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Abstract

Background: Infectious clones are fundamental tools for the study of many viruses, allowing for efficient mutagenesis
and reproducible production of genetically-defined strains. For the large dsDNA genomes of the herpesviridae, bacterial
artificial chromosomes have become the cloning vector of choice due to their capacity to house full-length herpesvirus
genomes as single contiguous inserts. Furthermore, while maintained as plasmids in Escherichia coli, the clones can be
mutated using robust prokaryotic recombination systems. An important consideration in the design of these clones is
the means by which the vector backbone is removed from the virus genome upon delivery into mammalian cells. A
common approach to vector excision is to encode loxP sites flanking the vector sequences and rely on Cre recombinase
expression from a transformed cell line. Here we examine the efficiency of vector removal using this method, and
describe a “self-excising” infectious clone of HSV-1 strain F that offers enhancements in virus production and utility.

Results: Insertion of a fluorescent protein expression cassette into the vector backbone of the HSV-1 strain F clone,
pYEbac102, demonstrated that 2 serial passages on cells expressing Cre recombinase was required to achieve > 95 %
vector removal from the virus population, with 3 serial passages resulting in undetectable vector retention. This
requirement was eliminated by replacing the reporter coding sequence with the CREin gene, which consists of a Cre
coding sequence disrupted by a synthetic intron. This self-excising variant of the infectious clone produced virus that
propagated with wild-type kinetics in culture and lacked vector attenuation in a mouse neurovirulence model.

Conclusion: Conversion of a herpesvirus infectious clone into a self-excising variant enables rapid production of viruses
lacking bacterial vector sequences, and removes the requirement to initially propagate viruses in cells that express Cre
recombinase. The self-excising bacterial artificial chromosome described here allows for efficient production of the F strain
of herpes simplex virus type 1.
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Background
Herpes simplex virus type 1 (HSV-1) infections are typ-
ically benign, with cold sores (herpes labialis) being the
most common form of disease [1]. Rarer, but more se-
vere disease outcomes have a significant health toll due
to the high prevalence of HSV-1 in the general popula-
tion. For example, HSV-1 is the leading cause of infec-
tious blindness and sporadic encephalitis in the United
States [2, 3]. Understanding the molecular mechanisms
underlying viral pathogenesis is essential for the devel-
opment of new therapies to treat and possibly prevent
infection. To this end, the cloning of the HSV-1 genome
into a mini F plasmid as a bacterial artificial chromosome
(BAC) allows for efficient production and mutagenesis of
the virus using prokaryotic recombination systems [4–9].
While the BAC vector allows for stable maintenance of the
clone in E. coli, its presence in the viral genome following
transfection into mammalian cells can lead to instability
and viral propagation defects [10]. To remove the BAC
vector from the viral genome, a common solution is to
flank the BAC sequences with loxP sites in direct orienta-
tion [7–9]. These designs require transfection of the BAC
into mammalian cells expressing Cre recombinase, which
imposes constraints when working with these clones. For
example, transfection of BACs encoding lethal mutations
requires simultaneous expression of Cre recombinase and
the viral gene for trans-complementation. The aim of the
present study was to streamline the conversion of floxed
BAC clones to self-excising BACs, and thereby eliminating
the need for Cre-expressing cells and concomitant moni-
toring of vector removal [8, 11–13]. Using a HSV-1 BAC,
we demonstrate that modification to a self-excision design
avoids concerns of inadvertently working with partially ex-
cised virus populations, which we demonstrate can result
in attenuation of neurovirulence.

Methods
Production of the pEP-TagBFP-in and pEP-CREin-in En
Passant plasmids
The TagBFP expression cassette from pTagBFP-C (Evrogen)
was subcloned into pEGFP-S1 to move the cassette into
an ampicillin resistant vector backbone. This resulted
in pGS4742. A fragment of the TagBFP ORF was ampli-
fied from pGS4742 using primers GS835: 5′-GTTTGA
CTCACGGGGATTTCC (anneals within the CMV IE
promoter) and GS4715: 5′- GGCAGCTGGGATCCGA
GGTTCTTAGCGGGTTTCTTGG (anneals within the
TagBFP coding sequence; PvuII and BamHI palin-
dromes are underlined) The PCR product was cloned
into pGS4742 using a NheI site downstream the GS835
sequence, and a StuI site within the TagBFP ORF to re-
ceive the PvuII site encoded in GS4715, resulting in
pGS4751. pGS4751 encodes a partial duplication of the
TagBFP ORF with the duplicated sequences flanking

the BamHI site derived from GS4715. The I-SceI site +
kanamycin cassette from pEP-EGFP-in [14] was inserted
into the BamHI site, resulting in the En Passant template
plasmid, pEP-TagBFP-in (pGS4794).
The CREin cassette from pGS403 [11] was amplified

using primers GS1495: 5′GGCCGCGGTAATACGACT
CACTATAGGGC (SacII palindrome is underlined) and
GS1496: 5′-GGAGATCTGAATTCCATGAGTGAACGA
ACC (BglII and EcoRI palindromes are underlined). The
PCR product was cloned into pGS403, resulting in
pGS1511. pGS1511 encodes a partial duplication of the
CREin sequence, with the duplicated sequences flanking
the EcoRI site derived from GS1496. Primers GS1513: ‘5-G
GGAATTCTAGCTAGGGATAACAGG and GS1498: CC
GAATTCTAGCCAGTGTTACAACC (EcoRI palindromes
underlined) were used to amplify the I-SceI site + kanamy-
cin cassette from pEP-EGFP-in [14]. The product was
inserted into the EcoRI site resulting in the En Passant
template plasmid, pEP-CREin-in (pGS1518).

Virus construction
All HSV-1 recombinant viruses were derived from the pYE-
bac102 infectious clone of HSV-1 strain F [9]. pHSVF-BFP
was generated by En Passant mutagenesis of the pYEbac102
infectious clone [15]. Recombination was performed in the
Escherichia coli strain GS1783, which encodes inducible
Red and I-SceI activities [15], following PCR amplification
of the recombination fragment from the pEP-TagBFP-in
template (primers used are listed in the Additional file 1:
Table S1). The resulting HSV-1 infectious clone contained
the TagBFP expression cassette in the BAC vector backbone
(see Fig. 1). Likewise, pHSVF-CREin was produced through
En Passant mutagenesis of the pHSVF-BFP infectious clone
using the pEP-CREin-in template (primers used are listed
in the Additional file 1: Table S1). Viruses were produced
by electroporation of infectious clones into either Vero or
HEK293T cells as previously described [16]. Cells were
maintained in Dulbecco modified Eagle medium (DMEM)
(Invitrogen) supplemented with 10 % bovine growth sup-
plement (BGS) (Vero cells) or 10 % fetal bovine serum
(FBS) (HEK293T cells). Serum levels were reduced to 2 %
BGS/FBS approximately 12 h after electroporation. Virus
was harvested at a time at which 100 % of the cells dis-
played pronounced cytopathic effect (CPE) (typically 3–5
days post electroporation). The harvested virus was pas-
saged on either Vero or Vero-Cre cells as indicated.

Viral propagation kinetics
Vero cells were seeded in 6-well trays and infected the
next day at a multiplicity of infection (MOI) of 10. Follow-
ing absorption of the virus for 1 h at 37 °C, the inoculum
was removed and replaced with 2 ml of citrate (pH 3.0)
for 1 min at RT to inactivate extracellular virions, and
then washed 3 times with DMEM supplemented with
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10 % FBS. Cells were then incubated in 2 ml of DMEM
supplemented with 10 % FBS at 37 °C until the desired
harvest time point. Both cell-associated and extracellular
virus was collected as previously described [17]. Titers of
all time points were determined by plaque assay on Vero
cells and plotted with GraphPad Prism 4.

Isolation of nucleocapsid DNA
Five 15 cm dishes of confluent Vero cells were infected at
a MOI of 7. At 24 h post infection the media was removed
and replaced with 2 ml PBS/dish. Cells were collected and
combined into one 50 ml conical tube and pelleted at
750 × g for 10 min at RT. Cells were then washed once in
PBS and resuspended in 10 ml LCM buffer 1 (1M KCl,
1M Tris [pH 7.4], 1M EDTA, 0.5 % NP-40). Cells were

extracted twice with 1.5 ml Freon (1,1,2-trichloro-1,1,2-
trifluoroethane) and the top layer collected and placed in
a new conical. The following two-step gradient was pre-
pared in a Seton 7030 centrifuge tube: bottom layer,
2.5 ml LCM buffer 2 (1M KCl, 1M Tris [pH 7.4], 1M
EDTA, 0.5 % NP-40, 45 % glycerol), top layer, 3.0 ml LCM
buffer 3 (1M KCl, 1M Tris [pH 7.4], 1M EDTA, 0.5 % NP-
40, 5 % glycerol). The cell extract was split in half and lay-
ered on top of two gradients. Gradients were centrifuged
at 25,000 rpm for 1 h in a SW41 rotor at 4 °C. Following
centrifugation, fluid was aspirated from the tube and the
pellet was resuspended in 0.5 ml TNE (0.5M EDTA, 5M
NaCl, 1M Tris-Base [pH 7.5]) and transferred to a 50 ml
conical. 8.5 ml of TNE, 0.5 ml of 10 % SDS and 0.2 mg of
proteinase K was added and the conical inverted several

lambda RED recombination
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pHSVF-BFP

vHSVF-BFP (P1)

HSV-1 strain F (with single loxP)

oriS
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Fig. 1 Construction and analysis of pHSVF-BFP. a Flow diagram of two-step recombination (En Passant) used to insert a TagBFP expression cassette
into the vector backbone of pYEbac102 in E. coli, and subsequent Cre-based removal of the BAC vector from the viral genome in mammalian cells.
The expression cassette was PCR amplified from the pEP-TagBFP-in template and recombined into the BAC vector backbone by lambda RED
recombination using kanamycin resistance as selective pressure. In a second recombination step, the kanamycin resistance gene (aphA1) was
removed based on partially duplicated sequences in the flanking TagBFP coding sequence (red boxes), which simultaneously established the
contiguous BFP coding sequence and resulted in pHSVF-BFP. Transfection of pHSVF-BFP into Vero cells produced the vHSVF-BFP virus that
stably expressed blue fluorescence, which was further expanded by a second passage (P2) on Vero cells. Transfection and serial passage in
Vero-cre cells produced HSV-1 lacking the BAC backbone and associated fluorescence but retaining a single loxP site (black circles) between
the UL3 and UL4 genes. b Excision of the pBeloBAC vector from vHSVF-BFP was monitored by fluorescent plaque assay. Following transfection
of Vero cells (P1), vHSVF-BFP was successively passaged on Vero-cre cells for a second (P2cre), third (P3cre), and fourth round (P4cre), or on
Vero cells that did not express Cre recombinase for a second round (P2). Plaques produced from each harvest were scored as positive (blue)
or negative (black) for fluorescence. The data are a composite of three independent experiments consisting of >40 plaques scored per experiment.
Error bars are SD
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times to mix. DNA was extracted twice with phenol/
chloroform, followed by overnight precipitation in 30 ml
of −20 °C ethanol and 4.5 ml of 3M sodium acetate
at −80 °C. Following precipitation DNA was isolated by
centrifugation at 14,000 × g for 30 min at 4 °C. The DNA
pellet was washed once with 4 °C 70 % ethanol, dried, and
resuspended in 0.5 ml TNE. For PCR analysis of BAC
vector excision, two primer pairs were used. Primer pair A
was GS5840 and GS5841 (Additional file 1: Table S1), and
primer pair B was: GS6417 (5′ GCATTTCCTCGTGGC
GAAT) and GS6418 (5′ GTCCCCTTACAGTTCCACC).

Analysis of plaque florescence
Expression of BFP was assessed by plaque assay, following
10-fold dilutions of virus stocks on Vero cells in 6-well
trays. Following virus absorption, cells were overlaid with
DMEM containing 2 % methocel and 2 % BGS. At 4 days
post infection images were captured with a 4× objective
on a TE2000 inverted fluorescence microscopy (Nikon)
fitted with a CoolSnap HQ2 camera (Photometrics). A
total of three independent experiments were conducted
with a minimum of 40 plaques scored for BFP emissions
per virus per experiment. The data from all three experi-
ments were combined and plotted in Prism 4 (GraphPad).

In vivo inoculation of virus
All procedures conformed to NIH guidelines for work
with laboratory animals and were approved by the Insti-
tutional Animal Care and Use Committee of the Univer-
sity of Nebraska, Lincoln. Male CD-1 mice (6 weeks old;
Charles River) were maintained for at least 2 weeks under
a 12:12 h light/dark cycle, two to three mice per cage with
food and water freely available. Intracranial application of
virus was administered to animals anesthetized by 2.5–
5.0 % isoflurane inhalation. Viral stocks were maintained
frozen at −80 °C and used immediately after being thawed.
Each animal received 1.9 × 105 PFU directly injected into
the brain. All animals received injections 1 mm lateral,
1 mm caudal of bregma, while the injections were placed
2 mm ventral of the dura. Behavior was continuously video
monitored with images captured every 10 min. Survival
times post-inoculation were rounded to the nearest hour.

Results
Efficiency of Cre-mediated BAC vector excision
The pYEbac102 infectious clone of HSV-1 strain F is
based upon a pBeloBAC vector backbone flanked by a
pair of loxP sites, which is inserted between the UL3 and
UL4 genes of the virus genome [9]. As a first step to
producing a self-excising variant of pYEbac102, a suit-
able site for insertion of a mammalian expression cas-
sette was identified that did not disrupt BAC replication,
partitioning, or antibiotic-resistance functions in E. coli,
but also achieved robust expression in mammalian cells.

To monitor mammalian expression, a cassette consisting
of the coding sequence of a blue fluorescent protein
(TagBFP) driven by the HCMV immediate early pro-
moter (HCMV IE), and flanked by a SV40 polyadenyla-
tion sequence (pA), was initially inserted downstream of
the chloramphenicol acetyl transferase gene (cat) that
provides antibiotic selectivity in the BAC vector back-
bone of pYEbac102. For this purpose, an En Passant
template plasmid, pEP-TagBFP-in, was produced and
primers were designed to amplify the cassette with 5′
ends homologous to the BAC sequences flanking the site
of insertion (Fig. 1a) [14, 15]. The new BAC was success-
fully maintained in E. coli under chloramphenicol selec-
tion, and was designated pHSVF-BFP.
Transfection of pHSVF-BFP into Vero cells resulted in

productive infection with corresponding expression of
fluorescence. Nascent virus was isolated, termed vHSVF-
BFP, and either expanded once on Vero cells or serial pas-
saged in Vero cells stably expressing Cre recombinase [7].
vHSVF-BFP that was not exposed to Cre recombinase
consistently produced fluorescent plaques (Fig. 1b). A sin-
gle expansion of vHSVF-BFP on Vero-cre cells resulted in
approximately 60 % of the resulting PFU lacking BFP ex-
pression during subsequent infection of Vero cells, with
two additional serial passages on Vero-cre cells needed to
eliminate BFP-expressing virus. The loss of fluorescence
was consistent with loxP recombination and removal of
the BAC vector sequence from the HSV-1 genome (see
below). These results indicate that multiple serial passages
were required to produce a genetically homogenous virus
population that lacked the BAC vector backbone as a re-
sult of loxP recombination mediated by Cre recombinase.

Production of a self-excising infectious clone variant
Self-excising BAC clones function through expression of
Cre recombinase from the vector backbone during infec-
tion of mammalian cells [8, 11–13]. Because insertion of
the TagBFP expression cassette downstream of the cat
gene (Fig. 1a) did not detectably interfere with BAC
maintenance in E. coli and provided effective expression
during infection of mammalian cells (Fig. 1b), we modi-
fied the cassette to express Cre recombinase. Specific-
ally, the TagBFP coding sequence was replaced with the
CREin gene while maintaining the HCMV promoter and
SV40 polyadenylation sequences (Fig. 2a). CREin is a
Cre recombinase coding sequence that is disrupted by a
synthetic intron, thereby preventing leaky expression in
E. coli [11]. For this purpose, an En Passant template
plasmid was produced, pEP-CREin-in, and primers were
designed to amplify the gene with 5′ ends homologous
to the upstream HCMV promoter and downstream
SV40 polyadenylation sequences flanking the site of inser-
tion. Recombination was carried out by the En Passant pro-
cedure as described above. The new BAC, pHSVF-CREin,
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was transformed, harvested, and expanded one additional
time on Vero cells to produce high-titer stocks. This pro-
cedure was performed twice to produce two independent
stocks of the vHSVF-CREin virus: passage 2a (P2a) passage
2b (P2b).
Restriction enzyme digestion of DNA isolated from

HSV-1 nucleocapsids was used to examine the virus gen-
ome for the presence of the BAC vector backbone. DNA
from vHSVF-BFP (P2) served as a positive control and
vHSVF-BFP (P4cre) provided the negative control (Fig. 1b).
Digestion of nucleocapsid DNA with MluI indicated that

the 10.5 kb BAC-derived fragment observed in vHSVF-
BFP (P2) was replaced by a 1.9 kb band in vHSVF-BFP
(P4cre), vHSVF-CREin (P2a), and vHSVF-CREin (P2b),
demonstrating self-excision following transfection of
pHSVF-CREin into mammalian cells (Fig. 2b). This result
also provided confirmation that BAC excision accounted
for the loss of fluorescence in vHSVF-BFP (P4cre) (Fig. 1b).
Similarly, digestion of vHSVF-BFP (P2) DNA with PvuI
resulted in 11.3 and 2.7 kb BAC derived fragments, which
were replaced by a 5.5 kb band in vHSVF-BFP (P4cre),
vHSVF-Cre (P2a), and vHSVF-Cre (P2b) (Fig. 2b).
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Fig. 2 Construction and analysis of pHSVF-CREin. a The infectious clone pHSVF-CREin was made by insertion of the CREin expression cassette into
the pHSVF-BFP infectious clone in a process paralleling that described in Fig. 1. The CREin expression cassette was PCR amplified from the pEP-CREin-in
template and recombined into pHSVF-BFP BAC vector backbone by lambda RED recombination, resulting in the replacement of the TagBFP coding
sequence with that of CREin::kanamycin. In the second recombination step, the kanamycin resistance gene (aphA1) was removed based on partially
duplicated sequences in the flanking CREin coding sequence (red boxes), which simultaneously established the contiguous CREin coding sequence and
resulted in pHSVF-CREin. Excision of the BAC from pHSVF-CREin was achieved by autonomous expression of Cre recombinase following introduction of
the DNA into either Vero or HEK293T cells, resulting in a passage 1 (P1) harvest. b MluI (left) or PvuI (right) restriction analysis of HSV-1 DNA harvested from
purified nucleocapsids. Yellow arrow heads indicate restriction fragments that mark the presence or absence of the BAC vector sequences. Size standards
are indicated in kb. c Amplification of viral and plasmid DNA using primers designed to detect removal of BAC DNA from the viral genome. The positions
of the primer pairs are indicated in panel A
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The nucleocapsid DNA was inspected further by PCR
assay using primers designed to anneal to sequences
within the BAC vector (Fig. 2c). DNA from the pHSVF-
BFP and pHSVF-CREin plasmids served as controls. The
size difference observed in the PCR products between
pHSVF-BFP and pHSVF-CREin reflects the larger size of
the CREin gene relative to the BFP coding sequence. As ex-
pected, primer pair A, which detects the region of the BAC
vector backbone containing the introduced expression cas-
sette, amplified an equivalent fragment from pHSVF-BFP
and vHSVF-BFP (P2). Whereas residual BAC vector was
detected from HSV-1 genomic DNA isolated from vHSVF-
BFP (P2cre), this was not the case with HSV-1 produced
from the pHSVF-CREin self-excising clone: vHSVF-CREin
(P2a). Primer pair B produced results supporting this inter-
pretation, indicating that excision occurred when providing
Cre recombinase in trans or from the BAC backbone
(primer pair B did not yield a product from the two BAC
plasmids or vHSVF-BFP presumably due to the 18 kb dis-
tance between the primer annealing sites accounted for by
the presence of the BAC vector backbone). Finally, the ana-
lysis of vHSVF-BFP nucleocapsid DNA described here
confirms that the loss of fluorescence observed in Fig. 1b
was due to Cre-loxP recombination.

Propagation kinetics and neurovirulence of HSV-1 derived
from the self-excising BAC
The replication kinetics of the vHSVF-CREin stock (P2a)
was indistinguishable from vHSVF-BFP (P2) and vHSVF-
BFP (P4cre) (Fig. 3a). These results indicate that the self-
excision process did not result in unexpected attenuation
of virus growth. When viruses were administered intrace-
rebrally into CD-1 mice, the presence of the BAC vector
in the HSV-1 genome slightly reduced virulence, with
some animals surviving beyond 200 hpi (Fig. 3b). As ex-
pected, isolates of HSV-1 derived from the self-excising
BAC clone killed all mice before the 200 hpi time point,
consistent with a manually excised virus that had been

serial passaged for three rounds in Vero-Cre cells and
verified by fluorescent plaque assay to be fully excised.

Discussion
Herpesvirus infectious clones are important tools for re-
searchers studying these large viruses. Following mutagen-
esis in E. coli, transfection of BAC clones into mammalian
cells results in productive infections that yield virus popu-
lations that uniformly harbor the desired genetic alter-
ations. While the utility of BAC infectious clones has
made them the preferred means to genetically manipulate
herpesviruses since their initial development [18], one
ongoing issue is the need to efficiently remove the BAC
vector from the viral genome upon delivery into mamma-
lian cells. A common practice is to design BAC clones
with loxP sites flanking the BAC vector backbone and
supply Cre recombinase in trans in mammalian cells.
Thus, the BAC is excised from the virus genome with a
single loxP site remaining as the only foreign sequence.
Because the viruses studied are only as good as the infec-
tious clone from which they are derived, placing the
“floxed” BAC vector, and thereby ultimately the residual
loxP site, in an innocuous site in the genome is a critical
design consideration. By contrast, the means by which the
BAC is removed is an implementation consideration that
is sometimes left unconfirmed or simply overlooked. In a
few instances, recombinant BAC designs have included a
Cre-expression cassette that allows for auto-excision of the
BAC vector from the herpesvirus genome upon delivery
into mammalian cells [8, 11–13]. The current study makes
this self-recombining design easier to implement and al-
lows for effective confirmation of auto-excision activity.
As part of this study, we examined the efficiency of BAC

excision. Implementing BAC removal using a cell line that
stably expresses Cre recombinase in trans required three
serial passages to eliminate the BAC from the virus popula-
tion [7]. This result is intended only as an isolated example
of BAC excision efficiency, which likely varies based on the
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BAC, cell type, and Cre delivery method used in various
research settings. Nevertheless, the results underscore that
the goal of producing clonal virus populations from BAC
clones can be impaired by inadequate BAC vector excision.
Although the pYEbac102 clone that served as the progeni-
tor BAC for this study yielded HSV-1 that tolerated the
BAC insertion remarkably well when not excised, consist-
ent with prior observations [9], the presence of this extra-
neous DNA could have undesirable synergistic effects
when other genetic modifications are introduced for the
study of HSV-1 pathogenesis. Whereas the pHSVF-BFP
BAC afforded improved monitoring of BAC excision to
help alleviate these concerns, the conversion of this con-
struct to the self-excising design, pHSVF-CREin, elimi-
nated the need to implement a BAC excision protocol and
provided several additional advantages [11, 12]. First, BAC
removal was efficient. By using the self-excising design
approach, virus genomes escaping recombination continue
to express Cre, thus pushing the reaction to completion.
Second, screening for BAC removal or performing plaque
purification became unnecessary. Third, auto-expression of
Cre allowed for BAC transfection into any mammalian cell
type, which provides the added flexibility to use cells pre-
viously designed to stably trans-complement viruses mu-
tated in essential genes.

Conclusions
Bacterial artificial chromosomes allow for cloning of large
foreign sequences in E. coli. In some circumstances,
removing the prokaryotic vector sequences from the
construct for studies in mammalian cells is beneficial. This
is particularly true for full-length infectious clones of
herpesviruses, where the vector sequences effectively
become a large foreign insert in the replicating viral
genome. However, removal of BAC vector sequences
can be troublesome to monitor. The En Passant recom-
bination constructs described in this report, pEP-
TagBFP-in and pEP-CREin-in, address this problem in
two ways. First, pEP-TagBFP-in allows for efficient in-
sertion of a blue-fluorescent protein mammalian ex-
pression cassette into BAC vectors, which yields a
robust report for the presence of BAC vector sequences
in transfected and infected cells. The sequence of
TagBFP is sufficiently diverged from other fluorescent
proteins that it should not lead to unwanted homolo-
gous recombination in BACs modified to express green
and red fluorescent proteins, and the blue fluorescence
emitted from TagBFP is easily discernable. Insertion of
the TagBFP expression cassette also makes the conver-
sion of BACs to self-excising BAC clones more reliable,
as the fluorescent emissions from TagBFP provide good
indication that the site of insertion in a BAC vector is
compatible with transgene expression, and furthermore
affords a simple screen when inserting the CREin sequence

by means of loss of fluorescence. The second con-
struct, pEP-CREin-in, allows for efficient insertion of
the CREin sequences that provides autonomous exci-
sion of the BAC vector sequences following delivery
into mammalian cells. Applying these tools to a HSV-1
infectious clone resulted in production of clonal virus
populations that uniformly lacked vector sequences.
These viral stocks are particularly advantageous for
use in animal models of pathogenesis, but are generally
beneficial for all studies. The methods described here
can be applied to pre-existing floxed BAC infectious
clones of any herpesvirus, or any other BAC construct
that would benefit from self-excision properties.
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