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Abstract

Allostery is a regulatory mechanism in proteins where an effector molecule binds distal from

an active site to modulate its activity. Allosteric signaling may occur via a continuous path of

residues linking the active and allosteric sites, which has been suggested by large confor-

mational changes evident in crystal structures. An alternate possibility is that the signal

occurs in the realm of ensemble dynamics via an energy landscape change. While the latter

was first proposed on theoretical grounds, increasing evidence suggests that such a control

mechanism is plausible. A major difficulty for testing the two methods is the ability to defini-

tively determine that a residue is directly involved in allosteric signal transduction. Statistical

Coupling Analysis (SCA) is a method that has been successful at predicting pathways, and

experimental tests involving mutagenesis or domain substitution provide the best available

evidence of signaling pathways. However, ascertaining energetic pathways which need not

be contiguous is far more difficult. To date, simple estimates of the statistical significance of

a pathway in a protein remain to be established. The focus of this work is to estimate such

benchmarks for the statistical significance of contiguous pathways for the null model of

selecting residues at random. We found that when 20% of residues in proteins are randomly

selected, contiguous pathways at the 6 Å cutoff level were found with success rates of 51%

in PDZ, 30% in p53, and 3% in MutS. The results suggest that the significance of pathways

may have system specific factors involved. Furthermore, the possible existence of false

positives for contiguous pathways implies that signaling could be occurring via alternate

routes including those consistent with the energetic landscape model.

1. Introduction

Allosteric regulation of protein function occurs when the binding of an effector modulates the

protein’s interaction with a ligand at a distal site [1,2]. While allosteric regulation has been

appreciated as an empirical observation for some half a century, understanding how the signal

propagates remains an active area of research. Early descriptions of the phenomenon are
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attributed to Monod, Wyman and Changeux (MWC model) [3–5] and to Koshland, Nemethy,

and Filmer (KNF model) [6] on the basis of structural studies of cooperativity in hemoglobin.

Allosteric control has since been recognized as playing a critical role in feedback mechanisms,

such as in the CAP transcription factor [7–9], signal transduction cascades [10], G protein-

coupled receptors [11,12], ion channels [13] and enzymes [14–18] and many other functions

involving conformational changes in the dynamic structure of proteins [19]. Understanding

the allosteric signaling mechanism in greater detail is not only promising for elucidating pro-

tein specific knowledge, but also in developing allosteric drugs with a rational design approach

rather than an empirical screen [20–22].

Several ideas regarding allosteric signal propagation have been proposed. Conformational

changes observable in crystal structures upon binding of an effector in an initial and final state

suggest a mechanical view can be adopted. Some examples exhibiting large conformational

changes include rotary ATP synthase [23], Ras GTPase [24], Beta adrenergic receptor [25], the

ribosome [26], dihydrofolate reductase [27], and calmodulin [28,29]. This type of analysis

lends itself to the idea that a signal could be propagated through a network of contiguous resi-

dues in contact with each other.

However, allosteric signaling in the absence of a conformational change is also possible.

The idea was first put forth by Cooper and Dryden in 1984 on a theoretical basis [30]. The

work of Hilser and coworkers [31,32] has further elaborated on the idea, arguing that changes

in the energy landscape could in essence be the allosteric signal, but that the ensemble averaged

structure of the protein would not necessarily be changed and therefore could escape experi-

mental detection.

Recent studies in this vein [33–35] involved examining a variety of theoretical coarse grain

models to study propagation of allosteric signals. They conclude that there is a requirement for

inhomogeneous elastic density, which could be due to differences in rigid and less rigid areas

of the protein. The signal propagation could occur through changes in the thermal fluctuations

[35]. Hilser and coworkers explored the statistical thermodynamics of the protein ensemble

with their COREX coarse grain software [32]. Allostery without a conformational change has

been observed in methionine repressor on the basis of crystal structure B factor changes and

NMR data [36]. The cyclic AMP receptor protein has been experimentally shown to change its

affinity for cAMP mediated only through changes in dynamics [37]. Our recent studies of

allosterism in MutS, a multidomain protein in which the allosteric signal is propagated over

100Å, we identified a network of contiguous residues by SCA [38]. Testing of signal disruption

via MD simulations on alanine mutants indicated a disruption of essential H-bonds in the

active site. However, we also found that the alanine mutants in the network but not in the con-

tiguous pathway also exhibited a similar disruptive effect, which could be evidence for the

energetic landscape model coexisting with a pathway mode of signal transmission. Interest-

ingly, ay similar observation of multiple networks has emerged for the PDZ domain by the

SCA method described below. This protein has had a network of coevolving residues identified

by SCA analysis [39]. However, an NMR study [40] revealed an allosteric regulatory role for its

third alpha helix not found in other homologs. Energy fluctuation calculations also on PDZ

[41] identified two independent networks. The result could indicate coexistence of two inde-

pendent networks operating by different mechanisms.

The identification of networks of residues in proteins has been carried out by several meth-

odologies. The package PSN-Ensemble takes snapshots from MD, NMR, or several crystal

structures to represent an ensemble of structures and considering cross-correlations to eluci-

date allosteric pathways as a cooperative network [42]. Bahar and coworkers have developed

elastic rod networks, and have recently reported a comprehensive database of their results on

most all structures in the PDB [43,44]. An alternate means of identifying pathways has been

Dependence of prevalence of contiguous pathways in proteins on structural complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0188616 December 12, 2017 2 / 17

https://doi.org/10.1371/journal.pone.0188616


presented with the algorithm in allopathfinder that predicts pathways of residues on the basis

of distance constraints between contiguous residues and evolutionary data [45]. While these

methods have been successful in generating networks, testing whether an allosteric signal is

transmitted in the pathway remains difficult to verify.

An especially successful and widely applied method for finding allosteric pathways has been

put forth by Ranganathan and coworkers [39,46,47]. The statistical coupling analysis (SCA)

method examines multiple sequence alignments for covariance, and subjects that to spectral

decomposition to obtain the sectors. Networks have been identified in the RXR heterodimer

protein, dihydrofolate reductase, and the PDZ domain. The accompanying experimental stud-

ies of the pathways have lent support to the proposed pathway signaling. Domain insertion

scanning creates chimeras containing an insertion of an extra domain to perturb potentially

allosteric sites. The 39 surface sites of the PDZ domain SCA network have been exhaustively

mutated, and 11 showed significant effects on binding affinity for the peptide ligand. While

these strategies have advanced the rigor of the predictions to validate the role of the residues, a

means of unequivocally demonstrating that the residues participate in a contiguous signaling

network and/or an energy network is difficult to deconvolve. Suggestions that contiguous

pathways similar to those proposed by these methods may exist alongside energetic pathways

[38,40] beg the question as to whether energetic pathways lacking the constraint of contiguity

could exist and be missed by current lines of investigation.

We have drawn upon path finding, a well-known problem from the graph theory area of

mathematics, to investigate the probability of paths in the model protein systems. A graph is a

network consisting of nodes connected by edges to the nodes with which they interact [48,49].

In our work, nodes represent amino acid residues in the protein, and edges represent the resi-

dues within a specified cutoff distance as measured in three dimensional space using the xyz

coordinates of the structure. The goal of the algorithm is to find the shortest path from the

starting node to the end node in the fewest moves, preferably in a short amount of computa-

tional time. To determine the significance of the pathways in proteins, we are randomly select-

ing a subset of the residues in the protein and asking whether they make a contiguous pathway

between the allosteric side and the ligand binding site. We are therefore making a graphical

representation of a subset of the protein, and searching for the shortest path as evidence for

the existence of any path between the allosteric and binding sites within the protein. If a short-

est path exists then a contiguous pathway between the allosteric and binding sites exists within

the protein in the chosen subset of residues. If a shortest path does not exist, then a contiguous

pathway does not exist. We need not specifically find the shortest path. However, if any path,

including the shortest, exists, the criterion for one existing pathway has been met, and there-

fore is a valid approach, allowing us to take advantage of the algorithm from graph theory.

Several algorithms can be employed to conduct path finding in a graph[50]. The simplest is

the depth first search (DFS) [51–54]. The algorithm can be understood as follows. Start at the

start position. For each node sharing an edge with the current node, check if it is connected to

the end. If not, check if it shares edges with any additional nodes. If no, it is a dead end and

therefore does not lead to a successful path; skip it. If yes, recursively continue the search. This

algorithm is guaranteed to find a path if it exists, but as an exhaustive brute force search it is

the least efficient method.

The breadth first search (BFS) algorithm [55] provides an alternative strategy with improve-

ment on search time for a path. This algorithm guarantees a path to the goal (if it is possible

and it guarantees finding the shortest one. The algorithm works by searching all the nodes

immediately. The current one succeeding the current one before stepping deeper into the

search. The other option are returned to the queue in case the shortest path is not found and

these options need to be explored.
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The A� algorithm [56–58] introduces a cost function as a means of including a priori

knowledge to bias the search. Thus an intelligent next best step can be taken to maximize

the chances of completing a path. The cost function f(x) is given as the sum of the functions

g(x) and h(x). The function g(x) represents the cost to arrive at the current node. The func-

tion h(x) represents a heuristic best guess estimate at the cost to reach the final node from

the current position. A reasonable estimate is the Euclidian distance between the node and

the end, and is often used. Similar to BFS, this is computed for all of the hierarchically

equivalent next steps. The one with the shortest distance is chosen for the next move. This is

the most efficient algorithm because it searches with an informed bias. In light of the possi-

bility that both energetic and positional pathways could exist or coexist in allosteric pro-

teins, and the challenges with unequivocally demonstrating experimentally that a signal

travels in a specific path, the aim of this work is to establish a benchmark for the statistical

significance of finding contiguous pathways in a protein. Because the size of the amino acid

residues varies considerably, a numerical approach using the structures of proteins has been

taken. We explore a null model for the random selection of 20% of amino acids in the

model proteins, commensurate with the number taken from SCA analysis. In this work we

report on the benchmarks for three model systems: PDZ domain, full length p53 protein

including two intrinsically disordered regions, and MutS, a DNA repair enzyme featuring

allosteric signaling between the ATP hydrolysis site and the DNA binding site over one of

the largest signaling distances characterized to date.

2. Results

The success rate of pathways in PDZ, p53, and MutS were assessed using the two algorithms,

depth-first search (DFS)[48] and A�[57]. Implementation of the A� algorithm was motivated

by DFS limitations to analyze large molecules. Using DFS and a distance cutoff of 6 Å, 1 trial

with 10 selections took just short of 2 hours (6,926 seconds) to run. Using A� decreased run-

times by ~6 orders of magnitude, taking 704 seconds to run 3 trials of 100,000 selections each,

a calculation that would have taken over six years with the original algorithm.

Our findings indicated that the prevalence of contiguous pathways depends on the system.

In the model system PDZ, the rate at which successful pathways were found using 20% of the

protein residues was 51% (Fig 1, Panel A). Fig 1 Illustrates some sample pathways found by the

algorithm using the 6Å cutoff, as well as examples where the pathway failed to connect the

active and allosteric site. For example, the pathway in Panel A progresses from residues 376 to

367 to 388 to 313, and the selection for that pathway was the set {308, 313, 316, 318, 327, 337,

348, 361, 366, 367, 370, 374, 373, 376, 383, 388, 394, 398, 401, 405, 410, 411, 415}. The length of

the pathways varied from short and direct (4 residues, panel A) to long and meandering (12

residues, panel D). The algorithm identified lack of contiguous pathways for given selections

due to failure to find selected neighbors around the start or end, or a lack of a nearest neighbor

to complete any contiguous path between the ends. Fig 2 shows the rate of successfully obtain-

ing pathways with a random selection of 20% of the residues in the protein. The number of

selections was varied for each of the systems in order to determine the number of runs

required to reach convergence. Since PDZ was the smallest system studied, it was ideally suited

for carrying out pilot studies to gauge an appropriate number of selections and trials required

to ascertain convergence on the success rate of pathway formation. Ten trials with the number

of selections of protein residues varying from 10 to 100,000 were carried out (Fig 2A). With 10

selections per trial, the success rate was not yet converged, but the convergence around 51%

was evident with 1,000 trials, which was confirmed by trials with 100,000 selections (51%,

stdev = 0.12).
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Although signaling pathways in p53 due to post translational modification have not yet

been studied experimentally to our knowledge, the results indicate that connecting the site

of modification with the DNA binding interface is possible. Fig 3 panels A and B illustrate

two of the numerous possibilities. The success rate converged at 30% (stdev = 0.078, 1,000

selections) with a similar number of trials and selections as PDZ (Fig 2 Panel B). This was

also confirmed by carrying out further trials out to 100,000 selections each. For the largest

and structurally most complex protein, MutS, the success rate dropped to 3% (stdev = 0.11

at 1,000 selections, Fig 2 Panel C). The previously reported SCA pathway in MutS did meet

the signaling criteria as expected. Thus, moving forward we opted to work at the 1,000 selec-

tion level as a reasonable compromise between computation time and convergence level for

all three proteins.

To test the variation of the results based on the chosen 6Å cutoff, values encompassing 0 to

100% of the residues as neighbors was tested (Fig 4). All three curves follow a general sigmoidal

shape and differ in the point at which they attain 95% pathway rate.

Fig 1. PDZ contiguous pathway examples. The PDZ protein backbone is shown in a cyan tube (PDB ID 1BE9). The allosteric signal travels between the

allosteric effector binding site to the peptide ligand binding site (residues Arg 313 (top) and Ala 376 (bottom) highlighted in red ball and stick representation).

The 20% of residues randomly selected for the trial appear in dark blue ball and stick. In panels (A-D), lime green balls highlight residues forming a

successful contiguous pathway at the 6Å cutoff level. A short, direct path of 4 (A) and 5 (B) residues connects the sites. Longer meandering paths were also

discovered: 8 residues (C) and 14 residues (D). In panels (E) and (F), examples of failed pathways are shown. A red surface shows where the pathway

failed to connect.

https://doi.org/10.1371/journal.pone.0188616.g001
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Fig 2. Pathway success rates. Convergence of the successful formation of contiguous pathways was

determined for each model system. The x-axis indicates the number of selections of random residues. The
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3. Discussion

To understand the likelihood of emergence of contiguous pathways and their uniqueness we

have undertaken a study involving the random selection of 20% of amino acid residues in

three proteins of various sizes and structural complexity. Allosteric signaling in proteins could

occur via a contiguous pathway or through an energy landscape perturbation that does not

necessitate the change of the ensemble average. Up to this point, studies of allosteric signaling

via contiguous pathway signaling have been most prevalent in the literature, although the

energy landscape model is not without precedence. The nature of the energy landscape signal

renders it more difficult to detect experimentally, although it could exist either on its own or

alongside a pathway mechanism. In this study we found contiguous pathways to emerge in all

rate at which any pathway connecting the active and allosteric site, subject to the 6Å distance constraint, is

shown on the y-axis. The horizontal line indicates the converged value. (A) PDZ (number of trials = 10 at each

selection level), (B) p53 (number of trials = 3 at each selection level), (C) MutS (number of trials = 3 at each

selection level).

https://doi.org/10.1371/journal.pone.0188616.g002

Fig 3. Successful pathway examples in p53 and MutS. The rendering and color scheme is as in Fig 1. (A,

B) Contiguous p53 pathways connect the post -translational modification site Ser 46 (top red ball and stick) to

Lys 120 (bottom red ball and stick) in the DNA binding domain at the interface with the DNA. (C,D). MutS

pathways connect the ATP binding site residue Val 561 (top red ball and stick) with Leu 41 (bottom red ball

and stick) interacting with DNA in the active site.

https://doi.org/10.1371/journal.pone.0188616.g003
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systems tested with a frequency ranging from rarely (3% in MutS) to about half of the trials

(51% in PDZ).

Then range of success of pathways across the three model systems suggests that the signifi-

cance of pathways may occur in a system specific manner. The pathways are most significant

in the system exhibiting the greatest degree of complexity. MutS is a multidomain protein with

12 subunits, and also exhibits the greatest geometric complexity with its characteristic “theta”

shape. The p53 protein also has multiple domains. Both of these systems may be susceptible to

occurrence of bottlenecks in network connectivity due to geometrical constraints. A similar

situation exists in p53, in which the pathway must extend across two domains in order to con-

nect to the DNA binding site. Since N and C terminal domains are known to be highly mobile,

connection as a bottleneck may become even more pronounced if the dynamic structure were

to be taken into account. The single domain globular nature of PDZ lent itself to the most fre-

quent emergence of pathways.

The pathways found in this study have revealed insight into the model systems studied and

suggest a protocol to gain insight into other systems of interest. In PDZ, a pathway of contigu-

ous residues has already been proposed by SCA and tested through mutagenesis of its surface

residues [39]. Our studies suggest that pathways in globular proteins such as PDZ may exist

with great abundance, since they appeared in more than half of the trials. Evolution may select

for multiple signaling pathways simultaneously. Such redundancy would shore up the integrity

of signaling in these proteins against mutational insults. Furthermore, many of these pathways

may not be involved in signaling at all. Identifying residues involved in allosteric signal trans-

duction constitutes an important first step, but the abundance of paths purely by chance

underscores the importance of taking predictions as viable hypotheses for further testing. Still

even with further testing, be it by computational or experimental means, proving which net-

work was involved remains difficult. The possibility that false positives for signaling pathways

in globular proteins may be especially high suggests that energetic based signaling, which does

not require a contiguous network of residues, may also be playing a role. The existence of a

contiguous pathway is not necessarily exclusive of other pathways.

Fig 4. Success of pathways as a function of neighbor distance cutoff. The distance requirement for the

contiguous pathway was varied (number of selections = 1000, number of trials = 3) for the three model

systems, and was fit with a logistic curve. The best fit equations by system are given by system. PDZ:

y = 100.663 + (5.015053–100.663)/(1 + (x/150.7424)^5.362259)^24925470 p53: y = 96.11989 + (0.4398672–

96.11989)/(1 + (x/33.24754)^10.47436)^21720600 MutS: y = 100.1441 + (2.080954–100.1441)/(1 + (x/

8.69924)^15.53203)^0.3183134.

https://doi.org/10.1371/journal.pone.0188616.g004
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The guardian of the genome, the p53 tumor suppressor protein has been considered here in

its full length as a putative allosteric protein on the basis of reports of changes in DNA binding

affinity due to distal post translational modification [59,60]. Adopting this view has allowed us

to propose that contiguous signaling pathways in this protein could exist. The emergence of

pathways in this protein appears less frequently than in the globular PDZ but more frequently

than in the large multi-subunit MutS. Given that post translational modifications frequently

occur in the disordered N and C terminal regions [61,62], signaling via a change in dynamics

that is propagated through a contiguous or energetic network constitutes an interesting avenue

to pursue.

The DNA repair enzyme MutS is the most complex protein in the study, and also the most

difficult in which to find viable contiguous pathways. This lends itself to the idea that path-

ways, particularly those with verification, are likely to be more significant than those in simpler

proteins. We were able to verify that the previously identified path is found by this method.

The connectivity suggests that pathways in such complex proteins likely will involve overcom-

ing bottlenecks, a probable obstacle for the emergence of contiguous signaling pathways in

large proteins.

Geometric considerations in the formation of contiguous signaling pathways can be under-

stood in terms of a Markov process (Fig 5). The path begins at the site of allosteric effector

binding and terminates at the ligand binding site. A successful path iterates through transitions

within or between the boundary and/or interior states until the end is reached. A failing path-

way terminates through transitioning to the termination state representing no further residues

within the neighborhood of any pathways can be found. The properties of the border and inte-

rior states reflect differences based on the number of neighbor residues in each category. In

the interior state, residues have many neighbors whereas in the border state, the number of

neighbors is lower. Having fewer neighbors decreases the chances of having a neighbor chosen

Fig 5. Contiguous pathway as a Markov process. Allosteric signaling via a contiguous pathway can be

represented as a Markov process along a series of protein residues. The signal originates at the allosteric site

and proceeds to the border state. This may transition to itself, or to the interior state. Either may transition to

the termination state, indicating a pathway that failed to connect the allosteric site to the active site. The

interior state differs from the border state in that residues in this state have a full complement of neighbors

packed around them, whereas residues on the border lack some neighbors due to geometry. The thickness of

the arrows schematically represents the frequency of transition between states. The self transition of the

interior state tends to be higher than the self transition in the border state. Conversely, the border state tends

to transition to the termination state more frequently than the interior state.

https://doi.org/10.1371/journal.pone.0188616.g005
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in the selection to continue the path. Therefore, border states have a higher propensity to tran-

sition to the termination state.

Considering this model, the difference between pathway frequencies can be understood as

a change in the equilibrium between the border and interior states. Because the number of

neighbors a given protein has depends upon the local packing and size of its side chain as well

as those in its vicinity, using a numerical solution to empirically observe the pathway fre-

quency is required for each system of interest. To understand the general trends, a lattice pro-

tein model with systematic modulation of residues of regular size could be developed.

However, to understand the trends from this study, let us assume that the densities of the

packed portion of the proteins are equal and that the average number of neighbors does not

change between proteins. PDZ, being a globular protein, has the smallest surface to volume

ratio and therefore the least residues on the border. In this case, the model will be in the inte-

rior state most of the time, most residues will have ample neighbors such that the randomly

chosen residues will frequently appear in the list of neighbors, and the next step is often possi-

ble. However, in the case of more geometrically complex proteins, the geometry dictates that

the surface to volume ratio is larger; more states have fewer neighbors. Thus the path is more

prone to termination. This is exemplified in p53 and to a greater extent in MutS, which both

require multidomain signaling to transmit the signal. In the Markov model, this is represented

by a higher probability to transition to the border state, which in turn is more likely than the

interior state to transition to the termination state.

This idea is also borne out in the study of varying cutoff distances. When the cutoff

approaches a bond length, pathways can not be formed. As the cutoff becomes larger, the

larger the sphere encompassing neighbors becomes, and the more likely a residue from the

random 20% selection will be a viable next step. For the smaller PDZ and p53 proteins, path-

ways were readily found when the cutoff was around 10Å. However, for the much larger pro-

tein MutS, a cutoff of around 18Å was required to observe the same effect.

The unexpectedly high prevalence of contiguous networks in light of the possible existence

of energetic pathways which do not have the contiguity constraints opens the possibility that

more energetic pathways than have been recognized up to this point may exist or coexist with

contiguous pathways. The duplication of the signaling in proteins could be an evolutionary

mechanism by which the essential functionality of signaling is preserved in a robust form resis-

tant to point mutations.

The elucidation of all possible allosteric networks in proteins could bear importance on

rational design of allosteric drugs. With the emergence of means by which protein networks

can be predicted coupled with development of tests to verify allosteric control, engineering

small molecules to interact with the sector is now becoming possible. Recognition of all possi-

ble networks could open greater opportunities for allosteric control of proteins through ratio-

nal design strategies.

In conclusion, we have successfully tested the emergence of pathways in proteins by ran-

domly selecting 20% of the amino acid residues and asking what percent of those trials connect

points of allosteric regulation to the binding site in a continuous pathway. The findings indi-

cate that the answer varies considerably with the system, but some general principles have

emerged. Pathways most readily formed in the small globular protein and increasing size and

complexity made their emergence more challenging. Thus we have provided benchmarks for

the significance of randomly generated pathways, and suggest a method by which other sys-

tems of interest may be tested. We suggest that the observed trends may be considered as a

Markov process, with the most important factor being the prevalence of neighbors to deter-

mine how readily paths may form. Given that pathways may be more abundant than previ-

ously thought particularly in globular proteins, the importance of verifying the signaling paths

Dependence of prevalence of contiguous pathways in proteins on structural complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0188616 December 12, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0188616


becomes apparent. Furthermore, it has suggested that several pathways may coexist. The exis-

tence of contiguous pathways does not necessarily rule out the possibility of other signaling

pathways.

4. Methods

Protein model systems. The model systems chosen were PDZ, p53, and MutS, selected to span

a range of sizes and shapes. PDZ is a well-known relatively small allosteric protein in which a

pathway has already been posited [39]. The starting structure was the crystal structure 1BE9

[63]. Note that the numbering of residues as found in the crystal structure, 301 to 415, was

maintained. MutS was chosen as a multidomain allosteric protein with a 100 Å distance tra-

versed by the signal. The starting structure was the 1NNE crystal structure [64], with some

minor adjustments made to convert it into the biologically relevant structure as previously

reported [38,65]. The protein p53 was chosen for its intermediate size and complexity, having

a post-translationally modified site at S46 in the N-terminal domain that propagates to affect

DNA binding in the DNA binding domain [59,60]. Signaling pathways in p53 have not yet

been reported to our knowledge, but may be of interest for further studies of the mechanism of

action of this protein critical for cancer prevention. The starting structure was an engineered

structure of the full length sequence, as this has not yet been available as a crystal structure due

to the highly flexible N and C terminal domains. The UniProt[66] sequence ID P04637 was

used as input to the phyre structure prediction [67] and the full length protein was obtained.

Casting the problem in graph theory. A graph G is defined G = (N,E,f(x)) in which each

node n 2 N represents a state, which in our case is an amino acid residue in a protein. Each

edge is defined as the transition between nodes in Euclidean space or edge (n,n0) 2 E. In our

work, an edge is drawn if the Euclidean distance between amino acid residues is below a speci-

fied cutoff c. Search algorithms can be used to find paths within graphs. In the A� algorithm, f

(x) is the heuristic cost function and is defined as the sum g(x) + h(x). g(x) represents the path

cost function, indicating the cost from the start to the current node ni. h(x) is the heuristic esti-

mate of the cost from node ni to the end node nend. Here, to obtain the value for h(x) take the

straight line Euclidean distance from the xyz coordinates of the amino acid at ni to the amino

acid at nend as the distance of the residues using distances of residues in the pairwise distance

matrix.

Pairwise distance matrix. The coordinates for the model systems were converted to the

native crd and prmtop formats using tleap from the AMBER suite of programs [68–70]. In

order to compute the distances between residues for establishing the specified cutoffs for viable

pathways, the nativecontacts function from the AmberTools14 Suite [69,71] computed the

pairwise atomic distances between residues and returned the minimum. This was used to gen-

erate a residue by all residue distance matrix. A python dictionary was constructed for each

distance criterion for each model protein. A dictionary key was created for each residue in the

protein, and its value corresponded to a list of the neighboring residues within the desired dis-

tance. This translated the molecule to a graph data structure.

Selection of subset of residues. To carry out the pathway search, for each trial 20% of the

protein residues were selected at random. This percentage was chosen to be commensurate

with the number of residues generated by the SCA pathway method [39,72,73]. In each combi-

nation, the starting point (allosteric site) and ending point (active site) were fixed, and the rest

of the 20% were selected randomly. A reduced version of the original dictionary can be created

containing only these selected points in both key and values, generating a smaller graph each

time as a subset of the original. This guaranteed that pathways could only be made between

residues that were both sufficiently close and included in the random 20% selection (Fig 6).
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The Python code used for this project is available in the Supporting Information (S1 File). The

Visual Molecular Dynamics software [74,75] rendered all molecular visualizations.

Convergence. Since there are C(113, 21) (~ 1020) choices in PDZ and C(1528, 304) (~1020)

choices in MutS, experimentation on the number of selections required us to determine con-

vergence with use of a subset in order to make the calculations tractable. For a given selection

of 20% of the residues, we evaluate whether a pathway can be found. For a given trial, a speci-

fied number of selections was chosen. We sequentially increased the number of selections per

trial until batches of 10 trials were converged. Thus, the sampling was replicated at two

Fig 6. Selection process for finding pathways. (A). In purple is arbitrarily selected residue 311 of PDZ

(1BE9)[63] surrounded by the residues within 6A (lime). (B) Overlaid on panel A are the randomly selected

residues representing 20% of the protein (dark blue). The residues that are both within the 6Å cutoff and were

included in the random selection have blue bonds and lime spheres. In this case, four residues (309, 313, 360,

390) met both criteria and are therefore possible next steps in the pathway.

https://doi.org/10.1371/journal.pone.0188616.g006
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independent levels. Once the number of required selections was determined, we then varied

the distance criterion, the criterion for forming pathway between any two residues. As

described above, separate corresponding dictionaries were used. The online program MyCur-

veFit from MyAssays Ltd. was used to fit 5 parameter logistic curves (asymmetric sigmoidal

curve) to the data using the equation y ¼ dþ a� d

1þ x
cð Þ

b
� �m where a through d are fit parameters.

Path finding with search algorithms. We used a depth first search algorithm (DFS,

described in Introduction) [48] to exhaustively search for pathways in PDZ to determine

whether a pathway existed using the given selection. This method was chosen as a proof of

concept to determine whether a pathway could exist by exhaustively checking every single one.

Since our criteria for success is only whether a pathway can be created, some strategies were

implemented to better use a traditional depth-first search algorithm. If the start or end points

have no nearby points, the combination fails. Our DFS algorithm also chooses the option clos-

est to the end point first. While still an exhaustive search, it finds the direct paths faster than an

ordinary DFS. In an effort to run the much larger system MutS, a more tractable solution was

required due to the computation time. We employed an A� search algorithm (described in the

introduction) [57] and used the first as a point of validation on PDZ. The A� search evaluated

each selection for whether a pathway existed. We increased the number of selections per trial

until we saw convergence across trials. The Python 3.4 code was run on a MacBook Pro 2014

with 2.8GHz Intel Core i7 processor with 16G of ram, or on Wesleyan University’s High Per-

formance Computing cluster, Microway GPU-HPC, parallelized across 2 K20 GPUs having

256 GB of memory.

Supporting information

S1 File. Python code used for this project to carry out the pathway searches is provided.
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