80 3.38×10
−1 22 1.51×10

−2 LP3 19 1.19×10
−2

76 Macon 0.00 0 0.97 3.78×10
−1 22 3.45×10

−2 19 2.47×10
−2

Table 8  Summary of hierarchical cluster analysis by different models

The incidence rate in this table indicates the value of raw incidence per 1000 live births

Risk Without adjustment Adjustment for race

SMR model Poisson model

Higher rates Northeast (6 counties: 5 Level-H1, 
1 Level-H2) with incidence of 
4.98

South (6 counties: 1 Level-H1, 5 
Level-H2) with incidence of 4.06

Mid-East (6 counties: 1 Level-H1, 5 
Level-H3) with incidence of 3.09

None None

Lower rates East (3 counties: 3 Level-L1) with 
incidence of 0.0

Northwest (6 counties: 4 Level-L1, 
2 Level-L2) with incidence of 
0.28

Mid-West (9 counties: 1 Level-L1, 8 
Level-L2) with incidence of 0.70

East (3 counties: 3 Level-LS1) with incidence 
of 0.0

Northwest (3 counties: 3 Level-LS1) with 
incidence of 0.0

Mid-West (8 counties: 1 Level-LS1, 7 Level-LS2) 
with incidence of 0.79

Mid-West (6 counties: 6 Level-LP1) with 
incidence of 0.71

North (3 counties: 2 Level-LP1, 1 Level-
LP2) with incidence of 0.96

Mid-East (10 counties: 1 Level-LP1, 6 
Level-LP2, 3 Level-LP2) with incidence 
of 1.40
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precisely to the one, defined by those counties mutually 
sharing common geographical boundaries, in North Car-
olina county system [4, 5].

Comparison with analysis using spatial scan statistic
Both our proposed statistical methods and the spa-
tial scan statistic allow for confounding variables and 
are used to identify disease clustering or detect disease 
clusters in a spatial point process in general. They are 
sensitive to different respects of spatially characteristic 
incidence clustering patterns and structured to provide 
different spatial clustering information. The spatial scan 
statistic determines the most likely disease clusters and 
secondary disease clusters based on the maximum like-
lihood ratio, whose statistical significance is evaluated, 
using Monte Carlo hypothesis testing. The spatial scan 
statistic tends to detect relatively broad spatial clusters, 
and the detected most likely disease clusters may not 
be the regions with the highest rates. In the analysis of 
SIDS in North Carolina counties, the spatial scan statis-
tic detected the most likely cluster in the south with inci-
dence of 3.8 and the secondary cluster in the northeast 
with incidence of 4.1 per 1000 live births, with the state-
wide incidence of 2.0, shown in Table 1 [8].

In contrast, our proposed methods are designed to pri-
oritize the counties with the highest or lowest, adjusted 
or unadjusted, intensity rates in the testing for the pres-
ence of spatial clustering. We let the threshold rate of 
incidence vary downwards continuously, in which case it 
includes exactly next one area in the rank order at one 
time, up to a certain upper limit. As shown in Table 2 and 
Figs.  1a, b, the highest intensive clustering region was 
recognized in the northeast with incidence of 4.98, and 
secondary intensive clustering region, in the south with 
incidence of 4.06 per 1, 00 live births.

After adjusting for race, the spatial scan statistic 
detected an emerging broad secondary cluster in the 
west, which was previously hidden and comprised 18 
counties, with the SMR of 1.357, presented in Table  2 
[8]. In contrast, our method, either based on the Poisson 
model or SMR, recognized a small high-intensity region, 
which was previously hidden and emerged in the south-
west, comprising only 4 counties: Rutherford, McDowell, 
Transylvania, and Henderson, shown in Tables  4 and 6 
and Figs. 2a and 3a. This small regions in the southwest 
was a much smaller subset of the broad region identi-
fied by the spatial scan statistic and had a higher SMR of 
1.977 per 1000 live births.

Discussion
In this paper, we have presented a general framework 
for differentiating intensity of geographical disease clus-
ters of peak incidence and low incidence in a hierarchical 

manner with the adjustment for covariates as well as 
testing for the presence of disease clustering. The first 
method is structured for recognizing and construct-
ing hierarchical (in intensity) disease clusters of low 
incidence. The second method generalizes to take into 
account covariates that are known or hypothesized risk 
factors of the disease in constructing hierarchical (in 
adjusted intensity) clusters of high-risk areas and low-
risk areas close within geographic proximity, respectively. 
We formulated the adjustment for covariates by calculat-
ing the expected number of cases in each county through 
indirect standardization. We proposed two probabil-
ity models, a Poisson-distribution-model and SMR, to 
facilitate discrimination between the 100 North Carolina 
counties based on the deviation between the observed 
incidence and covariate-adjusted expected incidence in 
each county, through which the hierarchy in adjusted 
intensity is recognized, beyond the effect of covariates.

The application to the data on North Carolina SIDS, 
using the proposed methods, shows that the two prob-
ability models performed similarly in the geographical 
race-adjusted intensity clustering analysis of counties 
with the highest rates. While the analysis was very differ-
ent in the investigation of the mutually adjacent counties 
with the lowest adjusted rates. The Poisson model that 
can account for the unequal variances of the county rates 
performed better particularly at facilitating discrimina-
tion between the 13 counties with zero SIDS but differ-
ent numbers of live births than the model based on SMR. 
The hierarchical race-adjusted low-intensity clusters, 
characterized by the Poisson model, should be more reli-
able, shown in Tables 6 and 7 and Fig. 3a, b.

With the information on hierarchy in adjusted inten-
sity levels, provided by the application of our proposed 
methods, epidemiologists can best prioritize the regions 
with the highest rates within which to conduct thorough 
etiologic investigations and search for hidden spatially 
related risk factors. Similar research designs are com-
monly applied in studies of human genetics, in which a 
group of affected sibships with extreme traits are used 
for detecting commonly shared genetic defects of a dis-
ease of interest in gene mappings [15]. Meanwhile, public 
health officials can better prioritize the high-risk regions 
precisely and promptly move resources to areas with gen-
uine highest abnormalities.

The identification of geographical and temporal disease 
clusters serves as a preliminary step that expedites subse-
quent etiological investigation and analysis of epidemic-
ity. Most reports of perceived clusters do not lead to the 
identification of a common casual exposure for the events 
of interest [16]. The reasons for this are many. As Roth-
man and many others pointed out that vast resources 
spent on the investigation of possible alarms of disease 
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clustering are often in vain. We should not be aiming to 
detect clustering, but to understand why clusters occur 
[17]. The four stages in the guidelines for the investiga-
tion of disease clusters issued by the US Centers for 
Disease Control in 1990 are (1) initial contact with and 
response to the individual who reported the cluster; (2) a 
preliminary assessment, including evaluations of whether 
an excess has occurred; (3) a formal feasibility study; and 
(4) a full etiologic investigation [18]. The ordinary statis-
tical methods for detecting temporal and spatial cluster-
ing in disease incidence frequency alone are useful in the 
second stage. While, the utilities of our proposed statisti-
cal methods contribute to the third and fourth stages.

In addition to the focus on peak incidence, we extended 
the proposed methods to investigate geographical disease 
clusters of low incidence. We exemplified the utilities 
of recognizing and constructing the geographical hier-
archical (in intensity) disease clusters of low incidence 
and peak incidence without and with the adjustment for 
covariates. The studies of incidence paucity and incidence 
clustering characterize opposite aspects of an observed 
geographical incidence pattern by using different parts of 
information from the data. In this report, we show that 
statistical methods that focus on geographical incidence 
paucity can be as meaningful and useful in spatial epide-
miology and spatial statistics as the methods that focus 
on peak incidence in space. We articulate the difference 
in sensitivity, power, and applicability between the stud-
ies of incidence paucity and incidence clustering, using a 
temporal series of data, in our previous articles [1, 2].
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