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catalysts in the chelation-assisted
hydroacylation of alkenes and alkynes†
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The use of homogeneous Brønsted acid cocatalysts (such as benzoic acid) in hydroacylation reactions via

imine intermediates has been extensively studied. However, the use of heterogeneous cocatalysts has been

limited to montmorillonite K10. Thus, we can use other solid acids to increase the efficiency of the reaction.

In this study, we describe the effects of sulfated zirconia, Al-MCM-41 or superacid modified

montmorillonite on the hydroacylation of alkenes and alkynes with aldehydes via imine intermediates

and in the presence of the Wilkinson complex. Furthermore, we addressed the dual role of

montmorillonite, a redox reagent in the presence of TEMPO and an acid solid, allowing the direct use of

benzyl alcohols as substrates to generate saturated or a,b-unsaturated ketones.
Introduction

The transformation of an aromatic or aliphatic aldehyde into
a saturated or a,b-unsaturated ketone involves the hydro-
acylation of alkenes or alkynes.1 This strategy of synthesis
considers the aldehydic C–H bond as a functional group that
can be activated to form a C–C bond in the presence of transi-
tion metal catalysis.2 In the overall catalytic hydroacylation
process, the principal drawback is the decarbonylation of
aldehyde,3 which results in the formation of carbonyl-metal
complexes and alkanes (Scheme 1a). The following strategies
have been used to avoid this problem: (i) the use of a b-sulde4

or b-OR5 group in the substrate2 (Scheme 1b) and (ii) the use of
reversible imine formation with 2-aminopyridines6 (Scheme 1c).
Both of these approaches involve the assistance of chelating
groups to stabilise the intermediate that results in the forma-
tion of a ketone. In the last protocol, the in situ formation of
imines from aldehydes is performed in the presence of aniline
and benzoic acid as cocatalysts.7 This imine reacts with alkenes
in the presence of Wilkinson's catalyst to generate ketimines,
which are hydrolysed to saturated ketones (Scheme 1c).8
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Alternatively, the use of montmorillonite K10 (ref. 9) as an
efficient acidic solid and reusable cocatalyst to generate imines
has been described. However, the study of other solid acids with
different properties and structural characteristics has not been
explored, even though the use of solid acids as cocatalysts in
organic reactions is attractive due to the recyclability of solid
materials.10

Thus, in this work, we chose to use three structurally
different solid acids, namely, sulfated zirconia (SZ),11 Al-MCM-
41 (ref. 12) and montmorillonite13 modied with a superacid
Scheme 1 Hydroacylation reaction: (a) in the absence of chelating
groups, (b) with the use of a b-sulfide or b-OR chelating group and (c)
via an imine intermediate.
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(CF3SO3H), to develop a cooperative system through which
hydroiminoacylation of the corresponding aldimines generates
ketones (Scheme 1c). Additionally, we considered extending this
study to a process in which a simple alcohol is used as the
aldehyde precursor in the presence of modied montmoril-
lonite and TEMPO to generate the ketone. To the best of our
knowledge, montmorillonite has not been used in similar dual
processes (redox and acid catalysis).
Results and discussion
Materials

The SZ investigated in the present study was synthesised by the
sol–gel technique and characterised by X-ray powder diffraction
(XRD).14 Fig. 1a shows the diffractogram for SZ, in which the
characteristic pattern of the crystalline tetragonal phase can be
observed, given by the reections at 2q = 30.21°, 35.35°, 50.21°,
59.23°, 60.17°, 62.84°, 74.78° and 81.78°. These values are
congruent with what is described in the literature14 for the
crystalline tetragonal structure of a super acid material.

The mesoporous material Al-MCM-41 was synthesised by an
ultrasound-assisted technique.15 The structure of the meso-
porous material was conrmed by XRD. Fig. 1b shows the dif-
fractogram for Al-MCM-41, in which reections can be observed
at 2q = 2.2° and 4.0°. These values are identical to those
described in the literature for these kinds of materials.

On the other hand, natural montmorillonite was treated with
concentrated CF3SO3H acid to generate the modied material.
Fig. 1 XRD patterns of (a) SZ, (b) Al-MCM-41 and (c) montmorillonite
modified with CF3SO3H.
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Fig. 1c shows the diffractogram with the characteristic reec-
tions to a montmorillonite clay at 2q = 7.0°, 20.0°, 35.0° and
61.8°.16

The textural properties of the synthesised materials were
determined by nitrogen adsorption–desorption (BET) methods,
allowing us to compare the surface area, pore volume and pore
size of the catalysts. Compared with the SZ and Al-MCM-41
materials, the modied montmorillonite had a larger surface
area and larger pore size (Table 1). This pore size makes this
material go from being microporous to mesoporous according
to IUPAC nomenclature.

Initially, we optimised the typical reaction parameters,
including the catalytic reagents, solvent, temperature, and time,
for the hydroacylation of 1-butene with benzaldehyde, as shown
in Scheme 1c and Table S10 in the ESI.† Subsequently, and
based on the results previously obtained, we focused on
studying the reaction trend with different substrates and the
following different solid acids: modied montmorillonite, SZ or
Al-MCM-41. As shown in Table 2, the hydroacylation of alkenes
in the presence of 2-amino-3-picoline, aniline, Wilkinson's
complex, and toluene as the solvent at 80 °C afforded saturated
ketones 3a–3e in very good yields (80–92%). Similar yields were
observed when the reaction was carried out with alkynes to
generate a,b-unsaturated ketones 3f–3j. In contrast, the yields
of the reaction decrease considerably when the aldehyde is
aliphatic (acetaldehyde), as demonstrated by the yields ob-
tained for ketones 3k and 3l (Table 2). It is important to note
that, in this catalytic system, 2-amino-3-picoline and aniline
were used simultaneously to enhance the formation of the
imine, as described by Castillón et al.9

We think that the difference between the yields obtained
with the three materials may be explained by their acidic
properties and direct inuence on the formation of picolyl
imines. The SZ has H0 # −14,17 Al-MCM-41 H0 # 6.80 (ref. 18)
and modied montmorillonite has H0 # −12.75.19 Therefore,
materials with major acidity properties catalyse the formation
of imines more efficiently.

The efficiency of the SZ and modied montmorillonite
catalysts are compared with previously reported for the
synthesis of 1-phenylheptan-1-one (3c). As shown in Table 3,
similar conversions were obtained when the reaction was
carried out in presence of montmorillonite K10.9 However, the
main differences lie in the excess moles of the 1-hexene used.
We use an excess of 0.5 mmol, in contrast to the 5 mmol excess
required when using montmorillonite K10.9
Table 1 Textural properties of acid materials

Materials

Properties SZ Al-MCM-41
Modied
montmorillonite

BET area (m2 g−1) 90.35 1221.79 185.00
Pore volume (cm3 g−1) 0.12 0.85 0.60
Pore size (Å) 52.01 26.49 107.79

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 2 Hydroacylation reaction in the presence of solid acidsab

a Reaction conditions: aldehyde 1 (1 mmol), alkene or alkyne 2 (1.5
mmol), RhCl(PPh3)3 (5% mmol), 2-amino-3-picoline (20% mmol),
aniline (20%) solid acid (50 mg) and toluene (3 mL). b Yield of the
isolated product aer chromatographic purication.

Table 3 Comparison in the efficiency of different catalytic systems to
obtain 3c

Catalyst

SZ Mont/CF3SO3H Mont/K10

Aldehyde mmol 1 1 2.5
Alkene mmol 1.5 1.5 12.5
Catalyst loading (mg) 50 50 83
Temperature (°C) 80 80 110
Time (h) 1 1 2
Yield % 90a 86a 98b

a Yield of the isolated product aer chromatographic purication.
b 80% Conversion and 98% yield, which were determined by GC.

Fig. 2 Reuse of materials in the synthesis of 3a.

Fig. 3 XRD patterns (a) SZ, (b) Al-MCM-41 and (c) montmorillonite
modified before being reused.
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Reuse of solid acids

We studied the reuse of solid acids in the hydroacylation of 1-
butene with benzaldehyde to form 3a by reactivation of the
materials at 100 °C in an oven under an O2 atmosphere for 12 h.
In the case of modied montmorillonite and SZ, the reaction
yield did not decrease signicantly aer three reuses. Aer one
run, Al-MCM-41 lost its catalytic activity (Fig. 2).

To conrm the homogeneity of catalysts in the reuse reac-
tions, the structures of materials were veried by XRD before
use. Fig. 3 shows the diffractograms of the three materials aer
© 2024 The Author(s). Published by the Royal Society of Chemistry
drying at 100 °C and before being their reused. For SZ, the
characteristic pattern of the crystalline tetragonal phase
observed in the original material was still present (Fig. 3a). The
plane reections at 2q = 30.21°, 35.35°, 50.21°, 59.23°, 60.17°,
62.84°, 74.78° and 81.78° were observed again. In the case of Al-
MCM-41, the original structure was lost (Fig. 3b), which helps
explain the signicant decrease in reaction yield. Fig. 3c shows
the plane reections for montmorillonite at 2q = 7.0°, 20.0°,
35.0° and 61.8°, which are the same as those of the original
catalyst.

Oxidation of benzylic alcohols and hydroacylation

In previous studies, we observed that montmorillonite modied
with CF3SO3H can participate as a Brønsted or Lewis acid
catalyst in organic reactions20 or as a generator of free radical
species in redox processes.21 From this double behaviour, we
focus on studying the hydroacylation reaction of alkenes and
RSC Adv., 2024, 14, 31675–31682 | 31677



Scheme 2 Proposed mechanism for the hydroacylation of benzyl
alcohols.
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alkynes with benzylic alcohols (Table 4).22 The process begins
with the in situ oxidation of benzyl alcohol 4 to aldehyde 1 in the
presence of modied montmorillonite and TEMPO23 to subse-
quently catalyse the hydroacylation of alkene or alkyne 2 and
generate corresponding ketone 3 (Tables 4 and S11, ESI†). This
strategy allowed us to obtain saturated (3a–3e) and a,b-unsat-
urated (3f–3j) ketones in good yields (55–70%). In the case of
aliphatic alcohols, the formation of the nal product was not
observed; only the corresponding carboxylic acid was obtained.
This suggests that, under our reaction conditions, the over-
oxidation of the aliphatic alcohol occurs signicantly faster that
the hydroacylation reaction.

To propose a pathway for this direct hydroacylation reaction
from benzyl alcohol 4a, a series of control experiments were
carried out. Fe3+ was detected in a sample of modied mont-
morillonite by EPR (150 mT and g = 4.36, Scheme 2); thus, the
treatment with CF3SO3H may dissolve structural iron in the
montmorillonite, allowing these free cations to move to the
interlayer of the montmorillonite where the oxidation of benzyl
alcohol to aldehyde is catalysed. In the absence of montmoril-
lonite or its replacement by another free-Fe3+ solid acid (SZ or
Al-MCM-41), ketone 3a was only detected at 10%. When the
reaction was carried out in N2 atmosphere, no nal product
formation was observed. In the absence of Wilkinson's complex
and long reaction times (1 to 7 h), benzoic acid was generated in
65% yield. Moreover, in the absence of TEMPO, a complex
mixture of benzyl alcohol oligomerization products was
observed via NMR. Based on these results, a putative reaction
Table 4 Hydroacylation of benzylic alcoholsab

a Reaction conditions: aldehyde 1 (1 mmol), alkene or alkyne 2 (1.5
mmol), TEMPO (10%), RhCl(PPh3)3 (5% mmol), 2-amino-3-picoline
(20% mmol), aniline (20%) solid acid (50 mg) and toluene (3 mL).
b Yield of the isolated product aer chromatographic purication.

31678 | RSC Adv., 2024, 14, 31675–31682
mechanism is shown in Scheme 2. The Fe3+ present in the
modied montmorillonite is responsible for the oxidation of
TEMPO to generate TEMPO+, which oxidises alcohol 4a to
aldehyde 1a.24 Air acts as an oxidant in the rst step of the
process, promoting the oxidation of Fe2+ to Fe3+ from mont-
morillonite. On the other hand, protons and aluminium ions
present in solid acids (Brønsted or Lewis acid sites) are
responsible for catalysing the formation of imine 5a. Then,
Wilkinson's complex participates in the second part of the
process,25 the hydroacylation of the imine to obtain 7a via the
rhodium–aminoacyl complex 6a. Finally, the hydrolysis of 7a
afforded saturated ketone 3a.
Conclusions

In summary, we demonstrated that different solid acids
(sulfated zirconia, Al-MCM-41 or montmorillonite superacid)
can be used as cocatalysts in the hydroacylation of alkenes and
alkynes via an imine intermediate and in the presence of Wil-
kinson's complex. Due to the stability of SZ, Al-MCM-41 and
modied montmorillonite under reaction conditions, the
catalysts can be reused with similar yields. Additionally, the
catalytic process was carried out from benzylic alcohols with in
situ oxidation of alcohol in the presence of modied montmo-
rillonite and TEMPO to afford the corresponding aldehyde. In
the latter case, we demonstrate the usefulness of the dual
character of montmorillonite by utilizing it rst in a redox
process and then as an acid catalyst.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Experimental
General information

Triuoromethanesulfonic acid, zirconium n-propoxide (70% n-
propanol), 2-propanol, sulfuric acid, cetyltrimethylammonium
bromide, triethylamine, tetramethylammonium hydroxide, TEOS,
aluminium nitrate nonahydrate, benzaldehyde, chloridotris(-
triphenylphosphine)rhodium(I), 2-amino-3-picoline, aniline, 1-
butene, 1-pentene, 1-hexene, 1-nonene, 1-dodecene, phenyl-
acetylene, 1-ethynyl-4-nitrobenzene, 1-ethynyl-3-nitrobenzene, 1-
chloro-2-ethynylbenzene, 1-bromo-4-ethynylbenzene, p-anisalde-
hyde, acetaldehyde, toluene, hexane, and ethyl acetate were
purchased from Sigma-Aldrich. Microwave irradiation experi-
ments to were performed using a Discover System (CEM Corpo-
ration) single-mode microwave with standard sealed microwave
glass vials. The organic reactions were monitored by TLC carried
out on 0.25 mmMerck silica gel plates. The developed TLC plates
were visualised under a short-wave UV lamp or by heating aer
they were dipped in Ce(SO4)2. Flash column chromatography
(FCC) was performed using silica gel (230–400) and employed
a solvent polarity correlated with the TLC mobility. Yields refer to
the chromatographically and spectroscopically (1H and 13C)
homogeneous materials. NMR experiments were conducted on
a Varian 300 or Bruker 500 MHz instruments in CDCl3 (99.9% D)
and CD3OD (99.8% D) as solvents; the chemical shis (d) were
referenced to CHCl3 (7.26 ppm 1H, 77.00 ppm 13C), CH3OH
(4.87 ppm 1H, 49.00 ppm 13C), or TMS (0.00 ppm). The chemical
shis are reported in parts per million (ppm) and coupling
constants J are given in hertz (Hz). The elemental analyses were
carried out in an Elemental Analyzer Thermo Scientic/Flash 2000
equipment. The measurements of EPR were made with a Jeol JES-
TE300 X band fashions spectrometer with a cylindrical cavity in
the mode TE011. The external calibration of the magnetic eld
was carried out with a precision gaussmeter, Jeol ES-FC5. Powder
X-ray diffraction (XRD) was performed using a Stoe Stadi-P Cu
diffractometer with Cu Ka1 (using 40 kV and 30mA). The nitrogen
adsorption–desorption analysis of the materials was obtained at
−196 °C on Micromeritics ASAP 2020 equipment. The chemical
compositions of natural montmorillonite and modied mont-
morillonite were determined by energy-dispersive X-ray spectros-
copy (EDXS), using an electronic spectrometer microprobe EPMA,
JXA8900-R, JEOL. FT-IR spectra were recorded on a Nicolet Magna
750 spectrometer and data collection was performed using DRIFT.

Synthesis of sulfated zirconia (SZ)

Zirconium n-propoxide (20 mL, 70% n-propanol) and 2-prop-
anol (30 mL) were added to a 250 mL Erlenmeyer ask and
stirred with a magnetic bar. Acid solution (1 mL 98% sulfuric
acid in 3.2 mL distilled H2O) was added dropwise to hydrolyse
the zirconium n-propoxide to obtain a gel. The solid was ltered
and dried at 80 °C until complete alcohol evaporation, then
calcined in air at 600 °C for 6 h.

Synthesis of Al-MCM-41

Cetyltrimethylammonium bromide (7.3 g) was mixed with
deionized H2O (200 mL) at 30 °C, then triethylamine (3.3 mL)
© 2024 The Author(s). Published by the Royal Society of Chemistry
was added. Aer stirring for 15 minutes, TMAOH (18 mL,
10 wt%), TEOS (22.4 mL) and Al(NO3)3$9H2O (18.75 g) were
added, and the solution was stirred for 1 hour. The resulting gel,
with molar composition 1TEOS : 0.2CTMABr : 0.6EA :
0.2TMAOH : 0.05Al(NO3)3$9H2O : 150H2O, was placed in glass
bottles and sonicated for 4 h. The precipitated solid was recov-
ered by ltration and washed with deionized water, dried at 80 °C
overnight and calcinated at 540 °C for 6 h under air ow.

Modication of montmorillonite

50 g of natural montmorillonite was ground in a mortar and
suspended in 1000 mL of deionized H2O. The mixture was
stirred for 24 h and the suspended montmorillonite was sepa-
rated by centrifugation (600 rpm for 15 min). This process was
repeated three times and then the montmorillonite was dried at
100 °C under vacuum for 72 h to obtain a white solid. 10 g of
this solid was suspended in 300 mL of deionized H2O and
stirred for 72 h. Subsequently, a solution of CF3SO3H (100 mL,
0.18 M) was added, and the mixture was stirred for 24 h. The
solid was recovered by vacuum ltration and washed with
acetone (50 mL). Finally, the montmorillonite was dried at
100 °C under vacuum for 72 h to obtain a white solid.

Standard reaction procedure to hydroacylation reaction from
aldehydes

In a 10 mL tube of microwave with stir bar, 50 mg of solid acid,
1 mmol of aldehyde 1, 1.5 mmol of alkene or alkyne 2, 5%mmol
of RhCl(PPh3)3, 20%mmol of 2-amino-3-picoline, 20%mmol of
aniline and 3 mL of toluene were added. It was irradiated for 1 h
in the microwave at 80 °C. The mixture was dried in a rotavapor
and puried for chromatography column.

Standard reaction procedure to oxidation of benzylic alcohols
and hydroacylation

In a 10 mL tube of microwave with stir bar, 50 mg of solid acid,
1 mmol of alcohol 4, 1.5 mmol of alkene or alkyne 2, 10%
TEMPO, 5% mmol of RhCl(PPh3)3, 20% mmol of 2-amino-3-
picoline, 20% mmol of aniline and 3 mL of toluene were
added. It was irradiated for 2 h in the microwave at 80 °C. The
mixture was dried in a rotavapor and puried for chromatog-
raphy column.

Characterization data

1-Phenylpentan-1-one 3a. 1H NMR (CDCl3, 300 MHz): d 7.96
(ddd, J= 8.4, 2.4, 1.2 Hz, 2H), 7.54 (tt, J= 7.5, 2.4 Hz, 1H), 7.44 (m,
2H), 2.96 (t, J= 7.2 Hz, 2H), 1.71 (quint, J= 7.2 Hz, 2H), 1.40 (sext,
J= 7.5 Hz, 2H), 0.95 (t, J= 7.5 Hz, 3H). 13C NMR (CDCl3, 75MHz):
d 200.6, 137.2, 132.9, 128.6, 128.1 38.3, 26.5, 22.5, 14.0. Anal. calcd
for C12H16O: C, 81.44; H, 8.70. Found: C, 81.39; H, 8.65.

1-Phenylhexan-1-one 3b. 1H NMR (CDCl3, 300 MHz): d 7.96
(m, 2H), 7.52 (m, 1H), 7.43 (m, 2H), 2.93 (t, J = 7.5 Hz, 2H), 1.72
(quint, J = 7.5 Hz, 2H), 1.36 (m, 4H), 0.89 (t, J = 6.3 Hz, 3H). 13C
NMR (CDCl3, 75 MHz): d 200.5, 137.2, 132.8, 128.5, 128.0, 38.6,
31.6, 24.1, 22.5, 13.9. Anal. calcd for C12H16O: C, 81.77; H, 9.15.
Found: C, 81.72; H, 9.09.
RSC Adv., 2024, 14, 31675–31682 | 31679
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1-Phenylheptan-1-one 3c. 1H NMR (CDCl3, 300 MHz): d 7.95
(ddd, J = 8.1, 2.4, 1.2 Hz, 2H), 7.52 (tt, J = 7.2, 2.4 Hz, 1H), 7.42
(m, 2H), 2.94 (t, J= 7.5 Hz, 2H), 1.72 (quint, J= 7.5 Hz, 2H), 1.33
(m, 6H), 0.88 (t, J = 6.3 Hz, 3H). 13C NMR (CDCl3, 75 MHz):
d 200.4, 137.2, 132.8, 128.5, 128.0, 38.6, 31.7, 29.0, 24.3, 22.5,
14.0. Anal. calcd for C13H18O: C, 82.06; H, 9.53. Found: C, 81.97;
H, 9.46.

1-Phenyldecan-1-one 3d. 1H NMR (CDCl3, 300 MHz): d 7.96
(ddd, J = 8.1, 2.4, 1.5 Hz, 2H), 7.54 (tt, J = 7.5, 2.4 Hz, 1H), 7.44
(m, 2H), 2.95 (t, J= 7.8 Hz, 2H), 1.73 (quint, J= 7.8 Hz, 2H), 1.30
(m, 12H), 0.87 (t, J = 6.9 Hz, 3H). 13C NMR (CDCl3, 75 MHz):
d 200.5, 137.0, 132.7, 128.4, 128.0, 38.5, 31.8, 29.4, 29.3, 29.2,
24.3, 22.6, 14.0. Anal. calcd for C16H24O: C, 82.70; H, 10.41.
Found: C, 82.63; H, 10.34.

1-Phenyldodecan-1-one 3e. 1H NMR (CDCl3, 300 MHz): d 7.96
(ddd, J = 7.2, 2.4, 1.2 Hz, 2H), 7.54 (tt, J = 7.2, 2.4 Hz, 1H), 7.44
(m, 2H), 2.95 (t, J= 7.8 Hz, 2H), 1.73 (quint, J= 7.8 Hz, 2H), 1.34
(m, 2H), 1.26 (m, 14H), 0.87 (t, J = 6.9 Hz, 3H). 13C NMR (CDCl3,
75 MHz): d 200.7, 137.2, 132.9, 128.6, 128.1, 38.7, 32.0, 29.7,
29.6, 29.5, 29.4, 24.5, 22.8, 14.2. Anal. calcd for C18H28O: C,
83.02; H, 10.84. Found: C, 82.97; H, 10.77.

(E)-Chalcone 3f. 1H NMR (CDCl3, 300 MHz): d 8.02 (dd, J =
8.1, 2.7, 1.2 Hz, 2H), 7.81 (d, J = 15.6 Hz, 1H), 7.63 (m, 2H), 7.53
(m, 5H), 7.42 (m, 2H). 13C NMR (CDCl3, 75 MHz): d 190.6, 144.9,
138.3, 135.0, 132.9, 130.6, 129.0, 128.7, 128.6, 128.5. Anal. calcd
for C16H13BrO: C, 86.51; H, 5.81. Found: C, 86.47; H, 5.76.

(E)-3-(4-Nitrophenyl)-1-phenylprop-2-en-1-one 3g. 1H NMR
(CDCl3, 300 MHz): d 8.26–7.53 (m, 11H). 13C NMR (CDCl3, 75
MHz): d 189.6, 148.5, 141.4, 141.0, 137.5, 133.3, 128.9, 128.8,
128.5, 125.7, 124.1. Anal. calcd for C15H11NO3: C, 71.14; H,
4.38; N, 5.53. Found: C, 71.09; H, 4.31; N, 5.45.

(E)-3-(3-Nitrophenyl)-1-(p-tolyl)prop-2-en-1-one 3h. 1H NMR
(CDCl3, 300 MHz): d 8.49 (dd, J = 2.1, 1.8 Hz, 1H), 8.24 (ddd, J =
8.1, 2.1, 0.9 Hz, 1H), 7.96 (AA0BB0, d, J = 8.4 Hz, 2H), 7.91 (d, J =
7.8 Hz, 1H), 7.81 (d, J = 15.9 Hz, 1H), 7.65 (d, J = 15.9 Hz, 1H),
7.62 (dd, J = 8.1, 7.8 Hz, 1H), 7.33 (AA0BB0, d, J = 8.4 Hz, 2H),
2.44 (s, 3H). 13C NMR (CDCl3, 75 MHz): d 189.1, 148.8, 144.3,
141.2, 136.8, 135.1, 134.3, 130.1, 129.6, 128.8, 124.7, 124.6,
122.4, 21.8. Anal. calcd for C16H13NO3: C, 71.9; H, 4.9; N, 5.24.
Found: C, 71.81; H, 4.83; N, 5.18.

(E)-3-(2-Chlorophenyl)-1-phenylprop-2-en-1-one 3i. 1H NMR
(CDCl3, 300 MHz): d 8.17 (d, J = 15.9 Hz, 1H), 8.01 (d, J= 7.5 Hz,
2H), 7.74 (m, 1H), 7.51 (m, 5H), 7.32 (m, 2H). 13C NMR (CDCl3,
75 MHz): d 190.5, 140.7, 138.0, 135.5, 133.3, 133.0, 131.2, 130.4,
128.8, 128.7, 127.9, 127.2, 124.9. Anal. calcd for C15H11ClO: C,
74.23; H, 4.57. Found: C, 74.17; H, 4.51.

(E)-3-(4-bromophenyl)-1-(p-tolyl)prop-2-en-1-one 3j. 1H NMR
(CDCl3, 300 MHz): d 7.87 (AA0BB0, m, 2H), 7.78 (d, J = 15.1 Hz,
1H), 7.62 (AA0BB0, m, 2H), 7.59 (AA0BB0, m, 2H), 7.34 (d, J =

15.1 Hz, 1H), 6.93 (AA0BB0, m, 2H), 3.85 (s, 3H). 13C NMR (CDCl3,
75 MHz): d 189.2, 161.7, 145.1, 137.1, 131.7, 130.2, 129.8, 127.4,
127.3, 119.0, 114.3, 55.2. Anal. calcd for C16H13BrO: C, 63.81; H,
4.35. Found: C, 63.76; H, 4.29.

4-Phenylbutan-2-one 3k. 1H NMR (CDCl3, 300 MHz): d 7.34
(m, 2H), 7.25 (m, 3H), 2.96 (t, J = 8.0 Hz, 2H), 2.79 (t, J = 8.0 Hz,
2H), 2.17 (s, 3H). 13C NMR (CDCl3, 75 MHz): d 207.4, 140.8,
31680 | RSC Adv., 2024, 14, 31675–31682
128.2, 128.0, 125.9, 44.79, 29.48. Anal. calcd for C10H12O: C,
81.04; H, 8.16. Found: C, 81.35; H, 8.46.

(E)-4-Phenylbut-3-en-2-one 3l. 1H NMR (CDCl3, 300 MHz):
d 7.54 (m, 2H), 7.52 (d, J= 12.3 Hz, 2H), 7.40 (m, 3H), 6.72 (d, J=
12.3 Hz, 2H), 2.38 (s, 3H). 13C NMR (CDCl3, 75 MHz): d 198.5,
143.6, 134.6, 130.6, 129.0, 128.5, 127.3, 27.5. Anal. calcd for
C10H10O: C, 82.16; H, 6.90. Found: C, 82.29; H, 6.98.
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