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Abstract The ventral posterior hypothalamus (VPH) is an anatomically complex brain region

implicated in arousal, reproduction, energy balance, and memory processing. However, neuronal

cell type diversity within the VPH is poorly understood, an impediment to deconstructing the roles

of distinct VPH circuits in physiology and behavior. To address this question, we employed a

droplet-based single-cell RNA sequencing (scRNA-seq) approach to systematically classify

molecularly distinct cell populations in the mouse VPH. Analysis of >16,000 single cells revealed 20

neuronal and 18 non-neuronal cell populations, defined by suites of discriminatory markers. We

validated differentially expressed genes in selected neuronal populations through fluorescence in

situ hybridization (FISH). Focusing on the mammillary bodies (MB), we discovered transcriptionally-

distinct clusters that exhibit neuroanatomical parcellation within MB subdivisions and topographic

projections to the thalamus. This single-cell transcriptomic atlas of VPH cell types provides a

resource for interrogating the circuit-level mechanisms underlying the diverse functions of VPH

circuits.

Introduction
The ventral posterior hypothalamus (VPH) is a functionally and cytoarchitecturally complex region of

the hypothalamus, dominated by the mammillary bodies (MB), a discrete diencephalic structure on

the basal surface of the VPH. Surrounding VPH subregions include the premammillary (PM), supra-

mammillary (SUM), and tuberomammillary (TMN) nuclei as well as the caudal arcuate nucleus (Arc)

and caudal lateral hypothalamic area (LHA). These subregions are embedded within diverse neural

systems, with widespread afferents and efferents, known to regulate distinct physiological and

behavioral functions (Saper and Lowell, 2014; Simerly, 2015; Card and Swanson, 2013). The MB

are best known as the diencephalic branch of the classic limbic Circuit of Papez (Papez, 1937),

which links the hippocampal formation with the anterior thalamus and midbrain/pons, and is critical

for spatial memory in both rodent and primate models, as well as episodic memory in humans

(Vann and Aggleton, 2004; Vann, 2010; Aggleton et al., 2010; Dillingham et al., 2015; Vann and

Nelson, 2015). VPH subregions surrounding the MB are also robust modulators of behavioral state.

The ventral and dorsal PM nuclei are implicated in reproductive and defensive behaviors, respec-

tively (Canteras et al., 2008; Donato and Elias, 2011; Leshan and Pfaff, 2014). The SUM is associ-

ated with arousal and modulation of theta rhythms (Luppi et al., 2017; Pan and McNaughton,

2004; Vertes, 2015). The Arc is a crucial node in the regulation of hunger, satiety, and reproduction
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(Graebner et al., 2015; Andermann and Lowell, 2017; Lehman et al., 2010). Finally, the TMN,

populated by histamine (HA)-synthesizing neurons, is an important modulator of wakefulness

(Brown et al., 2001; Haas et al., 2008; Panula and Nuutinen, 2013).

The functional diversity of the VPH is likely explained by cellular heterogeneity among these neu-

ronal populations, the neural circuits they give rise to, and the complex brain-wide networks in which

they are embedded. A significant obstacle in understanding the circuit-level mechanisms underlying

its function is that VPH neuronal cell type diversity is poorly understood. Here we employ single-cell

RNA sequencing (scRNA-seq) to develop a comprehensive molecular census of transcriptionally dis-

tinct cell populations in the VPH of both male and female juvenile mice. In our unsupervised analysis

of over 16,000 isolated single cells, we identify 18 non-neuronal clusters and 20 distinct neuronal

clusters, the majority of which are glutamatergic. Transcriptionally distinct neuronal populations are

defined by the unique expression of discriminatory markers that include neuropeptides, transcription

factors, calcium-binding proteins, and signaling molecules. We went on to validate differentially

expressed genes in a selection of identified neuron populations through multiplexed fluorescence in

situ hybridization (FISH), ISH data from the Allen Brain Institute (ABA) (Lein et al., 2007), as well as

anterograde tract-tracing in genetically-distinct populations in the MB. Taken together, our identifi-

cation of the population structure and cellular diversity of VPH cell populations provides a resource

for detailed genetic dissection of VPH circuits and interrogation of their specific roles in behavior, in

both health and disease states.

Results

Isolation of single cells from the mouse VPH for transcriptomic analysis
To isolate single cells from the mouse VPH for scRNA-seq analysis, we microdissected the region of

the VPH from fresh brain slices obtained from a total of five male and five female C57BL/6 mice

(P30-34), as described previously (Mickelsen et al., 2017; Mickelsen et al., 2019), in two separate

harvests (see Materials and methods). Single-cell suspensions were loaded onto a Chromium Con-

troller (Figure 1a) and processed using the 10x Genomics platform (Zheng et al., 2017). All VPH

microdissections were mapped for consistency using anatomical landmarks across the rostrocaudal

axis (Figure 1b; Paxinos, 2012). The two harvests used 10x V2 and V3 chemistry, respectively, and

both consisted of separate male and female pools for a total of four separate pools. We found little

sex-dependent differences within each harvest (Figure 1c) and samples from the two harvests were

pooled and batch corrected to account for chemistry-dependent differences (Figure 1—figure sup-

plement 1a; see Materials and methods). In our pooled data set, the median transcripts (UMIs)/cell

was 8,336 and the median genes/cell was 3,415 (Figure 1d). We used the 1,500 genes with the high-

est normalized dispersion for dimensionality reduction using principal component analysis (PCA) and

uniform manifold approximation and projection (UMAP) followed by cluster identification using Lei-

den community detection, identifying a total of 20 clusters in the first iteration of clustering

(Figure 1e,f). Neuronal and non-neuronal clusters were segregated using a two-component Gauss-

ian mixture model trained on the per-cluster average expression of four pan-neuronal markers

Snap25, Syp, Tubb3, and Elavl2 (Figure 1—figure supplement 1b,c) leading to a binary classifica-

tion of neuronal and non-neuronal cells (Figure 1e,f). Subsequent clustering of only neuronal cells

(20 clusters; Figure 1—figure supplement 2a,c) and only non-neuronal cells (18 clusters; Figure 1—

figure supplement 2b,d) showed comparable proportions from each sex and batch.

Identification of marker genes and testing gene specificity with a
classification model
Throughout this study, we present multiple links between the transcriptional signatures of groups of

single cells and their anatomical mapping. A key way in which we represent the shared transcrip-

tional signature of groups of cells is through the presentation of marker genes, the expression of

which is over-represented in a given population, as violin plots, which we use to show

the distribution of transcripts per cell in each cluster for a given gene. While an individual marker

gene may not be sufficient to uniquely describe an individual population, we provide an exhaustive

set of markers that, when used in aggregate, specifically and uniquely identify each population

described herein. Given that the median number of transcripts per cell is a small multiple of the
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Figure 1. Overview of VPH microdissection, single-cell isolation, batch correction, and clustering. (a) Workflow schematic representing the VPH

microdissection from coronal mouse brain slices, single-cell dissociation, sequencing library preparation, and bioinformatic analysis (Mickelsen et al.,

2019). (b) Location of VPH microdissections mapped onto the coronal mouse brain atlas at distances from bregma of �2.54, –2.70, �2.92, and –3.16

mm. Atlas images were modified from Paxinos, 2012. (c) Two-dimensional UMAP plots representing 16,991 single cells from four sequencing libraries

color-coded by mouse sex (left) and the 10x Genomics chemistry version (right) following batch correction. (d) Histograms of unique transcripts (left)

and genes (right) were detected in 16,991 single cells after quality control. Dashed vertical lines represent the median transcripts and genes per cell,

respectively. (e) Heatmap and (f) UMAP plot showing the first iteration of unsupervised clustering revealing 20 unique clusters. Neuronal populations

are disjoint from non-neuronal populations.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Batch correction for sex and 10x Genomics chemistry versions.

Figure supplement 2. Proportion of cells derived from each sample and identification of discriminatory marker genes.

Figure supplement 3. Testing marker gene specificity with a classification model.

Figure 1 continued on next page
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number of genes per cell (Figure 1d), consistent with similar studies (e.g. Mickelsen et al., 2019;

Moffitt et al., 2018; Chen et al., 2017), it is important to verify whether the marker gene expression

presented is specific and robust. We first examined the distribution of transcripts captured per gene

(Figure 1—figure supplement 2e and f) with the genes that we present as markers typically being

the most highly expressed genes in the data set. Moreover, typical marker genes are expressed with

at least 10 counts in a cell, and often with substantially more counts (Figure 1—figure supplement

2g).

We also verified that the markers presented are sufficient to uniquely describe each population.

For this, we built a model that predicts the cluster identity of individual cells using only the expres-

sion of a small number of marker genes (Figure 1—figure supplement 3a). We then computed the

number of incorrect cluster label predictions (as compared to each cells’ original label as shown in

Figure 2b). This computational experiment demonstrates that we can predict the neuronal cluster

identity with over 90% accuracy with fewer than only 80 total genes (Figure 1—figure supplement

3b–d). Notably, this is less than 10% of the 1500 genes used to guide the neuronal dimensionality

reduction and clustering analysis. Moreover, many of the misclassifications are between related clus-

ters that share markers or within the clusters with uncertain cluster identity (ex. GLUT10, GLUT11,

GABA12, GABA13; Figure 1—figure supplement 3e). Most clusters ascribed to discrete anatomical

regions can be correctly labeled with almost 100% accuracy with fewer than five marker genes. This

model suggests that the marker genes for the populations described in Figures 3, 4, 5, 6 and figure

supplements are more than adequate to identify individual cells from these populations.

Major non-neuronal cell types in the VPH
Among non-neuronal cell populations in the VPH, we identified 18 distinct clusters distinguished

from one another by suites of cell type-specific discriminatory markers (Figure 1—figure supple-

ment 4a–d). We resolved six distinct populations of oligodendrocyte lineage cells arranged in a con-

tiguous strand in a UMAP plot (Figure 1—figure supplement 4a), likely reflecting a developmental

gradient of gene expression. These include oligodendrocyte precursor cells (OPC or NG2+ cells;

cluster 1), immature oligodendrocytes (cluster 2), and four oligodendrocyte populations (clusters 3–

6), all of which exhibit a wave of differentially-expressed genes (Cspg4, Fyn, Ctps, Tspans2, Apod,

Klk6, etc.; Figure 1—figure supplement 5a and b) that aligns well with the diversity of functional

markers of the oligodendrocyte lineage in the mouse brain identified through previous scRNA-seq

analyses (Marques et al., 2016; Zeisel et al., 2018; Saunders et al., 2018). We also resolved three

distinct clusters of astrocytes (clusters 7, 8, and 9), all of which are Aqp4+ and Agt+. Clusters 7 and

8 are distinguishable by high expression of Slc7a10 and Htra1 and low expression of Gfap, while

cluster 9 exhibits high expression of both Gfap and C4b (Figure 1—figure supplement 5c and d). In

nearby clusters, we identified tanycytes (cluster 10: Rax+) and ependymal cells (cluster 11: Ccdc153

+, S100a6+; Figure 1—figure supplement 5c and d). In addition, we found other distinct clusters

readily identifiable as macrophages (cluster 12: Mrc1+), microglia (cluster 13: Tmem119+), pericytes

(cluster 14: Rgs5+), vascular smooth muscle cells (VSMCs; cluster 15: Rgs5+, Acta2+), two popula-

tions of putative vascular leptomeningeal cells or VLMCs (cluster 16: Fxyd5+, Slc47a1+; cluster 17:

Dcn+) and vascular endothelial cells (VECs; cluster 18: Pecam1+, Slc38a5+; Figure 1—figure supple-

ment 3b). Our identification of major non-neuronal VPH cell types is based on, and closely aligns

with, previous scRNA-seq analyses from mouse brain (Marques et al., 2016; Zeisel et al., 2018;

Saunders et al., 2018).

Diverse populations of excitatory and inhibitory neuronal cell clusters in
the VPH
Among the neuronal clusters, which contained significantly more genes and UMIs per cell (4334 and

12,065, respectively) than the overall data set, we first examined broad patterns in the expression of

fast amino acid and monoamine neurotransmitter markers (Figure 2a). Expression of genes

Figure 1 continued

Figure supplement 4. Classification of VPH non-neuronal populations.

Figure supplement 5. Key discriminatory marker genes of oligodendrocyte-lineage cells, astrocytes, tanycytes, and ependymal cells.
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Figure 2. Classification of VPH neuronal populations. (a) UMAP plots showing normalized expression of Slc17a6, Slc32a1, Gad1, and Hdc after the

second iteration of unsupervised clustering on just neuronal cells. Using these four genes, neurons were classified by a three-class Gaussian mixture

model as glutamatergic (GLUT, blue), GABAergic (GABA, yellow), or histaminergic (HA, green). (b) Unsupervised clustering of 20 VPH neuronal cell

types shown in a UMAP embedding. (c) Heatmap showing scaled expression of discriminatory genes across all 20 neuronal clusters. (d) Violin plot

Figure 2 continued on next page
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necessary for the synthesis and packaging of the excitatory transmitter glutamate (Slc17a6, encoding

the vesicular glutamate transporter 2, VGLUT2) and the inhibitory transmitter GABA (Slc32a1, encod-

ing the vesicular GABA transporter, VGAT) provided a binary classification of Slc17a6+ clusters as

glutamatergic (VPHGLUT) and Slc32a1+ clusters as GABAergic (VPHGABA) neurons. This was further

supported by the expression of the gene encoding a synthetic enzyme for GABA (Gad1/GAD67)

which largely aligns with Slc32a1+ clusters. We found that of the 20 neuronal clusters we identified,

thirteen are glutamatergic, six are GABAergic and one (cluster 17) best matched the profile of a

unique population of histaminergic (HA) neurons based on the unique expression of histidine decar-

boxylase (Hdc/HDC; Figure 2a,b). Overall, within these neuronal populations, clusters are distin-

guished by suites of differentially expressed transcripts (Figure 2c,d) with comparable UMIs/cell and

genes/cell (Figure 2e). In the following analyses, we validated the co-expression of key markers and

their spatial organization in selected VPH neuronal populations. In all cases, we first attempted to

map transcriptionally distinct cell clusters onto specific anatomical subregions within the VPH, by

comparing differentially-expressed transcripts with the online database of in situ hybridization (ISH)

data from the Allen Brain Atlas (ABA; Lein et al., 2007), followed by co-expression analysis using

multiplexed FISH.

Transcriptional signatures differentiate ventral and dorsal
premammillary (PM) nuclei
Among neuronal clusters that correspond to discrete anatomical subregions of the VPH, we identi-

fied at least one VPHGLUT population with a suite of differentially-expressed transcripts that appears

to closely match the ventral premammillary nucleus (PMv; Figure 3). VPHGLUT cluster 7 is enriched in

the following key transcripts: Tac1 (encoding substance P or SP), Nos1 (encoding neuronal nitric

oxide synthase or NOS), Calb2 (encoding calretinin), and Foxp2 (encoding the transcription factor

forkhead box P2; Figure 3a) along with a host of other differentially expressed markers (Figure 3b).

The spatial pattern of expression of each of the markers in Figure 3a were found in the ABA

(Lein et al., 2007), and correspond closely to the PMv (Figure 3c). Through FISH co-expression anal-

ysis, we found that Tac1, Calb2, and Slc17a6 are extensively co-expressed in a large cluster of neu-

rons in the PMv (Figure 3d). These data broadly align with several known markers for the PMv

(Donato and Elias, 2011). For example, SP (Shimada et al., 1988; Larsen, 1992) and NOS

(Vincent and Kimura, 1992) are both enriched in the PMv. Another marker that is enriched in

VPHGLUT cluster 7 is Adcyap1 (encoding the neuropeptide pituitary adenylate cyclase-activating

polypeptide, or PACAP; Figure 3b). Consistent with the role of the PMv in reproductive function

(Donato and Elias, 2011; Leshan and Pfaff, 2014), PACAP+ PMv neurons were recently shown to

critically regulate female reproductive physiology and fertility (Ross et al., 2018).

Interestingly, we also found that a distinct subpopulation of VPHGLUT cluster 7 neurons robustly

expresses markers of catecholaminergic neurotransmission including Slc6a3 (encoding the dopamine

transporter, DAT), Ddc (encoding DOPA decarboxylase), and Slc18a2 (encoding the vesicular mono-

amine transporter 2, VMAT2) but low expression of Th (encoding tyrosine hydroxylase; Figure 3e).

This cluster corresponds well to a previously identified catcholaminergic (Zoli et al., 1993), Slc6a3+

PMv population (Meister and Elde, 1993) that was more recently found, through circuit and behav-

ioral analyses, to regulate male social behavior (Soden et al., 2016) and aggression

(Stagkourakis et al., 2018) in a glutamate-dependent, but dopamine-independent, manner

(Soden et al., 2016), consistent with the profile we identified (Slc17a6+, Slc18a2+, Slc6a3+, Ddc+,

Th-). To probe further PMv subpopulations, we subjected VPHGLUT cluster 7 to another iteration of

clustering and found that it could be parsed into eight subclusters (Figure 3—figure supplement

1a). Each of the eight subclusters expressed Slc17a6 but exhibit differential expression of major

markers such as Tac1 and Foxp2 (Figure 3—figure supplement 1b–d). Notably, subclustering

revealed two distinct populations of putative catecholaminergic Tac1+/Foxp2+ neurons (clusters 7–1

and �2), both of which express Slc18a2 but only one of which expresses Slc6a3. Taken together,

Figure 2 continued

showing the distribution of normalized expression in each cluster of neurotransmitters (Slc17a6, Slc32a1, Gad1, Gad2) (upper) and discriminatory marker

genes (lower). (e) Violin plots showing the distribution of the number of unique transcripts (upper) and the number of genes (lower) in each neuronal

cluster.
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Figure 3. Identification of a population of putative PMv neurons and a catecholaminergic PMv subpopulation. (a) UMAP plots showing normalized

expression of Tac1, Nos1, Calb2, and Foxp2 enriched in VPHGLUT cluster 7 following Slc32a1 and Slc17a6 (top). (b) Violin plot showing discriminatory

marker genes enriched in cluster 7. (c) Mouse brain atlas schematic, modified from Paxinos, 2012, showing the PMv in a coronal section at distance

from bregma of �2.46 mm (top). ISH images for Tac1, Nos1, Calb2, and Foxp2 from the ABA (Lein et al., 2007; bottom). (d) Confocal micrographs

Figure 3 continued on next page
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these transcriptomic data provide further biological insight into the repertoire of receptors and sig-

naling molecules expressed by this key behavioral node.

Another distinct VPHGLUT population (cluster 6) share a number of common markers with clusters

1–5, for example Cck (encoding the neuropeptide cholecystokinin) and Foxb1 (encoding the tran-

scription factor Forkhead Box B1), which are largely undetectable in clusters 7–10 (Figure 4a,b).

Curiously, VPHGLUT cluster 6 also expresses a suite of markers that are enriched in clusters 7–10 (ex.

Ebf3, Dlk1, Synpr, Nxph1) but largely undetectable in clusters 1–5 (Figure 4a,b). In particular, Synpr

(encoding the presynaptic protein synaptoporin), Dlk1 (encoding delta like non-canonical Notch

ligand 1), Ebf3 (encoding early B cell factor 3) and Stxbp6 (encoding the synaptic protein syntaxin

binding protein 6) are enriched in VPHGLUT cluster 6 (Figure 4a,b). Examining the expression pat-

terns of Synpr, Dlk1, and Stxbp6 in the ABA (Lein et al., 2007), we found that all three are enriched

in a discrete region that appears to correspond well to the dorsal PM (PMd; Figure 4c,d) and are

largely undetectable in the more caudal mammillary bodies (MB; Figure 4d). This suggests that

VPHGLUT cluster 6 likely represents a PMd population that expresses a number of unique signatures

(ex. Synpr, Stxbp6) but shares some commonalities with VPHGLUT clusters 1–5 (ex. Foxb1, Cck,

Adcyap1) and VPHGLUT cluster 7, a putative PMv population (ex. Nxph1, Ar). These data suggest

that the spatially segregated PMd and PMv may be defined by distinct transcriptional signatures.

A neuronal population in the supramammillary (SUM) nuclei
Another notable neuronal cluster is VPHGLUT cluster 8. Subjecting this cluster to another iteration of

unsupervised clustering revealed six subclusters (Figure 4—figure supplement 1a) which exhibit

suites of differentially expressed genes (Figure 4—figure supplement 1b,c). Several of the markers

that define distinct subclusters within VPHGLUT cluster 8 are found within anatomically identified neu-

ronal populations in the SUM (Figure 4—figure supplement 1d), only the most ventral portion of

which would be included in our microdissection (Figure 1b). These markers, previously identified in

rodents include Th (encoding tyrosine hydroxylase, enriched in cluster 8–1; Swanson, 1982) and

Nos1 (enriched in cluster 8–5; Yamada et al., 1996; Pedersen et al., 2017). Although all cells in

cluster 8 express Slc17a6, and are nominally classified as glutamatergic, at least one subpopulation

appears to co-express Slc32a1 and Gad2 but not Gad1 (Figure 4—figure supplement 1e). Subclus-

ter 8–3 closely corresponds to this Slc17a6+/Slc32a1+/Gad2+ subcluster and co-expresses a suite of

discriminatory makers including Sema3c, Inhba, Rxfp1 and others (Figure 4—figure supplement 1f).

Cross-referencing with the ABA (Lein et al., 2007) shows selective expression of Sem3c, Inhba, and

Rxfp1 in the SUM (Figure 4—figure supplement 1f). Another subcluster, cluster 8–4 also expresses

a moderate level of Slc32a1 (Figure 4—figure supplement 1c). Interestingly, a unique population of

VGLUT2/VGAT co-expressing axons originating in the SUM has been described among projections

to the hippocampal dentate gyrus (Boulland et al., 2009; Soussi et al., 2010) and these dual pheno-

type SUM neurons were found to indeed co-release GABA and glutamate onto neurons of the den-

tate gyrus (Pedersen et al., 2017; Hashimotodani et al., 2018). Our identification of this VPHGLUT

cluster 8 subpopulation is consistent with previous anatomical and functional data defining a unique

dentate-projecting, dual phenotype SUM population but would require additional functional evi-

dence to validate. However, the markers identified in our transcriptomic analysis may provide possi-

ble strategies for their precise genetic targeting. Furthermore, a microdissection that includes the

entirety of the SUM would provide a more comprehensive picture of neuronal cell type diversity

within this region.

Figure 3 continued

(40�) of FISH in coronal sections of wild type mice and corresponding pie charts representing co-expression of mRNA for Tac1 and Slc17a6 (n = 678

cells, three mice; upper) and Tac1 and Calb2 (n = 963 cells, three mice; lower). Scale bar (applicable to all micrographs) 50 mm. (e) UMAP plots showing

normalized expression of markers in VPHGLUT cluster 7 only, including cell type markers for reference (Tac1, Adcyap1, and Slc17a6) and markers that

define a subpopulation of putative catecholaminergic neurons (Slc6a3, Slc18a2 and Ddc, but with very low Th). ISH image from the ABA (Lein et al.,

2007) showing Slc6a3 expression in the PMv (inset).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Subclustering of PMv neurons (VPHGLUT cluster 7).

Mickelsen, Flynn, et al. eLife 2020;9:e58901. DOI: https://doi.org/10.7554/eLife.58901 8 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.58901


Figure 4. Identification of a population of putative PMd neurons (VPHGLUT cluster 6). (a) UMAP plots showing normalized expression of Cck, Foxb1

(shared with VPHGLUT clusters 1–5), Synpr, Dlk1, Ebf3, and Stxbp6 (enriched in VPHGLUT cluster 6). (b) Violin plot showing discriminatory marker genes

enriched in VPHGLUT cluster 6 following Slc32a1 and Slc17a6 (top). (c) Mouse brain atlas schematic (Paxinos, 2012) showing the PMd in a coronal

section at distance from bregma of �2.70 mm (top). (d) ISH images for three anterior to posterior coronal sections (approximate distance from bregma

�2.46,–2.80, and �2.92 mm) for Synpr (left), Dlk1 (middle), and Stxbp6 (right) from the ABA (Lein et al., 2007; bottom). In each case, expression

appears to be enriched in the PMd in anterior sections and largely absent in the MB in the posterior section.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Subclustering of putative SUM neurons (VPHGLUT cluster 8).

Figure supplement 2. Identification of multiple populations of putative Arc neurons (VPHGABA clusters 14, 18, and VPHGLUT cluster 16).

Figure supplement 3. Identification and subclustering of multiple populations of putative LHA/Tub neurons (VPHGABA clusters 15 and 19).
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Figure 5. Identification of histaminergic (HA) neurons in the TMN. (a) UMAP plots showing normalized expression of Hdc, Slc18a2, Wif1, and Maob

enriched in VPHHA cluster 17 (circled). (b) Violin plot showing discriminatory marker genes enriched in VPHHA cluster 17 following Slc32a1 and Slc17a6

(top). (c) Mouse brain atlas schematic, modified from Paxinos, 2012, showing the dorsal TMN (TMNd) and ventral TMN (TMNv) in a coronal section at

distance from bregma of �2.54 mm (top). ISH images for Hdc, Slc18a2, Wif1, and Maob from the ABA (Lein et al., 2007; bottom). (d) Confocal

Figure 5 continued on next page
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Neuronal populations in the caudal arcuate (Arc) and lateral
hypothalamic/tuberal (LHA/Tub) nuclei
A number of neuronal clusters are defined by markers known to be enriched in the hypothalamic Arc

nucleus, despite our microdissection likely capturing only the most caudal portion of the Arc. Clus-

ters that express Arc-enriched markers (Romanov et al., 2017; Campbell et al., 2017), including

cluster 14 (Unc13c, Trh, etc.), cluster 16 (Tac2, Pdyn, etc.), and cluster 18 (Agrp, Sst, etc.) were com-

bined in a second iteration of clustering to reveal eight subclusters defined by differentially

expressed genes (Figure 4—figure supplement 2a–c). Cluster 14 parsed into five subclusters with

markers that include (Unc13c, Thrb and Trh; Figure 4—figure supplement 2e), that appear to corre-

spond well to a population of cells in the caudal Arc. In particular, using ISH data from the ABA

(Lein et al., 2007), both Dlk1 and Thrb (encoding the thyroid hormone receptor beta) are enriched

in a cluster surrounding the 3rd ventricle/mammillary recess corresponding to the medial posterior

portion of the Arc (Paxinos, 2012) or posterior portion of the periventricular nucleus (Allen Institute

Mouse Brain Reference Atlas). Cluster 18 parsed into two subclusters. While both express Otp, one

subcluster likely corresponds to well-known Arc AGRP/NPY neurons (Agrp and Npy), and another

likely corresponds to a previously identified population of Arc Sst+ neurons such as Sst/Unc13c

(Campbell et al., 2017).

A highly distinct neuronal cluster, VPHGLUT cluster 16, which did not subcluster further, expresses

a suite of markers that identify it as a well-described neuronal cell type in the Arc - kisspeptin-neuro-

kinin B-dynorphin (KNDy) neurons (Figure 4—figure supplement 2f). KNDy neurons are considered

to be the gonadotropin-releasing hormone pulse generator controlling release of luteinizing hor-

mone from the anterior pituitary, and therefore essential for fertility and reproduction

(Lehman et al., 2010; Moore et al., 2018; Harter et al., 2018). We confirm that this cluster co-

expresses the defining neuropeptides Tac2 (encoding neurokinin B) and Pdyn (encoding dynorphin;

Figure 4—figure supplement 2c,f). The key markers that define KNDy neurons in our data set are

consistent with those identified in previous mouse scRNA-seq data sets, both from broader hypotha-

lamic samples (Chen et al., 2017; Romanov et al., 2017) and Arc-specific samples (Campbell et al.,

2017). Consistent with the important role of Arc KNDy neurons in reproduction and fertility, we

found high expression of the following hormone receptors: Prlr (encoding the prolactin receptor),

Esr1 (encoding the estrogen receptor 1), Ar (encoding the androgen receptor), and Pgr (encoding

the progesterone receptor). Other markers that exhibit relatively robust and unique expression in

KNDy neurons include Nhlh2, Inhbb, Nr5a2, Rxfp1 and Col2a1. A selection of key markers for

VPHGLUT cluster 16 neurons (Tac2, Pdyn, and Esr1) were confirmed using ISH data from the ABA

(Lein et al., 2007; Figure 4—figure supplement 2f) and correspond to the caudal Arc.

Finally, two other distinct GABAergic neuronal populations (VPHGABA clusters 15 and 19; Fig-

ure 4—figure supplement 3a) appear to correspond to the tuberal region of the LHA, also known

as the hypothalamic tuberal nuclei (Figure 4—figure supplement 3d). The most caudal part of this

region would likely be included in the rostral-most slices in our microdissection. VPHGABA cluster 15

(enriched in Sst, Six3, Otp, Col25a1, Ecel1, and Parm1), which may be parsed into four subclusters,

and VPHGABA cluster 19 (enriched in Sst, Otp, Dlk1, Pthlh, and Ptk2b; Figure 4—figure supplement

3b,c,e), correspond closely with two previously identified subpopulations of Sst-expressing GABAer-

gic neurons in the tuberal LHA (LHAGABA clusters 6 and 13 , respectively; Mickelsen et al., 2019).

Sst-expressing neurons are enriched in the tuberal region (Morales-Delgado, 2011) and have

recently been implicated in the regulation of feeding behavior in mice (Luo et al., 2018).

Figure 5 continued

micrographs (40�) of FISH in coronal sections of wild type mice and corresponding pie charts representing co-expression of mRNA in the TMNv (top)

for Hdc and Wif1 (n = 415 cells, three mice; upper) and Hdc and Maob (n = 570 cells, three mice; lower) and in the TMNd (bottom) for Hdc and Wif1

(n = 109 cells, three mice; upper) and Hdc and Maob (n = 192 cells, three mice; lower). Scale bar (applicable to all micrographs) 50 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Subclustering of TMN HA neurons (VPHHA cluster 17) and a population of HA-like neurons (subcluster of VPHGABA cluster 13).

Mickelsen, Flynn, et al. eLife 2020;9:e58901. DOI: https://doi.org/10.7554/eLife.58901 11 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.58901


Figure 6. Identification of lateral mammillary (LM) neurons. (a) UMAP plots showing normalized expression of Tac2, Tcf4, Cplx1, and Pvalb enriched in

VPHGLUT cluster 20 (circled). (b) Violin plot showing discriminatory marker genes enriched in VPHGLUT cluster 20 following Slc32a1 and Slc17a6 (top). (c)

Mouse brain atlas schematic, modified from Paxinos, 2012, showing the LM in a coronal section at distance from bregma of �2.92 mm (top). ISH

images for Tac2, Tcf4, Cplx1, and Pvalb from the ABA (Lein et al., 2007; bottom). (d) Confocal micrographs (40�) of FISH in coronal sections of wild

Figure 6 continued on next page

Mickelsen, Flynn, et al. eLife 2020;9:e58901. DOI: https://doi.org/10.7554/eLife.58901 12 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.58901


Histaminergic neurons in the tuberomammillary (TMN) nuclei
A highly distinct cluster emerged from our data set that exhibits a pattern of gene expression char-

acteristic of histamine (HA)-producing neurons (VPHHA cluster 17). HA neurons are a well-character-

ized monoaminergic, neuromodulatory population with cell bodies concentrated in the ventral TMN

(TMNv) and dorsal TMN (TMNd), and also scattered throughout the VPH region. TMN HA neurons

are the sole source of neuronally-synthesized HA in the brain, make widespread projections through-

out the brain (Ericson et al., 1987; Inagaki et al., 1988) and have a key role in modulating wakeful-

ness (Brown et al., 2001; Haas et al., 2008; Panula and Nuutinen, 2013). Previous mouse

hypothalamic scRNA-seq studies have also detected a population of HA neurons (Chen et al., 2017;

Campbell et al., 2017; Kim et al., 2020). We found that VPHHA cluster 17 neurons express the fol-

lowing key transcripts: Hdc, in addition to Slc18a2 (encoding the vesicular monoamine transporter

two or VMAT2), Maob (encoding monoamine oxidase B), and another unique marker Wif1 (encoding

Wnt inhibitory factor 1; Figure 5a). Additional makers include transcripts for Maoa, Msrb2, Itm2a,

Bsx, Hrh3, Hcrtr2, Sncg, and Prph (Figure 5b). Our identification of Prph (encoding the neurofila-

ment protein peripherin) as a highly selective marker for HA neurons is consistent with previous ana-

tomical work (Eriksson et al., 2008). Key markers (Hdc, Slc18a2, Wif1, and Maob) correspond well

to the TMNv and TMNd in the ABA (Lein et al., 2007; Figure 5c). FISH analysis of Wif1 and Maob

co-expression with Hdc revealed extensive co-expression in both the TMNv and TMNd but with

lower coexpression in the TMNd (Figure 5d). With regard to fast neurotransmitter phenotype, we

found that VPHHA cluster 17 neurons are exceptional in our data set in that they express very low

levels of both Slc17a6 and Slc32a1, but robustly express Gad1. That TMN HA neurons are GAD+,

and likely capable of GABA synthesis, has long been recognized (Vincent et al., 1983;

Takeda et al., 1984). While there has been recent conflicting data on whether or not HA neurons

express Slc32a1 (Yu et al., 2015; Venner et al., 2019), our data indicate that TMN HA neurons

robustly co-express Gad1 accompanied by very low co-expression of Slc32a1.

To investigate the possibility that TMN HA neurons are themselves heterogeneous, we subjected

VPHHA cluster 17 neurons to another iteration of clustering. However, we also observed that a sub-

set of VPHGABA cluster 13 neurons share some common markers with HA neurons and thus included

both clusters 13 and 17 in our subclustering analysis. VPHHA cluster 17 parsed into four subclusters

(subclusters 7–10; Figure 5—figure supplement 1a). While cluster 13 parsed into six subclusters

(subclusters 1–6), only subcluster 5, which we refer to as HA-like, share some key features with sub-

clusters 7–10, collectively denoted by the perforated outline (Figure 5—figure supplement 1a).

Subclusters 9 and 10 comprise the majority of cluster 17 neurons and express all the cardinal signa-

tures of HA neurons (Hdc, Slc18a2, Prph, Wif1, Hcrtr2, Hrh3). Subclusters 7 and 8 are much smaller

populations that express variable levels of many of these same markers while also exhibiting highly

unique markers (ex. Cckar, Wnt7a, Gpc5, and Rspo2; Figure 5—figure supplement 1c,d). Interest-

ingly, HA-like subcluster five is unique in expressing a number of HA markers including Hdc (but at

low levels), Slc18a2, Prph, Wif1, and Hrh3 in addition to several more unique makers such as

GM39653, Npy2r, and Chodl (Figure 5—figure supplement 1c,d). Importantly, subcluster five is a

putative GABAergic population with moderate co-expression of Slc32a1. Taken together, these data

suggest a degree of transcriptional heterogeneity among HA neurons, which requires a larger, and

perhaps enriched, sampling of Hdc+ neurons to fully resolve.

A distinct neuronal cluster corresponds to the lateral mammillary (LM)
nuclei
We identified a distinct VPHGLUT population (cluster 20) characterized by the expression of Tac2,

Pvalb (encoding the calcium-binding protein parvalbumin), Cplx1 (encoding the synaptic protein

Figure 6 continued

type mice and corresponding pie charts representing co-expression of mRNA for Slc17a6 and Tac2 (n = 1210 cells, three mice; upper), Slc17a6 and

Pvalb (n = 1057 cells, three mice, upper middle), Slc17a6 and Cplx1 (n = 1269 cells, three mice; lower middle), and Slc17a6 and Tcf4 (n = 1642 cells,

three mice; lower), Scale bar (applicable to all micrographs) 50 mm.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Subclustering of LM neurons (VPHGLUT cluster 20).
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complexin-1), and Tcf4 (encoding transcription factor 4; Figure 6a), in addition to a suite of other

discriminatory markers including Fgf1, Cbln2, Infg2, Nefm, Myo1a, and Syt2 (Figure 6b). The spatial

pattern of expression of Tac2, Pvalb, Cplx1, and Tcf4 in the ABA (Lein et al., 2007) corresponds

well to the lateral mammillary (LM) nuclei, which are tightly circumscribed bilateral cell clusters,

immediately lateral to the medial mammillary region and bisected by the fornix (Figure 6c). LM neu-

rons are components of the MB and are implicated in the encoding of head direction and aspects of

spatial memory (Vann and Aggleton, 2004; Dillingham et al., 2015; Dillingham and Vann, 2019).

Consistent with our scRNA-seq results, FISH analysis revealed extensive co-expression of Tac2,

Pvalb, Cplx1, and Tcf4 with Slc17a6 in the LM. Notably, Pvalb expression is limited to a subset of

Slc17a6+ neurons in the LM (Figure 6d). These data suggest that LM neurons comprise a transcrip-

tionally-distinct population that appears to be confined to the anatomical boundaries of the LM.

Although VPHGLUT cluster 20 is highly distinct relative to other clusters in UMAP space

(Figure 2b), we found that it is not entirely homogenous. While Tcf4 is distributed evenly throughout

cluster 20, one pole is enriched in Pvalb (Figure 6a). To explore the possibility of LM heterogeneity,

we subjected cluster 20 to another round of clustering resulting in three distinct subclusters (Fig-

ure 6—figure supplement 1a), each defined by a number of discriminatory markers (Figure 6—fig-

ure supplement 1b,c,d). For example, Pvalb and Col11a1 are enriched in subcluster 1, while Fxyd6

and Slc7a3 are enriched in subcluster 3, suggesting a degree of cell type heterogeneity among LM

neurons.

Multiple neuronal populations correspond to the medial mammillary
region
We identified five VPHGLUT clusters that appear to be both closely interrelated to each other tran-

scriptionally and distinct from other neuronal clusters. VPHGLUT clusters 1–5 are arranged in close

proximity in UMAP space (Figure 2b), with clusters 1 and 2 forming one contiguous cluster and clus-

ters 3–5 forming another. Clusters 1–5 share a number of common markers including genes that

encode the neuropeptides Cartpt, Cck, Adcyap1 as well as the transcription factor Foxb1

(Figure 7a,b). Cross-referencing Cartpt, Foxb1, Cck, and Adcyap1 with the ABA (Lein et al., 2007)

indicate that VPHGLUT clusters 1–5 correspond well to the medial mammillary region (Figure 7c),

which itself may be subdivided into cytoarchitecturally-defined anatomical compartments: median

(MnM), medial (MM), and lateral (ML) subdivisions (Paxinos, 2012). Notably, Cartpt, Foxb1, and

Cck, show low expression in VPHGLUT cluster 20 (LM) in our scRNA-seq data and correspondingly

low expression in the LM in ABA ISH data (Figure 7c). In contrast, Adcyap1 shows high expression in

cluster 20 and high expression in the LM in ISH data, further reinforcing the notion that clusters 1–5

represent the medial mammillary region, and cluster 20 represents the LM. These data are consistent

with other scRNA-seq analyses of whole mouse hypothalamus, which revealed a single population of

Foxb1+ neurons ascribed to the mammillary nuclei in adult mice (Chen et al., 2017) and most

recently, several in the developing mouse hypothalamus (Kim et al., 2020). Multiplex FISH analysis

revealed extensive co-expression of the neuropeptide transcripts Cck, Adcyap1, and Cartpt with

Slc17a6 in the region (Figure 7d). Other discriminatory markers that we found are common to clus-

ters 1–5 include Rprm, Cpne9, Ctxn3, Fam19a1, and Gpr83 (Figure 7b and Figure 7—figure sup-

plement 1a). Notably, we found that Cpne9 (encoding copine-9) is uniquely enriched in clusters 1–

5, cluster 20, as well as cluster 6 (Figure 7—figure supplement 1a) suggesting that it may be a com-

mon marker for the entire MB, in addition to the PMd. Finally, we examined expression of other

markers (Pitx2, Lhx1, Lhx5, Cdh11, Sim1, Sim2, and Nkx2.1) that have previously been implicated in

MB development (Kim et al., 2020; Kimura et al., 1996; Bedont et al., 2015; Puelles et al., 2000;

Martin et al., 2002; Marion et al., 2005; Shimogori et al., 2010; Skidmore et al., 2012;

Miquelajáuregui et al., 2015; Szabó et al., 2015; Ferran et al., 2015) and found significant align-

ment with clusters 1–5 for virtually all markers (Figure 7—figure supplement 1a).

Spatial segregation of transcriptionally-distinct medial mammillary
subpopulations
We further investigated differentially expressed genes among VPHGLUT clusters 1–5 (Figure 8a), that

comprise the medial mammillary region in an effort to determine if they exhibit any spatial organiza-

tion with respect to the cytoarchitecurally-defined MnM, MM, and ML subdivisions. We identified a
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Figure 7. Identification of global markers for neurons in the medial mammillary region. (a) UMAP plots showing normalized expression of Tac2, Tcf4,

Cplx1, and Pvalb enriched in VPHGLUT clusters 1–5 (circled). (b) Violin plot showing discriminatory marker genes enriched in VPHGLUT clusters 1–5

following Slc32a1 and Slc17a6 (top). (c) Mouse brain atlas schematic, modified from Paxinos, 2012, showing the medial mammillary, and its anatomical

subdivisions (MnM, MM, and ML) in a coronal section at distance from bregma of �2.92 mm (top). ISH images for Cartpt, Foxb1, Cck, and Adcyap1

Figure 7 continued on next page
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suite of differentially-expressed genes that define each of the transcriptionally distinct medial mam-

millary clusters 1–5 (Figure 8b) with two discriminatory genes from each shown in UMAP plots

(Figure 8c). We went on to cross reference these makers with their spatial distribution within the

medial mammillary region using the ABA (Lein et al., 2007) and found striking patterns of segmen-

tation. Markers for cluster 1 neurons (Nts+, Col25a1+) appear to be enriched in the MM subdivision,

medial to the principle mammillary tract (pm), whereas markers for cluster 4 neurons (Nos1+, Calb1

+) are found concentrated in the ML subdivision, lateral to the principle mammillary tract (pm) and

medial to the fornix (f). Cluster 2 neurons (Gpr83+, Spock3+) are concentrated in the central portion

of the MnM subdivision, whereas cluster 3 neurons (Pvalb+, Slc24a2+) are enriched in the more dor-

sal portion of the MnM. Interestingly, cluster 5 neurons (Tac2+, Cxcl14+) appear to correspond to a

thin rim of small diameter, Tac2+ neurons hugging the basal surface of the MM and ML (Figure 8d),

overlapping with the region typically referred to as the TMNv or VTM (Paxinos, 2012). These Tac2+

neurons may be distinguished from the larger diameter Tac2+ neurons confined to the LM (VPHGLUT

cluster 20). Despite being in the vicinity of TMNv HA neurons, 89.3% (176/197) of cluster 5 neurons

are Tac2+ whereas only 2% (4/197) are Hdc+ indicating little to no overlap with HA neurons.

To further explore cellular heterogeneity among medial mammillary neurons, we subjected clus-

ters 1–5 to another iteration of clustering which resulted in 12 subclusters (Figure 8—figure supple-

ment 1a), each defined by suites of discriminatory markers (Figure 8—figure supplement 1b,c).

Each of clusters 1–4 parsed into two to three subclusters, while cluster 5 remained largely intact.

This further subclustering revealed markers that are common to single clusters and the discrimina-

tory genes that define subclusters. For example, cluster 1 MM neurons are composed of three sub-

clusters (3, 4, and 5) for which Nts and Col25a1 are common to all, as shown previously (Figure 8c,

d), while Calb2 uniquely defines one subcluster, and Adra2a is enriched in another (Figure 8—figure

supplement 1c,d). In sum, we found that richly diverse, transcriptionally distinct neuronal popula-

tions that comprise the medial mammillary region also exhibit a remarkable degree of compartmen-

talization within the known anatomical subdivisions of the region, demarcated by the principle

mammillary tract and fornix.

Topographically-distinct projection targets of genetically-defined MM
and ML neurons in the thalamus and midbrain
We next asked whether the cluster-specific discriminatory genes that we identified in our scRNA-seq

analysis of the MB (summarized in Figure 9a) may be used to genetically target specific anatomical

subdivisions of the MB (summarized in Figure 9b) and shed light on the organization of their projec-

tion targets. Neurons in the MB make two highly specific projections in the brain: (1) a major, unidi-

rectional projection to the anterior thalamic nuclei (ATN) through the mammillothalamic tract (mtt);

and (2) a bidirectional connection to the ventral tegmental nucleus of Gudden (VTg), via the mamillo-

tegmental tract (mtg) (summarized in Figure 9c; Vann and Aggleton, 2004; Vann, 2010;

Aggleton et al., 2010; Dillingham et al., 2015; Vann and Nelson, 2015). The rodent ATN itself

may be subdivided into three broad compartments, anteroventral (AV), anteromedial (AM), and

anterodorsal (AD), each of which exhibit unique patterns of connectivity. In particular, the MM proj-

ects topographically to the AM, the ML to the AV and the LM to the AD (Aggleton et al., 2010; Shi-

bata, 1992; Jankowski et al., 2013; Bubb et al., 2017; Seki and Zyo, 1984; Hayakawa and Zyo,

1989; Wright et al., 2013). We therefore set out to test our prediction that the transcriptionally-dis-

tinct cell populations that we found to be segregated within specific subcompartments of the MB,

exhibit a similar topographic mapping to the ATN. To this end, we used three Cre recombinase

mouse driver lines to target separate anatomical subregions of the MB by bilaterally injecting the

Figure 7 continued

from the ABA (Lein et al., 2007; bottom) showing widespread expression throughout the medial mammillary. (d) Confocal micrographs (40�) of FISH in

coronal sections of wild type mice and corresponding pie charts representing co-expression of mRNA for Slc17a6 and Cck (n = 2787 cells, three mice;

upper), Slc17a6 and Adcyap1 (n = 1805 cells, three mice; middle) and Slc17a6 and Cartpt (n = 2582 cells, three mice; lower). Scale bar (applicable to all

micrographs) 50 mm.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Other key discriminatory markers enriched in the MB.
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Figure 8. Anatomical compartmentalization of transcriptionally-distinct medial mammillary subpopulations. (a) UMAP plot showing just VPHGLUT

clusters 1–5 (detail of Figure 2b). (b) Heatmap showing scaled expression of discriminatory genes across only VPHGLUT clusters 1–5. (c) Pairs of UMAP

plots showing normalized expression of two discriminatory marker genes for each of VPHGLUT clusters 1–5 (top to bottom): cluster 1 (Nts, Col25a1),

cluster 2 (Gpr83, Spock3), cluster 3 (Pvalb, Slc24a2), cluster 4 (Nos1, Calb1), and cluster 5 (Tac2, Cxcl14). (d) Mouse brain atlas schematics, modified from

Figure 8 continued on next page
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MB with the viral anterograde tracer AAV-DIO-ChR2-EYFP (schematic in Figure 9d). Using the

Slc17a6 (VGLUT2)-Cre driver line to broadly target VPHGLUT neurons in the MB and their projections,

we found labeling throughout the medial mammillary region at the injection site (Figure 9e), but

largely sparing the LM, shown in a representative mouse. In addition to finding a high density of

labeled axons in the mtt and mtg, we observed a plexus of fibers in the VTg and a high density of

fibers in much of the ATN (AV and AM, but not AD, consistent with the latter being the target of LM

projections). Next, using the Nts-Cre line to selectively target VPHGLUT cluster 1 neurons, that we

had previously mapped to the MM subdivision, we found labeling at the injection site between the

MM and ML and labeled axons in the mtt, mtg, and VTg, shown in a representative mouse. How-

ever, in the ATN, the AM subdivision appeared to be selectively targeted, while sparing the AV and

AD (Figure 9e). Finally, using the Calb1-Cre driver to target VPHGLUT cluster 4 neurons, that we had

mapped to the ML subdivision, we found clear labeling in the ML at the injection site (with some

weak labeling in the MM/MnM) and labeled axons in the mtt, mtg, and VTg, shown in a representa-

tive mouse. Interestingly, and in stark contrast to our Nts-cre results, we observed highly specific

labeling of the AV subdivision of the ATN, while sparing the AM and AD. These data are consistent

with immunohistochemical evidence in guinea pig suggesting that CART (encoded by Cartpt) and

calbindin (encoded by Calb1) are co-localized in the ML region of the MB and calbindin-immunore-

active fibers are concentrated in the AV subdivision of the ATN (Żakowski et al., 2014). Taken

together, these anterograde tracing data suggest that not only are molecularly-defined subpopula-

tions of MB neurons highly segregated within the anatomical subdivisions of the MB (MnM, MM,

ML, and LM), but these subpopulations appear to project to distinct domains within the ATN, consis-

tent with previous anterograde and retrograde tracing data without genetic specificity

(Aggleton et al., 2010; Shibata, 1992; Jankowski et al., 2013; Bubb et al., 2017; Seki and Zyo,

1984; Hayakawa and Zyo, 1989; Wright et al., 2013).

Discussion
In this work, we performed a systematic single-cell transcriptomic census of the molecular and spatial

organization of cell types in the murine VPH. Using droplet-based scRNA-seq of >16,000 cells, we

identified the molecular markers that define 20 neuronal and 18 non-neuronal cell clusters. We iden-

tified a diversity of mostly novel, and some previously identified, neuronal cell populations, many of

which could be mapped to clearly defined anatomical compartments within the VPH (including the

Arc, TMN, SUM, PMd, PMv, and approximately six subdivisions of the MB including the MnM, MM,

ML, and LM; summarized in Figure 10a–c), using both ISH data from the ABA and multiplexed FISH.

In particular, we observed that transcriptionally-distinct MB neurons are both confined to anatomi-

cally segregated compartments and, using three genetically-targeted neuronal populations in the

MB, appear to project to precise anatomical targets in the ATN. This molecular census provides a

rich resource for interrogating genetically-defined VPH circuits and their myriad roles in physiology

and behavior.

In our unsupervised analysis of VPH neuronal populations, numerous molecularly distinct clusters

emerged, but a broader dichotomy could be found based on the expression of genes necessary for

the synthesis and vesicular release of GABA and glutamate (Figure 2a). The primary discriminatory

genes in this regard are the largely mutually exclusive expression of Slc32a1 (VGAT) and Slc17a6

(VGLUT2) resulting in our identification of 13 populations of nominally glutamatergic neurons and 6

populations of nominally GABAergic neurons. Overall, the broad division between nominally

GABAergic and glutamatergic populations aligns with observations from other recent scRNA-seq

analyses of whole mouse brain (Zeisel et al., 2018; Saunders et al., 2018), whole hypothalamus

(Chen et al., 2017; Kim et al., 2020) and hypothalamic subregions (Mickelsen et al., 2019;

Figure 8 continued

Paxinos, 2012, showing subregions of the medial mammillary in a coronal section at distance from bregma of �2.92 mm (top). ISH images for each of

the two markers shown in (c) from the ABA (Lein et al., 2007; bottom).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Subclustering of MM neurons (VPHGLUT clusters 1–5).
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Figure 9. Anterograde projections of transcriptionally-distinct medial mammillary subpopulations to the anterior thalamus and midbrain. (a) UMAP plot

showing just VPHGLUT clusters 1–5 and 20 (details from Figure 2b). (b) Mouse brain atlas schematic modified from Paxinos, 2012, showing subregions

of the MB in a coronal section at distance from bregma of �2.92 mm. Color-coding of subdivisions indicate correlations between transcriptionally

distinct subpopulations in (a) and anatomical subdivisions within the MB: cluster 1 (MM, light orange), cluster 2 (ventromedial MnM, dark orange),

Figure 9 continued on next page
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Moffitt et al., 2018; Romanov et al., 2017; Campbell et al., 2017; Rossi et al., 2019; Kim et al.,

2019). One notable exception is VPHHA cluster 17, which expresses low levels of both Slc32a1 and

Slc17a6, and we identified as having a histaminergic phenotype (Figures 2 and 5 and Figure 5—fig-

ure supplement 1). Another notable exception is a putative dual identity cluster 8 subcluster, which

exhibits high co-expression of both Slc32a1 and Slc17a6, and corresponds well to markers of the

SUM (Figure 4—figure supplement 1) and, possibly, to a known dual phenotype, hippocampal-pro-

jecting population previously identified in the SUM (Pedersen et al., 2017; Boulland et al., 2009;

Soussi et al., 2010; Hashimotodani et al., 2018).

Within each fast neurotransmitter identity, discrete classifications of VPH neurons were arrived at

based on a suite of other discriminatory markers with few classifications being made on the basis of

single markers alone. Most neuronal clusters are also defined by a combination of neuropeptide

transcripts, which are associated with both well-known and novel populations. The co-expression of

both fast neurotransmitter and multiple neuropeptide markers in single neurons is suggestive of a

capacity for co-transmission (van den Pol, 2012). Other important cluster-specific markers include

some combination of transcripts that encode transcription factors, calcium binding proteins, synaptic

and extracellular matrix proteins, receptors and other gene categories. That these combinations of

markers specify the identity of distinct populations of VPH neurons likely reflects a convergence of

their unique molecular specification during development, their neurochemistry and specific synaptic

connectivity within functional circuits.

While several of the diverse neuronal clusters that emerged from our scRNA-seq analysis were

readily identifiable based on well-known signatures (e.g. Kiss1+/Tac2+/Pdyn+ KNDy Arc neurons,

Agrp+/Npy+ Arc neurons, Hdc+ TMN HA neurons, etc.), most were novel and differentially

expressed genes required both cross-referencing with the ABA (Lein et al., 2007) and extensive

multiplexed FISH to effectively trace them to anatomical regions within the VPH. We found that a

number of novel neuronal cell populations exhibited striking compartmentalization within distinct

VPH nuclei (Figure 10b). This was especially apparent in our mapping of VPHGLUT clusters 1–5 and

20 to subcompartments within the MB. The MB is a conserved diencephalic structure across rodents,

primate models and humans and represents an important link between subicular outputs of the hip-

pocampal formation (via the fornix) and the ANT (via the mtt), which itself has reciprocal projections

with the cingulate/retrosplenial cortices. MB neurons also make bidirectional connections with the

midbrain VTg (through the mtg; Vann and Aggleton, 2004; Vann, 2010; Aggleton et al., 2010;

Dillingham et al., 2015; Vann and Nelson, 2015; Jankowski et al., 2013; Bubb et al., 2017). MB

neurons, as a key component of this limbic pathway, are critical for spatial memory as lesions to the

MB and its outputs through the mtt and mtg, result in severe deficits in spatial memory in animal

models and human clinical data (Vann and Aggleton, 2004; Vann, 2010; Dillingham et al., 2015;

Vann and Nelson, 2015; Bubb et al., 2017; Vann and Aggleton, 2003; Vann, 2013; Tsivilis et al.,

2008). For example, Korsakoff’s syndrome, caused by thiamine deficiency associated with chronic

alcoholism, is characterized by selective degeneration of the MB and is accompanied by severe

amnesia (Kopelman, 1995; Kril and Harper, 2012).

Consistent with our identification of VPHGLUT clusters 1–5 as representing the medial mammillary

region, several of the discriminatory marker genes that emerged from our analysis result in spatial

memory deficits when mutated. For example, Foxb1 is well-known to define the MB during early

embryonic development (Shimogori et al., 2010; Kaestner et al., 1996; Wehr et al., 1997;

Radyushkin et al., 2005) and Foxb1-null mice exhibit dysgenesis of both the MB and mtt

(Wehr et al., 1997; Radyushkin et al., 2005; Alvarez-Bolado et al., 2000) and display defects in

Figure 9 continued

cluster 3 (dorsomedial MnM, light green), cluster 4 (ML, medium green), cluster 5 (TMNv or ventrobasal MM/ML, dark green) and cluster 20 (LM,

brown). (c) Schematic of connections between the MB, hippocampal formation, ATN and VTg comprising the Papez circuit. (d) Schematic parasagittal

section illustrating anterograde viral tracing using AAV-DIO-ChR2-EYFP injection in the MB of three cre driver lines (Slc17a6-Cre, Nts-Cre, and Calb1-

Cre). Number labels indicate imaged coronal sections. (e) Representative fluorescence images of coronal sections for anterograde tracing in Slc17a6-

Cre (n = 3 mice; left), Nts-Cre (n = 3 mice; middle) and Calb1-Cre (n = 2; right) mice at the following approximate distances from bregma: (1) ATN,

�0.82 mm; (2) mtt, �1.94 mm; (3) MB injection site, �2.92 mm; and (4) VTg, �4.84 mm. All sections were counterstained with DAPI (blue).

Abbreviations: AV (anteroventral), AM (anteromedial), AD (anterodorsal), mtt (mammilothalamic tract), mtg (mammillotegmental tract), and pm

(principle mammillary tract).
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spatial memory tasks, particularly spatial navigation and working memory (Radyushkin et al., 2005).

These data suggest that the MB may have specific roles to play in spatial memory processing. Fur-

thermore, the enrichment of the recently deorphanized receptor Gpr83 (Gomes et al., 2016) that

we observed in this region (Figure 7 and Figure 7—figure supplement 1) aligns with previous ana-

tomical work showing high expression in the MB (Pesini et al., 1998) and behavioral experiments

showing that Gpr83-null mice also exhibit impaired spatial learning (Vollmer et al., 2013). These

data indicate that VPHGLUT clusters 1–5 share a suite of common markers that align well with the

known development and function of the medial mammillary region of the MB.

Figure 10. Summary of the relationship between transcriptionally distinct VPH cell clusters and anatomical parcellation of the VPH. (a) UMAP of all VPH

neuronal clusters. (b) Mouse brain atlas schematic (Paxinos, 2012) showing two representative VPH coronal sections at distances from bregma of �2.54

and �2.92 mm. Neuronal cell types identified in scRNA-seq analysis that can be assigned to specific anatomical subregions of the VPH are indicated.

(c) Hierarchical clustering of single-cell clusters (left), discriminatory markers (middle), and the anatomical region they correspond to (right) are listed.
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Interestingly, a selection of the defining marker genes for the medial mammillary region (clusters

1–5; Figures 7 and 8, Figure 7—figure supplement 1 and Figure 8—figure supplement 1) was

also found to be enriched in some combination of other clusters we ascribed to the LM (cluster 20),

PMd (cluster 6), PMv (cluster 7), SUM (cluster 8), and others. For example, we found that while Cck,

Foxb1, Pitx2, Lhx1, Lhx5, Sim1 are indeed all enriched in clusters 1–5, they are all additionally

expressed in cluster 6, among others. In addition to the MB, Foxb1 is known to also be expressed in

the developing PMd (Wehr et al., 1997; Alvarez-Bolado et al., 2000), which is linked anatomically

and functionally with the MB, including a parallel projection to the ATN (Canteras et al., 2008;

Alvarez-Bolado et al., 2000; Canteras and Swanson, 1992). Furthermore, Foxb1-null mice not only

exhibit defects in spatial memory (Radyushkin et al., 2005) but abnormal nurturing behavior includ-

ing pup retrieval and nest-building (Wehr et al., 1997). These data suggest a possible defect in

PMv-associated reproductive behavior (Donato and Elias, 2011) and/or PMd-associated threat-

response or defensive behavior (Canteras et al., 2008; Cezario et al., 2008; Blanchard et al.,

2003). Taken together, our transcriptomic data reinforce the notion that the MB, PMd, PMv and per-

haps other surrounding VPH structures, share an anatomical and functional interrelationship, rooted

in their shared developmental history (Ferran et al., 2015; Bedont et al., 2015).

In mapping differentially expressed markers of VPHGLUT clusters 1–5 and 20 to the MB, we found

that the MB is not only more transcriptionally diverse than previously appreciated, but distinct MB

neurons also exhibit a remarkable degree of segregation within long-established, anatomically-

defined subdivisions of the MB. While the primary anatomical division in the MB is between medial

and lateral, the medial mammillary may be further subdivided into multiple subcompartments (MnM,

MM, and ML) on the basis of Nissl and Golgi staining, cell morphology, white matter boundaries

(pm, fornix, etc.) and patterns of connectivity (Paxinos, 2012; Jankowski et al., 2013; Bubb et al.,

2017; Seki and Zyo, 1984; Allen and Hopkins, 1988; Allen and Hopkins, 1989). However, the

molecular basis for cell type diversity and the spatial organization of cell types within the MB is

poorly understood. Although a recent scRNA-seq analysis of the whole hypothalamus captured the

VPH, it resolved only a single population of Foxb1+/Cartpt+ neurons assigned to the MB

(Chen et al., 2017). Most recently, a much larger scale analysis of the developing mouse hypothala-

mus identified several MB populations (Kim et al., 2020). We resolved at least six distinct popula-

tions (a total of 15 subclusters following a second iteration of clustering) that we subsequently

mapped to six anatomical subdivisions of the MB (summarized in Figures 9a,b and 10). For exam-

ple, VPHGLUT cluster 20 (Tac2+/Cplx1+) is confined to the LM and is distinct from cluster 4 (Nos1+/

Calb1+), which is confined to the ML, which itself is distinct from cluster 1 (Nts+/Col25a1+), which

broadly corresponds to the MM. The patterns of discriminatory genes for clusters 2 (Gpr83+/Spock3

+) and cluster 3 (Pvalb+/Slc24a2+) are more complex. Cluster 3 markers appear to correspond to

the more dorsal MnM, whereas cluster 2 markers are more ventromedially located, bounded by the

MM on either side, hence the slightly modified boundaries schematized in Figures 9b and

10b. Cluster 5 (Tac2+/Cxcl14+) appears to correspond to a thin rim of neurons on the ventrobasal

surface of the MB and distinct from Tac2+ neurons in the LM. The high degree of regional segmen-

tation is striking, especially juxtaposed with the highly diffuse spatial organization of transcription-

ally-distinct neuronal populations in the adjacent LHA (Mickelsen et al., 2019).

The significance of this highly compartmentalized pattern of gene expression may lie in the spe-

cific connectivity between MB subcompartments and other regions of the brain. The importance of

MB projections to the ATN and VTg is highlighted by previous work showing that specific lesions to

the mtt and VTg, but not to the postcommissural fornix, result in deficits in spatial memory, suggest-

ing that MB-ATN and MB-VTg connectivity have critical roles in memory, likely independent of hip-

pocampal input (Vann, 2013). We found that genetically-defined MB neurons, using markers we

identified in our scRNA-seq analysis to specify MB subpopulations, project to distinct thalamic and

midbrain targets. In particular, while Slc17a6+ MB neurons project to the AV and AM, Nts+ MM neu-

rons project specifically to the AM, while Calb1+ ML neurons project specifically to the AV. All three

MB projections target the VTg while none targeted the AD. Our genetically-targeted anterograde

tracing is consistent with the known topography of MB-ATN projections (Aggleton et al., 2010; Shi-

bata, 1992; Jankowski et al., 2013; Bubb et al., 2017; Seki and Zyo, 1984; Hayakawa and Zyo,

1989; Wright et al., 2013) and suggests that the spatial architecture of these circuits may be

explained by an underlying molecular organization. Furthermore, the AM, AV, and AD subregions of

the ATN each have differential patterns of reciprocal connectivity with different cortical regions and
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subcortical regions and are thought to comprise parallel sub-circuits within a brain-wide memory

network (Aggleton et al., 2010; Jankowski et al., 2013). For example, aside from reciprocal con-

nections with the anterior cingulate, the AM is uniquely interconnected with the prelimbic cortex,

and thought to have a role in relaying information from the hippocampal formation and MB to pre-

frontal cortical centers associated with higher cognitive function (Aggleton et al., 2010;

Jankowski et al., 2013). The AV, in contrast, is interconnected with the retrosplenial cortex

(Shibata and Kato, 1993) and subiculum (Shibata, 1993), and implicated in theta entrainment

(Aggleton et al., 2010; Jankowski et al., 2013). Aside from topographic ATN projections, the spa-

tial organization of MB circuits is also likely a reflection of topographic projections from specific sub-

icular subregions/cell types (Allen and Hopkins, 1989; Christiansen et al., 2016; Bienkowski et al.,

2018), which also exhibit a broader molecular and spatial organization (Cembrowski et al., 2018).

Future work combining transcriptomic profiling, functional connectomics, manipulation and monitor-

ing of genetically-defined neurons in the subiculum, MB, VTg, ATN, and cingulate/retrosplenial corti-

ces may reveal an overarching organization of parallel circuits within this brain-wide memory system.

Recent large-scale efforts towards molecular profiling and detailed connectivity analysis among

other thalamic pathways, have revealed novel insights into the overarching logic of thalamic organi-

zation (Harris et al., 2019; Phillips et al., 2019). Taken together, our transcriptomic analysis of MB

subpopulations may shed light on the construction of MB circuits during development, their differen-

tial connectivity, regulation of excitability, repertoire of synaptic signaling mechanisms and specific

functional roles in spatial memory.

Finally, given the important and conserved role of the MB as a node in a brain-wide memory sys-

tem and multiple aspects of spatial and episodic memory, it is significant that the MB may have a

key role in the pathogenesis of Alzheimer’s Disease (AD). Evidence from imaging of AD patients and

postmortem examination of AD-afflicted brains suggest that the MB, fornix, and mtt all show varying

degrees of atrophy or degeneration that may be correlated with cognitive decline and memory loss

(Callen et al., 2001; Copenhaver et al., 2006; Grossi et al., 1989; Baloyannis et al., 2016). Recent

work has implicated the MB and other components of the Papez circuit as sites of particular vulnera-

bility in the pathogenesis of AD in mice (Canter et al., 2019). Using a quantitative measure of beta-

amyloid deposition in the whole brain of 5XFAD mice, a mouse model of AD (Oakley et al., 2006),

the MB was identified as among the earliest sites of beta-amyloid deposition in the brain, appearing

as early as two months after birth. This observation was accompanied by an increase in medial mam-

millary neuronal excitability, that when chemogenetically silenced, resulted in reduced beta amyloid

deposition (Canter et al., 2019). In addition, other VPH subpopulations may exhibit selective vulner-

ability in AD as evidenced by the presence of AD pathological features in the TMN and dramatic

loss of TMN HA neurons in post mortem AD-afflicted brains (Saper and German, 1987;

Airaksinen et al., 1991; Nakamura et al., 1993; Oh et al., 2019), likely contributing to sleep-wake

disturbances commonly observed in AD patients (Spira et al., 2014). Taken together, these clinical

observations and intriguing evidence from disease models underscore the critical need to elucidate

both the basic biology of the MB and other VPH cell types, the circuits they give rise to and their

potential vulnerability in the early stages of AD pathogenesis.

Overall, our analysis of the molecular and spatial organization of VPH cell types provides the foun-

dation for a more detailed understanding of the cellular composition and wiring diagram of the

VPH. In particular, our analysis reveals the molecular underpinnings of the modular organization of

both the MB and its topographic projections to subregions of the anterior thalamus as well as the

midbrain. In addition, this work serves as a rich resource for cell type-specific deconstruction of VPH

circuit function, through pharmacological tools and the use of genetically-targeted manipulation and

monitoring methodology. Overall, our VPH cell type census, along with other recent hypothalamic

scRNA-seq analyses (Mickelsen et al., 2019; Moffitt et al., 2018; Chen et al., 2017; Zeisel et al.,

2018; Romanov et al., 2017; Campbell et al., 2017; Rossi et al., 2019; Kim et al., 2019), contrib-

utes to a more comprehensive picture of the cell type diversity and spatial organization of the mam-

malian hypothalamus, as well as informing the molecular, cellular, and synaptic mechanisms of

hypothalamic circuit function in health and disease.

Mickelsen, Flynn, et al. eLife 2020;9:e58901. DOI: https://doi.org/10.7554/eLife.58901 23 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.58901


Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain
(Mus musculus)

C57Bl/6 The Jackson
Laboratory

Cat# JAX:000664
RRID:IMSR_JAX:000664

-

Genetic
reagent
(Mus musculus)

Slc17a6-Cre The Jackson
Laboratory

Cat# JAX:016963
RRID:IMSR_JAX:016963

-

Genetic
reagent
(Mus musculus)

Nts-Cre The Jackson
Laboratory

Cat#: JAX:017525
RRID:IMSR_JAX:017525

-

Genetic
reagent
(Mus musculus)

Calb1-Cre The Jackson
Laboratory

Cat#: JAX:028532
RRID:IMSR_JAX:028532

-

Recombinant
DNA reagent
(Adeno -
associated Virus)

AAV2-Ef1a-DIO-
hChR2(H134R)-
EYFP

UNC Viral Core RRID:Addgene_55640 Diesseroth Lab

Peptide,
recombinant
protein

Protease XXIII Sigma Cat# P4032 2.5 mg/mL

Peptide,
recombinant
protein

Trypsin inhibitor Sigma Cat# T9253 10 mg/mL

Commercial
assay or kit

Chromium Single
Cell 3’ Library
and Gel Bead Kit

10x Genomics Cat# 1000075 V2 and V3

Commercial
assay or kit

RNAScope
fluorescent
multiplex detection
assay reagents

ACDBio Cat# 320851 V1

Commercial
assay or kit

RNAScope V1
fluorescent
multiplex detection
assay probes

ACDBio Cat# 405911
Cat# 313641
Cat# 432001
Cat# 402271
Cat# 482531
Cat# 490471
Cat# 450291
Cat# 421931
Cat# 319171
Cat# 410351
Cat# 446391
Cat# 537191
Cat# 412361

Adcyap1
Calb2
Cartpt
Cck
Cplx1
Hdc
Maob
Pvalb
Slc17a6
Tac1
Tac2
Tcf4
Wif1

Software,
algorithm

Fiji PMID:22743772 RRID:SCR_002285 https://imagej.
net/Fiji

Software,
algorithm

Photoshop Adobe RRID:SCR_014199 -

Software,
algorithm

Illustrator Adobe RRID:SCR_010279 -

Software,
algorithm

Scanpy Python RRID:SCR_018139 v1.3.7

Software,
algorithm

Cell Ranger 10x Genomics RRID:SCR_017344 v3.0.2

Other Vectashield
Hardset Mounting
Media w/DAPi

Vector Labs Cat# H-1500 -

Other ProLong Gold
Mounting Media
w/DAPi

Thermofisher Cat# P36965 -
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Animals
To collect VPH neurons scRNA-seq analysis as well as fluorescence in situ hybridization experiments,

we used both male and female C57BL/6 (JAX stock #000664) mice. For anterograde tracing experi-

ments, we used the following Cre recombinase driver lines: (1) Slc17a6tm2(cre)Lowl/J knock-in mutant

mice (JAX stock #016963, referred to here as Slc17a6-Cre mice; Vong et al., 2011). (2) Nts-Cre

knock-in mutant mice (B6;129-Ntstm1(cre)Mgmj/J; JAX stock # 017525; Leinninger et al., 2011). (3)

Calb1-IRES2-Cre-D knock-in mutant mice (B6;129S-Calb1tm2.1(cre)Hze/J; JAX stock # 028532, referred

to here as Calb1-Cre). All mice were fed ad libitum and kept on a 12 hr light-dark cycle.

scRNA-seq cell capture and sequencing
Hypothalamic brain slices were obtained from juvenile (p30-34) mice, from a total of five male mice

and five female mice over two independent harvests. The first harvest consisted of three male

(pooled), three female (pooled), while the second consisted of two males (pooled) and two females

(pooled), following previously described procedures (Mickelsen et al., 2019). Briefly, mice were

anesthetized with isoflurane, then rapidly sacrificed by decapitation during the same time period

(morning, 09:00-11:00). Brain slices were cut using a vibrating microtome (Lafayette

Instrument Company) at a thickness of 225 mm in ice-cold high-sucrose slicing solution consisting of

the following components (in mM): 87 NaCl, 75 sucrose, 25 glucose, 25 NaHCO3, 1.25 NaH2PO4,

2.5 KCl, 7.5 MgCl2, 0.5 CaCl2 and 5 ascorbic acid saturated with 95% O2/5% CO2. Slices were then

enzyme-treated for ~15 min at 34˚C with protease XXIII (2.5 mg/mL; Sigma) in a high-sucrose dissoci-

ation solution containing the following (in mM): 185 sucrose, 10 glucose, 30 Na2SO4, 2 K2SO4, 10

HEPES buffer, 0.5 CaCl2, 6 MgCl2, 5 ascorbic acid (pH 7.4) and 320 mOsm. Slices were washed three

times with cold dissociation solution then transferred to a trypsin inhibitor/bovine serum albumin (TI/

BSA) solution (10 mg/mL; Sigma) in cold dissociation solution. Four to five slices were obtained from

each animal that approximately corresponded to mouse brain atlas images representing the distance

from bregma �2.54,–2.70, �2.92, and �3.16 mm which includes the VPH. The VPH was dissected

from each slice using a fine scalpel and forceps under a dissecting microscope and each slice was

imaged and subsequently mapped onto mouse atlas images (Figure 1b; Paxinos, 2012). Microdis-

sected tissue was kept in cold TI/BSA dissociation solution until trituration. Immediately before dis-

sociation tissue was incubated for ~10 min at 37˚C, then triturated with a series of small bore fire-

polished Pasteur pipettes. Single-cell suspensions were passed through a 40 mm nylon mesh filter to

remove any large debris or cell aggregates and kept on ice until single-cell capture.

Cell viability for each sample was assessed on a Countess II automated cell counter (Thermo-

Fisher), and up to 12,000 cells were loaded for capture onto an individual lane of a Chromium Con-

troller (10x Genomics). Single-cell capture, barcoding and library preparation were performed using

the 10x Chromium platform (Zheng et al., 2017) according to the manufacturer’s protocol

(#CG00052) using version 2 (V2) chemistry for the first set of male and female samples and version 3

(V3) chemistry for the second set. cDNA and libraries were checked for quality on Agilent 4200

Tapestation, quantified by KAPA qPCR. The two V2 chemistry libraries were sequenced on individual

lanes of an Illumina HiSeq4000 and the V3 chemistry libraries were pooled at 16.67% of lane of an

Illumina NovaSeq 6000 S2 flow cell each, all samples targeting 6,000 barcoded cells with an average

sequencing depth of 50,000 reads per cell.

scRNA-seq data processing, quality control, and analysis
Illumina base call files for all libraries were converted to FASTQs using bcl2fastq v2.20.0.422 (Illu-

mina) and FASTQ files were aligned to the mm10 (GRCh38.93, 10� Genomics mm10 reference

3.0.0) using the version 3.0.2 Cell Ranger count pipeline (10x Genomics), resulting in four gene-by-

cell digital count matrices. Downstream analysis was performed using Scanpy (v1.3.7; Wolf et al.,

2018) and can be found in its entirely on GitHub (see Data and code availability). Initial quality con-

trol was performed on each library individually and cells were excluded from downstream analysis by

the following criteria: fewer than 2,000 transcripts, fewer than 1,000 genes, more than 50 hemoglo-

bin transcripts, and more than 15% mtRNA content. Genes with fewer than three counts in at least

three cells were also excluded from downstream analysis. These filtering criteria resulted in a sub-

stantial increase in data set quality but a dramatic reduction in called cells; the resulting individual
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counts matrices were reduced to 5,191 and 3,223 cells for the male and female V2 libraries, respec-

tively, and 4,622 and 3,955 cells for the male and female V3 libraries. These matrices were then

concatenated together, resulting in an initial aggregated counts matrix of 16,991 cells by 20,202

genes. This aggregated counts matrix was normalized by the total number of counts per cell then

multiplied by the median number of counts across all cells and finally log2 transformed.

The 1,500 most highly variable genes as measured by dispersion were selected for the computa-

tion of principal components (PCs). Prior to the computation of PCs, mitochondrial, ribosomal,

hemoglobin, cell cycle (homologs of those defined in Macosko et al., 2015; Campbell et al., 2017)

genes, and the specific genes Xist, Fos, Fosb, Jun, Junb, and Jund were excluded from this set of

highly variable genes. The first 50 PCs were computed and subsequently corrected for batch effects

related to 10� chemistry version and mouse sex using Harmony (Korsunsky et al., 2019; with the-

ta_chemistry = 2, theta_sex = 0.5). Without this batch correction, clusters were stratified by 10x

chemistry (shown in Figure 1—figure supplement 1). The 15 PCs with highest variance ratios were

used to construct a k = 15 nearest-neighbor graph (k-NN graph, where distance is measured using

cosine distance) and a 2D UMAP embedding was generated using this graph (min_dist = 0.5). Initial

clusters were assigned via the Leiden community detection algorithm on this k-NN graph, resulting

in 31 initial clusters, of which 20 remained after the removal of doublets (shown in Figure 1—figure

supplement 1f).

Marker genes for each cluster, computed by a ‘one-versus-rest’ methodology comparing mean

expression of every gene within a cluster to the expression in all other cells, were used to assign

putative cell types to each cluster. For each cluster c containing n cells and each gene g for which

the mean expression Ecg – E:cg >2, we rank all cells by the expression of gene g. For a highly specific

marker gene for cluster c, we expect the first n ranks to correspond to cells of cluster c. We con-

struct a ROC curve such that:

Cell in cluster C Cell not in cluster C

Rank <= n TP FP

Rank > n FN TN

The area under this curve (AUROC) is computed for each cluster-gene (c,g) pair, and genes with

AUROC >0.8 are used to putatively identify cell types. Genes identified this way are consistent with

genes identified using ScanPy (scanpy.tl.rank_genes_groups with the Wilcoxon Rank-Sum

test).

Of the 31 initial clusters, several clearly exhibited signatures of two (or more) cell types and 713

cells from 11 clusters were excluded from further analysis. The remaining cells were classified as neu-

ronal or non-neuronal using a simple two state Gaussian mixture model. Briefly, the median expres-

sion of Snap25, Syp, Tubb3, and Elavl2 in each cluster was used to fit the model and classify the

clusters as neuronal (high expression) and non-neuronal (low expression). We also tested classifying

each individual cell using this model which lead to qualitatively equivalent classification. The cells for

each classification were subsequently reanalyzed separately.

Neuronal cells underwent another round of filtering, with fewer than 3,500 transcripts and 2,200

genes being excluded. The raw expression matrix of the remaining 9,304 neuronal cells was normal-

ized, batch corrected, and embedded with UMAP as described above with the only alteration being

20 PCs were used to build a k = 10 NN graph. Clustering with Leiden community detection led to

20 neuronal clusters. Non-neuronal cells were reanalyzed without additional filtering, and the expres-

sion matrix for the 6,069 non-neuronal cells was reanalyzed as described for the neuronal cells; Lei-

den clustering yielded 18 non-neuronal clusters.

In order to test the robustness of our neuronal clustering analysis and the specificity of the marker

genes presented throughout the manuscript, we devised a computational experiment where we pre-

dict the cluster label of each cell using only the expression at a small set of neuronal marker genes.

Briefly, we split our neuronal expression matrix and associated cluster labels into two groups, a train-

ing and a testing group, each with a proportional number of cells from each cluster. Using the first

group, we recomputed the top two marker genes from each of the 20 neuronal clusters using the

one-versus-rest methodology described above. The expression of the cells in the first group with

this set of genes was used train a random forest classification model, a model that takes the
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expression signature of a cell and predicts its cluster label. This model was then used to predict the

cluster labels of the cells in the second group, which we compare to the original cluster labels. We

built such a model using the top 2, 3, 5, 10, 15, and 20 genes from each cluster and predicted the

cluster labels for the second group for using each model. This process is illustrated in Figure 1—fig-

ure supplement 3a–g and the source code is available in this project’s GitHub repository (see Data

and code availability).

Fluorescence in situ hybridization (FISH)
FISH was carried out as previously described (Mickelsen et al., 2019). Briefly, to prepare tissue sec-

tions for FISH, male juvenile wild type C57BL/6 mice (P30–47) were anesthetized with isoflurane,

decapitated and brains were dissected out into ice-cold sucrose. Brains were frozen on dry ice and

cryosectioned at a thickness of 14 mm directly onto SuperFrost Plus microscope slides. Sections were

then fixed with 4% paraformaldehyde (PFA) at 4˚C for 15 min, and dehydrated for 5 min each in 50,

70, and 100% ethanol. RNAscope 2.5 Assay (Advanced Cell Diagnostics) was used for all FISH

experiments according to the manufacturer’s protocols (Wang, 2012). All RNAscope FISH probes

were designed and validated by Advanced Cell Diagnostics. ISH images from the Allen Brain Insti-

tute were acquired from the publically available resource, the Allen Mouse Brain Atlas (www.mouse.

brain-map.org/; Lein et al., 2007) and were acquired with minor contrast adjustments and converted

to grayscale to maintain image consistency.

Anterograde viral tract-tracing
For anterograde tracing experiments, male P30-42 Slc17a6-cre, Nts-Cre, and Calb1-Cre mice were

bilaterally injected with 50–100 nL of AAV2-Ef1a-DIO-hChR2(H134R)-EYFP (UNC Viral Core, Diesser-

oth Lab) into the MB (anteroposterior (AP): �2.90 mm, mediolateral (ML): ±0.04 mm, dorsoventral

(DV): �5.20 mm) and allowed to incubate for 4–6 weeks. Slc17a6-cre mice (n = 3) were injected with

100 nL while Nts-Cre mice (n = 3) and Calb1-cre mice (n = 2) were injected with 50 nL. For histology,

mice were anesthetized with ketamine/xylazine and transcardially perfused with 10 mL of 0.125 M

saline followed by 40 mL of 4% PFA in 1� PBS (pH 7.4). Brains were then dissected and post-fixed

for 24 hr in 4% PFA, followed by cryoprotection in 30% sucrose for 48 hr. Brains were flash frozen

with cold isopentane and stored at �80˚C. Frozen brains were cut into 50 mm thick coronal sections

containing the ATN, LHA, MB, and VTg on a cryostat (Leica 3050 s) into 1� PBS. Slices were then

mounted onto slides with Vectashield Hardset mounting media containing DAPI (Vector Labs).

Regions of interest were imaged at 10� magnification on a fluorescence microscope ( Keyence BZ-

X700). Images were processed with ImageJ, Adobe Photoshop CS, and Adobe Illustrator CC. Based

on post hoc histological evaluation of the injection site, mice were excluded from subsequent ana-

tomical analysis if MB injection sites were absent or off-target.

Data and code availability
Raw sequencing data and counts matrices are available in the Gene Expression Omnibus, accession

number GSE146692. We further provide the final analyzed data sets in the form of H5AD

(Wolf et al., 2018) and Loupe Cell Browser data files at https://singlecell.jax.org/hypothalamus. All

code used to produce the analysis and figure panels is available on GitHub: https://github.com/The-

JacksonLaboratory/ventral-posterior-hypothalamus-scrnaseq (Flynn, 2020; copy archived at https://

github.com/elifesciences-publications/ventroposterior-hypothalamus-scrna-seq).
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Szabó N-E, Haddad-Tóvolli R, Zhou X, Alvarez-Bolado G. 2015. Cadherins mediate sequential roles through a
hierarchy of mechanisms in the developing mammillary body. Frontiers in Neuroanatomy 9:1–17. DOI: https://
doi.org/10.3389/fnana.2015.00029

Takeda N, Inagaki S, Shiosaka S, Taguchi Y, Oertel WH, Tohyama M, Watanabe T, Wada H. 1984.
Immunohistochemical evidence for the coexistence of histidine decarboxylase-like and glutamate
decarboxylase-like immunoreactivities in nerve cells of the magnocellular nucleus of the posterior hypothalamus
of rats. PNAS 81:7647–7650. DOI: https://doi.org/10.1073/pnas.81.23.7647, PMID: 6594708

Tsivilis D, Vann SD, Denby C, Roberts N, Mayes AR, Montaldi D, Aggleton JP. 2008. A disproportionate role for
the fornix and mammillary bodies in recall versus recognition memory. Nature Neuroscience 11:834–842.
DOI: https://doi.org/10.1038/nn.2149, PMID: 18552840

van den Pol AN. 2012. Neuropeptide transmission in brain circuits. Neuron 76:98–115. DOI: https://doi.org/10.
1016/j.neuron.2012.09.014, PMID: 23040809

Vann SD. 2010. Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 48:2316–2327.
DOI: https://doi.org/10.1016/j.neuropsychologia.2009.10.019, PMID: 19879886

Vann SD. 2013. Dismantling the papez circuit for memory in rats. eLife 2:e00736. DOI: https://doi.org/10.7554/
eLife.00736

Vann SD, Aggleton JP. 2003. Evidence of a spatial encoding deficit in rats with lesions of the mammillary bodies
or mammillothalamic tract. The Journal of Neuroscience 23:3506–3514. DOI: https://doi.org/10.1523/
JNEUROSCI.23-08-03506.2003, PMID: 12716960

Vann SD, Aggleton JP. 2004. The mammillary bodies: two memory systems in one? Nature Reviews
Neuroscience 5:35–44. DOI: https://doi.org/10.1038/nrn1299, PMID: 14708002

Vann SD, Nelson AJ. 2015. The mammillary bodies and memory: more than a hippocampal relay. Progress in
Brain Research 219:006. DOI: https://doi.org/10.1016/bs.pbr.2015.03.006

Mickelsen, Flynn, et al. eLife 2020;9:e58901. DOI: https://doi.org/10.7554/eLife.58901 33 of 34

Research article Neuroscience

https://doi.org/10.1016/j.cell.2018.07.028
https://doi.org/10.1016/j.cell.2018.07.028
http://www.ncbi.nlm.nih.gov/pubmed/30096299
https://doi.org/10.1002/cne.902290209
http://www.ncbi.nlm.nih.gov/pubmed/6438191
https://doi.org/10.1002/cne.903230110
http://www.ncbi.nlm.nih.gov/pubmed/1385491
http://www.ncbi.nlm.nih.gov/pubmed/1385491
https://doi.org/10.1002/cne.903370307
http://www.ncbi.nlm.nih.gov/pubmed/7506716
https://doi.org/10.1016/0168-0102(93)90030-T
https://doi.org/10.1016/0168-0102(93)90030-T
http://www.ncbi.nlm.nih.gov/pubmed/8414218
https://doi.org/10.1016/0196-9781(88)90011-3
https://doi.org/10.1016/0196-9781(88)90011-3
http://www.ncbi.nlm.nih.gov/pubmed/2452431
https://doi.org/10.1038/nn.2545
http://www.ncbi.nlm.nih.gov/pubmed/20436479
https://doi.org/10.1016/B978-0-12-374245-2.00013-9
https://doi.org/10.1002/dvg.20793
https://doi.org/10.1002/dvg.20793
http://www.ncbi.nlm.nih.gov/pubmed/21898763
https://doi.org/10.1016/j.celrep.2016.05.067
https://doi.org/10.1016/j.celrep.2016.05.067
http://www.ncbi.nlm.nih.gov/pubmed/27346361
https://doi.org/10.1111/j.1460-9568.2010.07329.x
https://doi.org/10.1111/j.1460-9568.2010.07329.x
http://www.ncbi.nlm.nih.gov/pubmed/20722723
https://doi.org/10.1097/YCO.0000000000000106
http://www.ncbi.nlm.nih.gov/pubmed/25188896
https://doi.org/10.1038/s41593-018-0153-x
https://doi.org/10.1038/s41593-018-0153-x
http://www.ncbi.nlm.nih.gov/pubmed/29802391
https://doi.org/10.1016/0361-9230(82)90145-9
https://doi.org/10.1016/0361-9230(82)90145-9
http://www.ncbi.nlm.nih.gov/pubmed/6816390
https://doi.org/10.3389/fnana.2015.00029
https://doi.org/10.3389/fnana.2015.00029
https://doi.org/10.1073/pnas.81.23.7647
http://www.ncbi.nlm.nih.gov/pubmed/6594708
https://doi.org/10.1038/nn.2149
http://www.ncbi.nlm.nih.gov/pubmed/18552840
https://doi.org/10.1016/j.neuron.2012.09.014
https://doi.org/10.1016/j.neuron.2012.09.014
http://www.ncbi.nlm.nih.gov/pubmed/23040809
https://doi.org/10.1016/j.neuropsychologia.2009.10.019
http://www.ncbi.nlm.nih.gov/pubmed/19879886
https://doi.org/10.7554/eLife.00736
https://doi.org/10.7554/eLife.00736
https://doi.org/10.1523/JNEUROSCI.23-08-03506.2003
https://doi.org/10.1523/JNEUROSCI.23-08-03506.2003
http://www.ncbi.nlm.nih.gov/pubmed/12716960
https://doi.org/10.1038/nrn1299
http://www.ncbi.nlm.nih.gov/pubmed/14708002
https://doi.org/10.1016/bs.pbr.2015.03.006
https://doi.org/10.7554/eLife.58901


Venner A, Mochizuki T, De Luca R, Anaclet C, Scammell TE, Saper CB, Arrigoni E, Fuller PM. 2019. Reassessing
the role of histaminergic tuberomammillary neurons in arousal control. The Journal of Neuroscience 39:8929–
8939. DOI: https://doi.org/10.1523/JNEUROSCI.1032-19.2019, PMID: 31548232

Vertes RP. 2015. Major diencephalic inputs to the Hippocampus: supramammillary nucleus and nucleus reuniens.
Circuitry and Function Progress in Brain Research 219:008. DOI: https://doi.org/10.1016/bs.pbr.2015.03.008

Vincent SR, Hökfelt T, Skirboll LR, Wu JY. 1983. Hypothalamic gamma-aminobutyric acid neurons project to the
neocortex. Science 220:1309–1311. DOI: https://doi.org/10.1126/science.6857253, PMID: 6857253

Vincent SR, Kimura H. 1992. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:
755–784. DOI: https://doi.org/10.1016/0306-4522(92)90184-4, PMID: 1371855

Vollmer LE, Ghosal S, A Rush J, R Sallee F, P Herman J, Weinert M, Sah R. 2013. Attenuated stress-evoked
anxiety, increased sucrose preference and delayed spatial learning in glucocorticoid-induced receptor-deficient
mice. Genes, Brain and Behavior 12:241–249. DOI: https://doi.org/10.1111/j.1601-183X.2012.00867.x,
PMID: 23088626

Vong L, Ye C, Yang Z, Choi B, Chua S, Lowell BB. 2011. Leptin action on GABAergic neurons prevents obesity
and reduces inhibitory tone to POMC neurons. Neuron 71:142–154. DOI: https://doi.org/10.1016/j.neuron.
2011.05.028, PMID: 21745644

Wang F. 2012. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J.
Mol. Diagnostics 14:22–29. DOI: https://doi.org/10.1016/j.jmoldx.2011.08.002

Wehr R, Mansouri A, de Maeyer T, Gruss P. 1997. Fkh5-deficient mice show dysgenesis in the caudal midbrain
and hypothalamic mammillary body. Development 124:4447–4456. PMID: 9409663

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome
Biology 19:15. DOI: https://doi.org/10.1186/s13059-017-1382-0, PMID: 29409532

Wright NF, Vann SD, Erichsen JT, O’Mara SM, Aggleton JP. 2013. Segregation of parallel inputs to the
anteromedial and anteroventral thalamic nuclei of the rat. Journal of Comparative Neurology 521:2966–2986.
DOI: https://doi.org/10.1002/cne.23325, PMID: 23504917

Yamada K, Emson P, Hökfelt T. 1996. Immunohistochemical mapping of nitric oxide synthase in the rat
hypothalamus and colocalization with neuropeptides. Journal of Chemical Neuroanatomy 10:295–316.
DOI: https://doi.org/10.1016/0891-0618(96)00133-0, PMID: 8811420

Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y, Zhang Z, Uygun DS, Parker S, Vyssotski AL, Yustos R, Franks NP,
Brickley SG, Wisden W. 2015. Wakefulness is governed by GABA and histamine cotransmission. Neuron 87:
164–178. DOI: https://doi.org/10.1016/j.neuron.2015.06.003

Żakowski W, Równiak M, Robak A. 2014. Colocalization pattern of calbindin and cocaine- and amphetamine-
regulated transcript in the mammillary body–anterior thalamic nuclei axis of the guinea pig. Neuroscience 260:
98–105. DOI: https://doi.org/10.1016/j.neuroscience.2013.12.015

Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La
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