
RESEARCH ARTICLE

A comparative study of single-channel signal

processing methods in fetal

phonocardiography

Katerina BarnovaID
1, Radana Kahankova1, Rene JarosID

1*, Martina LitschmannovaID
2,

Radek MartinekID
1

1 Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer

Science, VSB–Technical University of Ostrava, Ostrava, Czechia, 2 Department of Applied Mathematics,

Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, Ostrava,

Czechia

* rene.jaros@vsb.cz

Abstract

Fetal phonocardiography is a non-invasive, completely passive and low-cost method based

on sensing acoustic signals from the maternal abdomen. However, different types of inter-

ference are sensed along with the desired fetal phonocardiography. This study focuses on

the comparison of fetal phonocardiography filtering using eight algorithms: Savitzky-Golay

filter, finite impulse response filter, adaptive wavelet transform, maximal overlap discrete

wavelet transform, variational mode decomposition, empirical mode decomposition, ensem-

ble empirical mode decomposition, and complete ensemble empirical mode decomposition

with adaptive noise. The effectiveness of those methods was tested on four types of interfer-

ence (maternal sounds, movement artifacts, Gaussian noise, and ambient noise) and

eleven combinations of these disturbances. The dataset was created using two synthetic

records r01 and r02, where the record r02 was loaded with higher levels of interference than

the record r01. The evaluation was performed using the objective parameters such as accu-

racy of the detection of S1 and S2 sounds, signal-to-noise ratio improvement, and mean

error of heart interval measurement. According to all parameters, the best results were

achieved using the complete ensemble empirical mode decomposition with adaptive noise

method with average values of accuracy = 91.53% in the detection of S1 and accuracy =

68.89% in the detection of S2. The average value of signal-to-noise ratio improvement

achieved by complete ensemble empirical mode decomposition with adaptive noise method

was 9.75 dB and the average value of the mean error of heart interval measurement was

3.27 ms.

Introduction

Fetal phonocardiography (fPCG) is a method based on sensing the acoustic signals of the fetal

heart from the maternal abdomen providing valuable information about the fetal well-being

[1]. The fetal heart sounds (fHSs) were first mentioned in 1650, however, were not officially
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used in the obstetrics until their rediscovery in the 19th century. The auscultation of fHSs was

practiced by placing the ear on the abdominal wall of the mother until 1816, when the stetho-

scope was invented by the French physician Rene Laennec [2]. The stethoscope allowed doc-

tors to regularly check the fetal heart rate (fHR). Later, with the development of science and

technology, an electronic stethoscope was invented to listen to fHSs [3].

The acoustic manifestation of the fetal heart activity is caused by the opening and closing of

heart valves. Although there are a total of four types of HSs, only two (S1 and S2) are distin-

guishable in the fPCG signal. The first HS (herein denoted as S1) is generated during systole

by closing the mitral and tricuspid valves. The second HS (herein denoted as S2) is generated

during the isovolumic relaxation phase of diastole by closing the aortic and pulmonary valves

[4, 5]. The S1 is generally longer with greater magnitude and low frequency vibrations com-

pared to the S2. The systolic interval between S1 and S2 sounds is usually shorter than the dia-

stolic interval between S2 and S1 sounds. It is a narrowband non-stationary signal with a

frequency range of 15–110 Hz [3, 4]. In addition to fHSs, the fPCG signal is also able to detect

cardiac murmurs. Detection of pathological murmurs contributes to the early detection of

congenital valve defects, heart defects, and abnormalities [6, 7]. Pathological murmurs are

caused by tissue vibrations or when the laminar blood flow changes to turbulent [8]. It can be

classified as systolic (including, for example, aortic valve stenosis, stenosis of bicuspid aortic

valve or hypertrophic obstructive cardiomyopathy) and diastolic (including, for example, aor-

tic valve regurgitation, mitral stenosis, or pulmonary valve regurgitation) [6, 8, 9].

The fPCG method has received increasing attention in recent years mainly because it pro-

vides more information on cardiac abnormalities and pathologies than cardiotocography

(CTG), which is the most common method of the fetal surveillance in today’s clinical practice

[4]. In addition, it is a completely passive method, where neither the mother nor the fetus is

exposed to any type of radiation, as is the case with CTG [10]. Due to its non-invasiveness,

simplicity, and low cost, the fPCG method could become an alternative to CTG suitable for

long-term measurement and could also become a technique used for remote home monitoring

[11, 12]. The disadvantage of the method is the sensitivity to a wide range of noise, which

needs to be filtered in order to obtain clinically valuable information. Moreover, to obtain high

quality signal, the measuring probe needs to be placed as close to fetal body as possible, other-

wise it is prone to acquiring the unwanted signals instead of the fHS. It is therefore highly

dependent on the examiner’s skills.

The most common kind of interference that is sensed along with the useful signal is ambient
noise caused, for example, by speech, coughing, and other noise produced by the environment.

It is a broadband interference comprising frequencies from 10 Hz manifested by a change in

the mean value and variation of fPCG [3, 13]. Another type of disturbance that degrades the

useful signal is called motion artifacts and it is produced either by the maternal body or the

fetal one. Such interfering signals associated with the fetus are caused by movement of its

limbs, head or change in the fetal position. It is characterized by the frequency range 0–25 Hz

and in the time domain it manifests as random impulses. Artifacts caused by maternal move-

ments also manifest as random impulses in fPCG, but in the frequency range 0–100 Hz creat-

ing reverberation noise [3, 14]. Maternal heart sounds (mHSs) occurring in the 10–40 Hz

frequency band can also be considered an interfering signal [3, 15]. Furthermore, the useful

signal may be impaired by uterine contractions, the intensity and duration of which are affected

by the week of pregnancy, which usually occurs in the frequency range 0.2–0.5 Hz. Moreover,

maternal respiratory artifacts that cause baseline wander and fHR variations also occur in the

same frequency range. Digestive sounds can also act as disturbances, but not much information

has been published about their effect on fPCG. Uterine contractions, respiratory artifacts,

digestive sounds or quantization noise of the transducer can be represented as white Gaussian
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noise [3]. To remove these interfering signals and thus extract a high-quality signal providing

clinically valuable information, it is necessary to choose a suitable filtering algorithm.

The aim of this study is to compare the performance of eight algorithms: Savitzky-Golay

(S-G) filter, finite impulse response (FIR) filter, adaptive wavelet transform (AWT), maximal

overlap discrete wavelet transform (MODWT), variational mode decomposition (VMD),

empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD),

complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). It is

important to note that some of the algorithms (e.g. MODWT or CEEMDAN) have not yet

been tested and published for the fPCG extraction. Moreover, the effectiveness of these meth-

ods in filtering different types of interference was objectively evaluated using several metrics

(e.g. accuracy of S1 and S2 detection, SNR improvement and jDTij parameter). The interfer-

ences tested included, for example, mHSs, movement artifacts, Gaussian noise, ambient noise,

and eleven combinations of these disturbances to best simulate the states that occur in clinical

practice. The use of a relatively large number of algorithms, noise scenarios, and evaluation

metrics make this study unique and comprehensive. In particular, the evaluation of the accu-

racy of S2 detection, which is a clinically valuable feature, is quite rare except for very few stud-

ies focus on this topic, e.g. [16–18].

State-of-the-Art

Many authors [3, 13, 15, 19–22] have looked into the design and testing of algorithms for

fPCG filtration. As well as the filtering itself, some studies [3, 5, 15, 23, 24] were aimed at

detecting S1 sounds, and only a few authors [17, 18] looked into detecting S1 and S2 sounds.

The ideal extraction algorithm should both suppress disruptive signals and preserve fPCG

morphology so that clinically important information is not lost. A summary of the fPCG signal

processing methods will be provided in this section and in Table 1.

• Wavelet transform (WT) was proposed for extraction of fPCG in [13]. The authors did not

deal with detection of fHSs, but evaluated the effectiveness of the method only according to

signal-to-noise ratio (SNR). The method was tested on 37 synthetic signals, and the best

results were achieved with wavelet coif4 and seven levels of decomposition.

• A comparison study of the WT method was carried out by the authors in [15]. A total of 18

WT-based filters were tested for fPCG extraction. S1 sounds were automatically detected by

a PCG-Delineator, which is the threshold-based application. The filters were tested on 37

synthetic records and 119 real ones. Evaluation was based on the accuracy of determining

fHR and SNR. And the best results were achieved using wavelet coif4, and universal soft

thresholding.

• The WT method was also tested in [19]. The authors proposed a new wavelet basis function,

designed especially for filtering of fPCG. Fetal wavelet basis function with the threshold rigr-

sure achieved better results based on mean squared error (MSE) than classic wavelets db5,

coif4 and sym7 with higher convergence speeds.

• The authors in [18] used adaptive WT (AWT) for filtering of fPCG. The most effective filter-

ing was achieved with wavelet coif2 and six levels of decomposition. Identification of S1 and

S2 was based on time intervals between the peaks and their correspondence to physiological

values. The method was tested on 14 women between the 36th and 40th week of pregnancy.

Evaluation of the perormance of the method was carried out by comparing fHR plots with

Doppler ultrasound monitor, and accuracy of 94–97.5% was achieved.
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• In [23] a bandpass filter (BPF) with a frequency band of 25–100 Hz was used. For detection

of S1 sounds autocorrelation was used as the dominant method, which proved to be very

effective for sections with a low level of interference. If, however, this method was not suffi-

ciently precise for sections with higher levels of interference, a further two methods were

used for these sections: WT and matching pursuit (MP). The method was tested on 25 real

recordings sensed from the abdominal area of pregnant women in the 34th week of preg-

nancy. This combined approach achieved accuracy in detection of S1 sounds from 92.9% to

98.5%.

• The authors of study [17] created an iterative algorithm combining the WT method and

fractal dimension (FD). The WT method was used for removing disturbances from the

fPCG signal using wavelet db4. The FD method was used for detection of all fHSs. Finally,

differentiation between S1 and S2 sounds was carried out, based on the fact that diastolic

duration is longer than systolic duration. During testing on 19 synthetic recordings, overall

accuracy in detection of fHSs of 89% was achieved.

Table 1. Comparison of the fPCG extraction methods.

Author, source Noise removal Feature extraction Results

Sbrollini et al.

[13]

WT – The best results were obtained with coif4 and 7

levels of decomposition

Tomassini et al.

[15]

WT S1 detection was performed using threshold-based

application (PCG-Delineator)

The best results were obtained with coif4, and

universal soft thresholding

Chourasia et al.

[19]

WT – The best results were obtained with new ‘fetal’

avelet basis function

Vaisman et al.

[18]

AWT S1 and S2 identification was based on time intervals

between the peaks and their correspondence to

physiological values

The best results were obtained with coif4 and 7

levels of decomposition Accuracy in determining

the fHR was 94–97.5%

Kovacs et al. [23] BPF S1 detection was based on combination of

autocorrelation, WT and MP

The optimal BPF filter Hz band was 25–100

Accuracy in S1 detection was 92.9-98.5%

Koutsiana et al.

[17]

WT fHSs detection was based on FD and S1 and S2

identification was based on physiological values of

cardiac cycle

The best results were obtained with db4 Accuracy

in S1 and S2 detection and identification was 89%

Martinek et al. [3] EMD

EEMD

AWT

S1 detection was based on Pan-Tompkins algorithm Accuracy in S1 detection according to ACC was:

46.55-100%

89.02-100%

97.37-100%

Jimenez-Gonzalez

et al. [20]

SCICA – S1 and S2 were clearly identifiable

Soysa et al. [25] Eigen filter based subspace separation

technique and Wiener filter

Abnormalities detection using an eigenvectorbased

subspace matching system

Mitral stenosis was successfully identified

Warbhe et al. [21] EMD-SVD-EFICA – S1 and S2 were clearly identifiable

Dia et al. [26] BPF A combination of STFT and NMF was used to

determine fHR

The optimal BPF filter band was 20–200 Hz

Accuracy in determining the fHR was 84–91%

Huimin et al. [27] EMD-LWT A combination of HT and cepstrum was used to

determine fHR

The fHR determination was accurate

Cesarelli et al. [5] BPF S1 detection was performed using Teager energy

operator and logic block based on amplitude

thresholding

The optimal BPF filter band was 34–54 Hz

Accuracy in determining the fHR was 68–99%

Samieinasab et al.

[22]

EMD-NMF-Clustering – Accuracy in determining the fHR was 83–100%

Zahorian et al.

[28]

FIR-Matched filter A combination of Teager energy operator and

autocorrelation was used to determine fHR

The fHR determination was accurate

Ruffo et al. [24] BPF-Matched filter S1 detection was performed using Teager energy,

autocorrelation and amplitude thresholding

The fHR values were very close to the reference

values

https://doi.org/10.1371/journal.pone.0269884.t001
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• AWT methods, empirical mode decomposition (EMD) and ensemble empirical mode

decomposition (EEMD) were presented in [3] for fPCG filtration. The Pan-Tompkins algo-

rithm was used for detection of S1 sounds. The method was tested on 12 synthetic record-

ings, which were distorted by three types of disturbances (ambient noise, Gaussian noise and

movement artifacts of the mother and the fetus). Evaluation of the effectiveness of the

method was carried out using SNR improvement, mean error of heart interval measurement,

fHR, and evaluation of detection of S1 sounds was carried out using statistical parameters:

accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean

between SE and PPV (F1). According to the ACC parameter, the best results were achieved

with AWT in a range of 97.37–100%.

• A single-channel independent component analysis (SCICA) was tested in [20]. First, an

appropriate matrix of delays was created, then a multiple FastICA was applied. The method

was tested on three real recordings, and the gestation age of the fetuses was 36–40 weeks.

The authors did not present any statistical results, but they observed that after filtering of the

signals using the given method, S1 and S2 sounds were clearly identifiable.

• Filtering of disturbances with an eigen filter based subspace separation technique with a

Wiener filter was presented in [25]. As well as extraction of the fPCG signal the authors also

looked into detection of abnormalities (mitral stenosis). An eigenvector based subspace

matching system was used for detection of abnormalities. Synthetically generated mitral ste-

nosis was successfully identified with the help of the designed algorithm.

• A single-channel method combining the EMD method, singular value decomposition (SVD)

and an efficient version of ICA (EFICA) was proposed in [21]. A combination of all methods

was tested on real recordings and even led to effective extraction of signals burdened with

high levels of interference. Although the authors did not publish statistical results, they

observed that S1 and S2 sounds could clearly be identified.

• The authors in [26] used BPF with a frequency band of 20–200 Hz for filtering of fPCG.

Spectograms were then created with the help of short-time Fourier transform (STFT).

Finally, the non-negative matrix factorization (NMF) method was used for analysis of the

signal and determination of fHR. The authors used real recordings from women in the 38th

and 39th week of pregnancy. In addition to fPCG signals, CTG recordings were also made,

which served as a reference. The effectiveness of the method was evaluated according to its

accuracy in determining fHR with regard to the reference, and accuracy of 84–91% was

achieved.

• In [27] a combination of the EMD and and lifting wavelet transform (LWT) methods was

used for eliminating interference in the fPCG signal. Subsequently a spectrum of the signal

envelope was obtained using Hilbert transform (HT), and the resulting fHR values were

obtained using the cepstrum method. The method was tested on 20 real recordings obtained

from women between the 30th and 40th week of pregnancy. The authors did not publish sta-

tistical results- they only observed that the determined fHR value was accurate.

• The authors in [5] used BPF with a frequency band of 34–54 Hz for filtering of fPCG. Non-

linear time Teager energy operator, which identified high-energy peaks and enhanced S1

sounds, was then applied. Finally, a logic block based on amplitude thresholding was used

for detection of S1 sounds. During testing on synthetic data, accuracy of 68-99% was

achieved in detection of fHR according to ACC parameters.
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• In [22] a single-channel method for extraction of fPCG combining EMD, NMF and cluster-

ing methods was proposed. The method was tested on 50 real recordings and simultaneously

measured CTG was used as a reference. Accuracy of the algorithm in determining fHR was

in relation to the reference 83-100%.

• The device for monitoring fHR proposed in [28] used a BPF FIR filter with an order of 124

and a matched filter for filtering of fPCG signals. For determining fHR, a Teager energy

operator was applied, which enhanced the positions with fetal heart beats. Finally, autocorre-

lation was used, which served to detect periodical components and determine fHR. The

method was tested on 12 real recordings. The authors did not publish statistical results, but

they concluded that this method is effective for determining fHR.

• For filtering of fPCG signals in [24] a combination of matched filter and BPF with a fre-

quency range of 34–54 Hz was used. S1 sounds were then enhanced using a Teager energy

operator and detected with the help of autocorrelation and amplitude thresholding. The

method was tested on real recordings obtained from women between the 30th and 40th

week of pregnancy. The accuracy of the method was evaluated based on determining fHR

with regard to reference values of fHR obtained from CTG, which was recorded together

with fPCG. The authors concluded that fHR values determined using this method were very

close to the reference values determined from CTG.

From the above it emerges that objective comparison of testing method performance is

problematic, because authors use different signals (real or synthetic) disturbed by various lev-

els and types of interference. Some authors [3, 5, 17, 18, 22, 23, 26] then evaluate the effective-

ness of filtering using objective statistical parameters and some [20, 21, 27] only subjectively

evaluate the extracted waveform. The aim of this study is to carry out an objective and uniform

comparison of eight algorithms for filtering of fPCG for various types and levels of disturbance

and evaluate their effectiveness using statistical parameters. This comparative study could

therefore help find the optimal algorithm for processing fPCG, which could be implemented

in devices for home monitoring and analysis of the heart activity of fetuses.

Materials and methods

On the basis of in-depth research eight algorithms (S-G filter, FIR filter, AWT, MODWT,

VMD, EMD, EEMD, and CEEMDAN) were chosen for filtering fPCG which have the poten-

tial to effectively filter interference. This section also includes a description of the reference sig-

nals and disturbances which were generated for testing these algorithms. The evaluation

parameters which were used for evaluating the quality of filtering and accuracy of detection of

S1 and S2 sounds are also described.

Filtration algorithms

This subsection summarises the basic information about algorithms. As the majority of the

algorithms are very well described in the literature, only the basic facts are given here. For each

method the literature is cited, where extra information can be found.

• Savitzky-Golay filter—polynomial S-G filter is a widely used method for smoothing and dif-

ferentiating time series, and also biomedical data [29]. The technique is based on least

squares fitting of a lower order polynomial to a number of consecutive points [30]. The aim

of filtering using S-G is to find co-efficients that increase the accuracy of data, and also main-

tain the trend of the given signal [29]. To achieve good results, it is necessary to find a
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compromise when choosing the length of the window and the polynomial order for the

tested data. A detailed description of this technique can be obtained in [29–31]. S-G was

used in [32] as part of the filtering algorithm for fPCG and for processing of adult PCG in

[33, 34].

• Finite impulse response filter—the non-recursive FIR filter can also be categorised as one of

the frequently used filters for processing biomedical signals [35]. This is a filter whose

impulse response has finite length. The advantage of the filter is its stability and linear phase

response, where there is the same delay in harmonic sections with no phase distortion [35].

For correct functioning of the FIR filter it is necessary to choose an appropriate filter length

and cut-off frequency. Further information can be found in [31, 35, 36]. The FIR filter was

tested for filtering of fPCG in [28] and for filtering of adult PCG in [37].

• Adaptive wavelet transform—methods based on WT are among the most frequently used

techniques for processing non-stationary signals, and thus also for filtering of fPCG. The

advantage of the method is the representation of the processed signal both in a time and fre-

quency domain [3, 19]. The first step is the decomposition of the input signal, when co-effi-

cients are obtained. In the case of AWT, this is followed by adaptive thresholding of these

co-efficients. Each co-efficient is assigned a certain threshold value, which corresponds to

the changes in interference output in the signal (this is achieved using a moving window)

[3]. Inverse WT is applied for reconstruction of the filtered signal. In order for filtering of

the signal to be effective, the appropriate type and width of wavelet, and the appropriate

number of decomposition levels must be chosen. More information about the method can

be found in [38]. WT was tested for the purposes of fPCG filtering in [13, 15, 19], and specii-

cally the AWT method in [3, 18].

• Maximal overlap discrete wavelet transform—the MODWT method can also be placed in the

WT family (also known as undecimated discrete wavelet transform), which is based on the

principle of leaving out the down-sampling process [39]. The wavelet co-efficients therefore

have the same length as the input signal at each level, and offer better approximisation.

Inverse WT and thresholding follow [40]. Again the choice of the type of wavelet, wavelet

length, and the number of decomposition levels for the given type of signal play an impor-

tant role. Further information can be obtained in [39, 40]. For processing adult PCG signals

the method in [41] was used.

• Variational mode decomposition—the VMD method is a relatively new quasi-orthogonal

technique based on the decomposition of the input signal into intrinsic mode functions

(IMFs). These IMFs represent a separated frequency band of the processed signal [42, 43].

The method uses a calculation of a one-way frequency spectrum using HT and the shift of

individual modes to baseband. The width of the band of each mode is estimated using

Dirichlet energy of the demodulated signal [44]. VMD is an alternative to the EMD method,

however in contrast to EMD individual IMFs are extracted simultaneously and non-recur-

sively [42]. More detailed information can be found in [42–44]. For the purposes of process-

ing fPCG the method in [45] was used, and for processing adult PCG the method in [44] was

introduced.

• Empirical mode decomposition—EMD is a filtering technique appropriate for processing

non-stationary and non-linear signals. As in the VMD method, the input signal is decom-

posed into internal oscillatory functions—IMFs, which represent a specific frequency band

[21]. The principle of the method is based on the detection of upper and lower envelope of

the signal by detecting the local maxima and minima. The mean of envelopes is then
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calculated and subtracted from the input signal. The resulting signal is denoted as IMF1 if it

fulfills the conditions for IMFs. Further IMFs are extracted by repeating the whole proce-

dure, however instead of the input signal, residue is used, which is created by subtracting

IMF1 from the input signal [21, 46, 47]. The effectiveness of the EMD method is lowered by

the mode mixing problem, where one IMF covers multiple components with different fre-

quencies [48]. Further information can be obtained in [3, 21, 46–48]. The method was tested

for processing fPCG in [3, 21, 22, 27] and for processing adult PCG in [49, 50].

• Ensemble empirical mode decomposition—the EEMD method was proposed in order to over-

come the limitations of the EMD method, and resulted in more effective filtering of signals.

EEMD works on the principle of adding white noise to the input signal and carrying out a

pre-chosen number of EMD cycles [3, 51]. Individual IMFs, which are created by averaging

the results of all EMD cycles, are the output of the algorithm [3, 52]. The disadvantage of the

EEMD method is its low computational speed. A detailed description is presented in [3, 51,

52]. The EEMD method was used for processing fPCG in [3], and for processing adult PCG

in [53, 54].

• Complete ensemble empirical mode decomposition with adaptive noise—the CEEMDAN

method was designed with the aim of overcoming the limitations of the EEMD method.

CEEMDAN works on the same principle as EEMD with small differences [55]. Paired posi-

tive and negative adaptive white noise is added to the input signal, which is able to contribute

more to elimination of mode mixing. The predetermined number of EMD cycles is then car-

ried out and the resulting IMFs are determined by averaging the outputs of all EMD cycles

[55, 56]. The resulting IMFs are however counted sequentially, which leads to an increase in

the computational speed of the algorithm. More information about the method can be found

in [55, 56]. Processing of adult PCG using CEEMDAN was carried out in [54, 57].

Fetal heart sounds detection

Detection of S1 and S2 sounds was inspired by study [58]. The principle of the method is

based on a combination of HT, and threshold and deciding factors. First, the envelope of the

input signal was detected using HT. The signal envelope contained residues of interference, so

it was smoothed out using a low-pass filter (LPF). All peaks were then detected, and potential

S1 and S2 sounds were found. Peaks which were above the threshold value, which was set as

0.4 times the maximal amplitude of the envelope, were labelled as potential S1 and S2 sounds.

Other peaks were excluded.

In order to avoid detection of extra peaks, a principle was established for their elimination,

through setting a minimum time interval between peaks of 100 ms. If the time interval was

shorter, an extra peak was searched for between peaks. If more such peaks were found in this

interval, the peak with the highest amplitude was preserved, and lower peaks were excluded.

Due to the variability of fHSs amplitude, it was also necessary to deal with the possibility

that some of the fHSs appeared under the set threshold and could therefore affect subsequent

classification. After excluding extra peaks, the shortest interval between two fHSs was chosen

and a limit with a value twice as large as that interval was defined. If a time interval with a

value larger than the assigned limit was then detected, the peak with the maximum amplitude

in that interval was found and the lost peak was restored.

Finally, peaks classified as S1 and S2 sounds were detected on the basis of the physiological

characteristics of the heartbeat. The systolic interval between S1 and S2 sounds is usually

shorter than the disastolic interval between S1 and S2 sounds. The longest time interval was

discovered between the detected peaks, and the first peak was labelled as S2 and the second as
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S1. Further peaks were labelled in sequence. An example of individual detection steps is shown

in Fig 1.

Reference signals and noise

For testing filtering methods, it was necessary to choose appropriate signals. Unfortunately at

the current time there are only three publicly accessible databases: Shiraz University Fetal
Heart Sounds Database [22], Fetal PCGs Database available in PhysioBank archive [59], both

containing real data. A Simulated Fetal Phonocardiograms Database [5] containing syntheti-

cally generated signals with different fetal states (physiological or pathological) and recording

conditions. One obstacle in testing algorithms on real recordings is the absence of a reference

signal against which the accuracy of filtering methods could be evaluated.

For this reason, we used our own synthetic signals for testing. We generated two reference

signals (r01 a r02), to which we added the four most commonly occurring types of distur-

bances during fPCG recording in real conditions (mHSs, maternal and fetal movement arti-

facts, white Gaussian noise and ambient noise). In order to best simulate the influence of

disturbances on the quality of the signal in real conditions, where multiple types of interfer-

ence can work simultaneously, we additionally loaded the reference signals with combinations

of individual types of disturbance (e.g. mHSs and movement artifacts, Gaussian noise and

ambient noise etc.). In total for each signal 15 types of disturbances were tested (four individ-

ual types of disturbance and eleven combined types). Signal r01 was loaded with lower levels of

disturbance (SNR of signal with mHSs: -0.53 dB, movement artifacts: -0.84 dB, Gaussian

noise: -1.20 dB, and ambient noise: -2.25 dB), while signal r02 was loaded with lower levels of

disturbance (SNR of signal with mHSs: -1.82 dB, movement artifacts: -2.49 dB, Gaussian

Fig 1. S1 and S2 sounds detection procedure: a) input signal, b) envelope detection using HT, c) detected signal envelope with

interference residues, d) smoothed envelope using LPF, e) detection of fHSs above the threshold value (the blue line indicates

the threshold value), and f) resulting classification of S1 and S2 sounds.

https://doi.org/10.1371/journal.pone.0269884.g001
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noise: -3.56 dB, and ambient noise: -5.74 dB). The SNR values of input disturbed signals can

be found in Tables 2–7. An example of reference signals and individual types of disturbance

can be seen in Fig 2. All used input signals (with and without interference) can be found at fig-
share data repository [60] along with all extracted signals that were obtained using the tested

algorithms.

Generation of reference signals and individual types of disturbance was inspired by study

[4], and can be summarised as follows:

• Reference signals—reference signals were modelled using Gaussian modulated sinusoid

(detailed information can be found in [4]). Signals with a length of 300 s represented a fetus

with a gestational age of 40 weeks, with a sampling frequency of 1000 Hz and average fHR of

140 bpm. The ratio of S1 and S2 sounds was 1.7, central frequency of S1 was 36.89 Hz, cen-

tral frequency of S2 was 55.18 Hz and S1 and S2 time inter-distance was 140 ms.

Table 2. Setting parameters for S-G filter, FIR filter, AWT, and MODWT.

Type of interference Record SNR of signal with noise

(dB)

Algorithms

S-G FIR AWT MODWT

Window Polynomial Filter Wavelet Decomp. Wavelet Decomp.

length order order type level type level

mHSs r01 -0.53 20 7 31 sym4 3 db5 4

r02 -1.82 40 10 90 sym6 3 db4 4

Movement artifacts r01 -0.84 26 9 16 coif5 3 sym3 4

r02 -2.49 34 7 150 db4 3 coif5 4

Gaussian noise r01 -1.20 12 10 2 coif5 3 db4 4

r02 -3.56 16 6 5 coif5 3 sym3 4

Ambient noise r01 -2.25 16 10 3 coif5 3 coif4 4

r02 -5.74 32 8 10 coif5 3 db5 4

mHSs, Movement artifacts r01 -1.45 36 6 105 sym6 3 coif4 4

r02 -3.61 26 4 142 sym6 3 coif5 4

mHSs, Gaussian noise r01 -1.60 12 8 60 db5 3 coif4 4

r02 -4.48 32 8 92 coif5 3 coif5 4

mHSs, Ambient noise r01 -2.57 30 8 138 coif5 3 sym3 4

r02 -6.30 28 6 114 coif5 3 db5 4

Movement artifacts, Gaussian noise r01 -2.65 52 10 97 db6 3 sym6 4

r02 -5.94 52 9 136 sym4 3 coif5 4

Movement artifacts, Ambient noise r01 -3.52 26 4 88 coif5 3 coif5 4

r02 -7.43 58 8 111 db3 3 sym5 4

Gaussian noise, Ambient noise r01 -4.65 22 6 16 coif4 3 db6 4

r02 -9.43 44 6 10 db5 3 coif5 4

mHSs, Movement artifacts, Gaussian noise r01 -2.94 36 6 84 db6 3 sym5 4

r02 -6.48 58 8 133 sym6 3 sym6 4

mHSs, Movement artifacts, Ambient noise r01 -3.75 40 6 98 coif4 3 coif5 4

r02 -7.82 50 6 210 coif5 3 coif4 4

mHSs, Gaussian noise, Ambient noise r01 -4.84 48 10 58 coif5 3 coif5 4

r02 -9.67 32 4 158 sym6 3 sym6 4

Movement artifacts, Gaussian noise, Ambient noise r01 -5.73 32 4 96 db5 3 coif3 4

r02 -10.57 50 6 6 sym5 3 db5 4

mHSs, Movement artifacts, Gaussian noise,

Ambient noise

r01 -5.87 40 6 107 sym6 3 coif3 4

r02 -10.76 50 6 9 db3 3 db5 4

https://doi.org/10.1371/journal.pone.0269884.t002
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• mHSs—interference occurs in the frequency band 10–40 Hz and like the reference signals

was modelled using Gaussian modulated sinusoid. Average mHR was 70 bpm, the ratio of

S1 and S2 sounds was 1.54, central frequency of S1 was 16.93 Hz, central frequency of S2 was

30.44 and S1 and S2 time inter-distance was 331 ms.

• Maternal and fetal movement artifacts—artifacts caused by movement of limbs, head, or

change in position of the fetus occurring in the frequency band 0–25 Hz and manifesting as

random impulses in fPCG. Artifacts caused by movement of the mother also manifested

themselves as random impulses in fPCG, though in a frequency range of 0–100 Hz. Interfer-

ence was modelled as random pulses with a fixed amplitude lasting 0.5 to 1.5 s.

• White Gaussian noise—this is random interference, which can be caused by womb contrac-

tions, maternal breathing artifacts, digestive sounds or quantization noise of the transducers.

Interference was modelled as random Gaussian noise with the same power in any band of

the same width.

Table 3. Setting parameters for VMD, EMD, EEMD and CEEMDAN.

Type of interference Record SNR of signal with noise (dB) Algorithms

VMD EMD EEMD CEEMDAN

IMF IMF N Nstd IMF N Nstd IMF

mHSs r01 -0.53 2+3 2+3+4 50 0.8 4 10 0.7 2+3

r02 -1.82 2+3 2+4+6 10 0.6 3+4 50 0.2 2

Movement artifacts r01 -0.84 1+2+3 2 10 0.4 3+4 10 0.3 2+3

r02 -2.49 2+3 2+5 10 0.6 2+4+6 30 0.7 2+3

Gaussian noise r01 -1.20 1+2+3 3+4+5 30 0.1 3+4 10 0.4 2+3

r02 -3.56 1+2+3 3+4+5 10 0.3 4+5 10 0.5 2+3

Ambient noise r01 -2.25 1+2+3 3+4+5 10 0.1 3+4+5 10 0.6 2+3

r02 -5.74 1+2+3 3+4+5 30 0.9 4+5 50 0.6 2+3+4

mHSs, Movement artifacts r01 -1.45 2+3 2 10 0.2 3+4 50 0.2 2

r02 -3.61 2+3 2+5 50 0.7 2+5 50 0.8 3

mHSs, Gaussian noise r01 -1.60 1+2+3 3+4 30 0.1 3+4 10 0.5 2+3

r02 -4.48 1+2+3 4 30 0.4 2+4 50 0.7 2+3

mHSs, Ambient noise r01 -2.57 1+2+3 3+4 30 0.6 4+5 30 0.5 2+3

r02 -6.30 1+2+3 3+4+5 50 0.7 4+5 30 0.8 3+5+6

Movement artifacts, Gaussian noise r01 -2.65 1+2 2+3+4 50 0.6 4 10 0.7 2+3+6

r02 -5.94 1+2 3+4 50 0.3 4 30 0.8 3

Movement artifacts, Ambient noise r01 -3.52 1+2 3+4 50 0.3 2+4 30 0.6 2+3

r02 -7.43 1+3 2+4+5 30 0.5 4+5 50 0.9 3

Gaussian noise, Ambient noise r01 -4.65 1+2+3 3+4+5 50 0.9 4+5 50 0.6 2+3+5

r02 -9.43 1 2+4+5 50 0.8 2+3+5 50 0.7 3

mHSs, Movement artifacts, Gaussian noise r01 -2.94 1+2 2+3+4 50 0.7 4 30 0.5 2+3+5

r02 -6.48 2+3 4 50 0.4 4 10 0.8 3+6

mHSs, Movement artifacts, Ambient noise r01 -3.75 1+2 3+4 50 0.4 4 30 0.5 2+3+6

r02 -7.82 1+2 2+4+5 50 0.3 4+5 30 0.8 3

mHSs, Gaussian noise, Ambient noise r01 -4.84 1+2+3 4+5 50 0.4 4+5 50 0.5 2+3

r02 -9.67 1+2 2+3+4+5 50 0.9 2+3+5 10 0.9 3

Movement artifacts, Gaussian noise, Ambient noise r01 -5.73 1+2 4+5 30 0.3 4+5 30 0.8 3

r02 -10.57 1 4+5 50 0.8 2+3+5 10 0.7 3

mHSs, Movement artifacts, Gaussian noise, Ambient noise r01 -5.87 1+2 4+5 50 0.7 4+5 50 0.8 3+6

r02 -10.76 1 4+5 30 0.8 2+3+5 30 0.9 3

https://doi.org/10.1371/journal.pone.0269884.t003
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• Ambient noise—broadband interference comprising frequencies from 10 Hz, caused by for

instance speech, coughing, closing doors etc. Interference was modelled by a fifth order But-

terworth high-pass filter with a cut-off frequency of 100 Hz.

Evaluation methods

Objective evaluation of the effectiveness of the methods was carried out by comparing the

accuracy of detection of S1 and S2 sounds, calculation of SNR improvement and determina-

tion of mean error of heart interval measurement jDTij.

• Accuracy of S1 and S2 sounds detection—in order to establish the accuracy of fHSs detection

first of all true positive (TP) values were established, as correctly detected S1 or S2 sounds,

set ±50 ms [3, 61] from equivalent S1 or S2 sounds in the reference signal. False positive (FP)

values were then set, as incorrectly detected S1 or S2 sounds, and a false negative (FN), as

Table 4. Statistical evaluation of the accuracy according to ACC (%) of S1 sounds detection.

Type of interference Record SNR of signal with noise

(dB)

Algorithms

S-G FIR AWT MODWT VMD EMD EEMD CEEMDAN

mHSs r01 -0.53 100.00 100.00 100.00 100.00 88.58 100.00 100.00 100.00

r02 -1.82 93.52 97.30 93.39 98.14 86.14 96.35 100.00 99.13

Movement artifacts r01 -0.84 100.00 100.00 100.00 100.00 88.58 100.00 100.00 100.00

r02 -2.49 93.36 91.21 96.07 93.50 86.26 96.59 96.58 95.43

Gaussian noise r01 -1.20 100.00 100.00 100.00 100.00 88.71 100.00 100.00 100.00

r02 -3.56 100.00 100.00 100.00 100.00 87.69 99.71 100.00 100.00

Ambient noise r01 -2.25 100.00 100.00 100.00 100.00 88.58 100.00 100.00 100.00

r02 -5.74 98.55 98.99 99.71 99.13 87.19 95.72 99.56 97.69

mHSs, Movement artifacts r01 -1.45 99.57 99.56 98.99 99.85 88.32 99.85 100.00 100.00

r02 -3.61 80.67 84.46 85.55 90.08 77.04 92.31 95.89 95.53

mHSs, Gaussian noise r01 -1.60 100.00 100.00 100.00 100.00 88.97 100.00 100.00 100.00

r02 -4.48 90.34 97.02 93.05 98.70 83.66 94.48 98.40 99.13

mHSs, Ambient noise r01 -2.57 100.00 100.00 100.00 100.00 88.97 98.69 100.00 100.00

r02 -6.30 87.25 92.64 92.93 97.15 83.88 88.72 95.09 98.00

Movement artifacts, Gaussian noise r01 -2.65 97.00 95.04 98.70 97.84 85.14 96.10 99.85 97.12

r02 -5.94 72.39 62.29 71.84 68.73 58.53 62.62 75.28 76.51

Movement artifacts, Ambient noise r01 -3.52 96.04 89.99 97.29 94.83 81.59 87.86 97.99 94.23

r02 -7.43 72.04 55.07 66.74 59.20 66.70 60.68 65.49 70.50

Gaussian noise, Ambient noise r01 -4.65 99.27 98.98 99.85 99.56 88.46 98.84 99.85 99.71

r02 -9.43 88.92 72.94 87.13 79.41 75.45 70.20 91.51 92.49

mHSs, Movement artifacts, Gaussian noise r01 -2.94 96.16 92.71 97.58 97.18 83.69 94.69 98.84 95.86

r02 -6.48 70.46 59.05 65.04 66.16 63.90 64.65 70.32 80.23

mHSs, Movement artifacts, Ambient noise r01 -3.75 96.19 89.13 96.74 94.56 80.23 87.45 98.41 93.81

r02 -7.82 65.86 52.18 60.90 60.41 46.74 58.98 61.73 70.58

mHSs, Gaussian noise, Ambient noise r01 -4.84 98.70 95.83 99.57 99.57 88.72 98.70 99.71 98.55

r02 -9.67 80.12 63.44 76.80 75.24 74.59 65.04 85.22 89.44

Movement artifacts, Gaussian noise, Ambient

noise

r01 -5.73 90.63 74.13 89.64 82.77 74.57 77.72 84.42 94.48

r02 -10.57 60.02 42.03 51.18 50.38 51.38 43.00 55.53 57.41

mHSs, Movement artifacts, Gaussian noise,

Ambient noise

r01 -5.87 85.56 72.14 87.04 82.26 71.92 75.66 82.60 95.13

r02 -10.76 53.46 41.51 47.87 48.76 50.24 42.90 52.41 55.02

Average values – – 88.87 83.92 88.45 87.78 78.48 84.92 90.16 91.53

https://doi.org/10.1371/journal.pone.0269884.t004
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existing, but undetected S1 or S2 sounds. Finally the statistical parameter the accuracy

(ACC) [3, 61] in percentages (%) was determined:

ACC ¼
TP

TP þ FP þ FN
� 100: ð1Þ

• Signal-to-noise ratio improvement—the parameter was set as the difference between the orig-

inal SNR value of the disturbed signal (SNRin) and the SNR value of the filtered signal

(SNRout). The higher the SNR improvement value, the more effective filtering was. The

Table 5. Statistical evaluation of the accuracy according to ACC (%) of S2 sounds detection.

Type of interference Record SNR of signal with noise

(dB)

Algorithms

S-G FIR AWT MODWT VMD EMD EEMD CEEMDAN

mHSs r01 -0.53 87.32 100.00 86.45 100.00 88.57 87.19 95.15 100.00

r02 -1.82 59.04 90.33 58.35 89.51 80.03 55.36 94.42 92.89

Movement artifacts r01 -0.84 98.55 98.84 84.25 94.98 85.71 96.55 95.56 98.41

r02 -2.49 59.02 72.84 48.71 73.40 72.16 77.63 67.23 78.28

Gaussian noise r01 -1.20 100.00 100.00 80.00 99.13 44.56 100.00 99.71 99.27

r02 -3.56 99.13 98.69 60.81 88.36 55.39 94.77 82.12 94.83

Ambient noise r01 -2.25 100.00 99.71 67.31 94.15 53.96 99.27 99.27 98.70

r02 -5.74 90.76 89.75 54.10 77.12 60.09 41.53 82.18 84.58

mHSs, Movement artifacts r01 -1.45 72.87 77.14 65.83 89.41 83.54 92.09 93.04 95.99

r02 -3.61 42.05 66.79 32.61 65.83 60.09 70.17 50.62 52.34

mHSs, Gaussian noise r01 -1.60 84.97 99.71 62.12 96.26 35.17 98.55 99.27 97.69

r02 -4.48 56.64 78.64 33.64 79.21 19.76 57.71 58.67 75.86

mHSs, Ambient noise r01 -2.57 83.29 97.12 55.32 95.55 43.64 95.28 93.63 98.26

r02 -6.30 51.09 52.07 32.04 47.13 37.76 44.86 61.66 40.79

Movement artifacts, Gaussian noise r01 -2.65 76.53 89.10 60.05 84.21 79.95 88.89 71.26 89.89

r02 -5.94 27.42 42.42 28.89 39.78 31.71 43.32 44.09 36.98

Movement artifacts, Gaussian noise r01 -3.52 67.31 82.92 59.93 77.68 71.98 77.68 78.71 81.20

r02 -7.43 24.50 30.59 28.99 39.15 20.77 26.76 37.81 36.98

Gaussian noise, Ambient noise r01 -4.65 95.42 96.28 61.09 86.25 68.37 58.13 91.82 93.08

r02 -9.43 36.16 33.03 43.96 37.30 43.49 23.50 19.09 34.02

mHSs, Movement artifacts, Gaussian noise r01 -2.94 61.16 80.24 49.42 81.22 65.95 86.47 73.27 84.32

r02 -6.48 23.28 35.51 26.88 46.85 38.15 38.36 45.21 34.64

mHSs, Movement artifacts, Ambient noise r01 -3.75 54.80 62.03 50.91 75.73 66.55 77.43 64.31 80.13

r02 -7.82 22.19 33.39 28.41 37.81 28.77 26.56 33.83 32.43

mHSs, Gaussian noise, Ambient noise r01 -4.84 77.76 81.75 54.98 84.23 57.74 76.65 89.23 90.92

r02 -9.67 28.32 38.87 33.30 41.42 30.82 23.80 18.67 33.48

Movement artifacts, Gaussian noise, Ambient

noise

r01 -5.73 39.07 37.78 43.49 42.15 47.51 48.83 60.07 35.36

r02 -10.57 20.32 23.00 23.31 28.02 24.44 24.62 17.82 24.33

mHSs, Movement artifacts, Gaussian noise,

Ambient noise

r01 -5.87 41.45 42.12 43.30 45.99 46.08 46.97 59.26 41.72

r02 -10.76 19.88 23.64 21.71 24.80 20.31 21.90 17.97 29.30

Average values – – 60.01 68.48 49.34 68.75 52.10 63.36 66.50 68.89

https://doi.org/10.1371/journal.pone.0269884.t005
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results are given in decibels (dB).

SNRin ¼ 10log
10

PM� 1

m¼1
ðfPCGref ðmÞÞ

2

PM� 1

m¼1
ðfPCGinðmÞ � fPCGref ðmÞÞ

2
; ð2Þ

SNRout ¼ 10log
10

PM� 1

m¼1
ðfPCGref ðmÞÞ

2

PM� 1

m¼1
ðfPCGfiltðmÞ � fPCGref ðmÞÞ

2
; ð3Þ

where fPCGref(m) is the reference signal, fPCGin(m) is the input signal containing interfer-

ence, fPCGfilt(m) is the signal after application of the filtering method and M is the number

of samples of the reference signal.

• Mean error of heart interval measurement jDTij—the parameter determines the mean value

of the measurement error |ΔTi|, which was calculated as the absolute value of heart interval

Table 6. Statistical evaluation of the SNR improvement (dB).

Type of interference Record SNR of signal with noise

(dB)

Algorithms

S-G FIR AWT MODWT VMD EMD EEMD CEEMDAN

mHSs r01 -0.53 9.29 10.77 9.23 4.04 7.90 9.17 15.14 14.45

r02 -1.82 4.60 10.36 4.59 9.18 8.25 6.77 13.32 11.10

Movement artifacts r01 -0.84 7.57 7.84 7.93 4.07 5.62 10.82 11.16 9.82

r02 -2.49 4.05 6.19 4.28 4.75 5.79 6.46 7.80 7.43

Gaussian noise r01 -1.20 7.83 7.22 14.10 3.59 7.27 9.73 10.33 12.07

r02 -3.56 7.86 7.03 11.23 9.20 6.99 6.28 10.83 8.97

Ambient noise r01 -2.25 7.43 7.37 13.96 6.08 7.18 7.60 8.05 10.16

r02 -5.74 9.75 7.95 12.27 7.97 6.92 5.18 10.59 7.99

mHSs, Movement artifacts r01 -1.45 5.68 8.50 5.73 4.75 6.99 10.12 9.47 10.03

r02 -3.61 2.79 6.14 2.82 3.87 6.49 6.87 9.58 8.58

mHSs, Gaussian noise r01 -1.60 6.87 11.91 8.98 5.53 6.84 9.04 10.52 10.82

r02 -4.48 5.64 9.05 6.04 6.36 5.76 9.08 4.91 9.08

mHSs, Ambient noise r01 -2.57 8.78 10.94 9.58 5.88 6.85 7.33 11.18 10.07

r02 -6.30 6.92 8.70 7.62 6.55 6.27 4.60 9.40 11.60

Movement artifacts, Gaussian noise r01 -2.65 5.70 6.95 5.98 2.56 5.47 4.68 9.82 7.30

r02 -5.94 4.39 5.18 4.50 6.16 4.55 4.63 8.28 9.09

Movement artifacts, Ambient noise r01 -3.52 6.49 6.79 6.62 2.98 5.99 5.34 5.23 6.99

r02 -7.43 5.98 5.37 5.97 6.00 6.68 2.20 6.44 9.79

Gaussian noise, Ambient noise r01 -4.65 9.14 9.01 12.08 5.38 6.94 5.61 11.06 8.73

r02 -9.43 11.33 6.83 11.29 8.49 11.32 1.53 1.15 13.46

mHSs, Movement artifacts, Gaussian noise r01 -2.94 5.10 7.07 5.20 3.87 5.25 4.89 9.91 6.90

r02 -6.48 3.68 5.21 3.57 5.55 7.45 6.70 8.73 8.43

mHSs, Movement artifacts, Ambient noise r01 -3.75 5.88 6.71 5.86 3.17 5.71 5.52 9.41 6.76

r02 -7.82 5.15 5.30 4.72 6.67 4.76 2.19 6.06 9.74

mHSs, Gaussian noise, Ambient noise r01 -4.84 9.20 9.58 9.87 4.75 6.78 8.43 10.34 8.89

r02 -9.67 9.02 8.15 8.83 9.95 8.09 0.69 1.34 12.73

Movement artifacts, Gaussian noise, Ambient noise r01 -5.73 7.06 6.54 6.93 4.67 6.49 6.32 7.40 10.16

r02 -10.57 7.12 3.53 6.59 5.54 8.46 5.90 1.91 10.55

mHSs, Movement artifacts, Gaussian noise, Ambient

noise

r01 -5.87 6.29 6.41 6.31 4.77 6.29 6.15 7.56 9.90

r02 -10.76 6.40 3.31 6.11 5.68 7.94 5.74 1.98 10.80

Average values – – 6.77 7.40 7.63 5.60 6.78 6.19 8.30 9.75

https://doi.org/10.1371/journal.pone.0269884.t006
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differences |ΔTi| in milliseconds (ms) [62]:

jDTij ¼ jTifilt
� Tiref

j; ð4Þ

where Tifilt
is value i-of the interval of the filtered signal and Tiref

is value i-of the interval of

the reference signal.

Algorithms settings

In order to objectively test all filtering methods, it was necessary to find their optimal setting

for each type and level of interference. That was achieved with the help of automated algo-

rithm. For each combination of set parameters, the automated algorithm compared the filtered

signal with the reference signal and calculated ACC values. The setting (as well as the filtered

signal) with the highest ACC value was chosen. The whole process is shown in Fig 3.

Table 7. Statistical evaluation of the parameter jDTij (ms).

Type of interference Record SNR of signal with noise

(dB)

Algorithms

S-G FIR AWT MODWT VMD EMD EEMD CEEMDAN

mHSs r01 -0.53 0.21 0.12 0.20 0.10 0.48 0.22 0.06 0.12

r02 -1.82 3.60 1.74 3.67 1.48 1.29 2.15 0.21 0.90

Movement artifacts r01 -0.84 0.23 0.22 0.18 0.31 0.64 0.15 0.16 0.26

r02 -2.49 3.70 3.75 2.70 3.56 3.47 1.91 1.87 2.53

Gaussian noise r01 -1.20 0.03 0.03 0.01 0.70 0.52 0.06 0.06 0.06

r02 -3.56 0.35 0.35 0.14 0.39 0.44 0.60 0.27 0.34

Ambient noise r01 -2.25 0.09 0.11 0.02 0.12 0.49 0.16 0.13 0.13

r02 -5.74 1.36 1.21 0.61 1.07 0.91 2.38 0.83 1.28

mHSs, Movement artifacts r01 -1.45 0.78 0.60 1.14 0.45 0.83 0.38 0.56 0.47

r02 -3.61 7.19 5.88 6.44 4.58 5.39 3.50 2.01 2.83

mHSs, Gaussian noise r01 -1.60 0.26 0.14 0.24 0.08 0.62 0.25 0.11 0.22

r02 -4.48 4.75 2.07 3.91 1.08 2.94 2.14 1.04 0.99

mHSs, Ambient noise r01 -2.57 0.32 0.18 0.26 0.25 0.64 0.95 0.25 0.23

r02 -6.30 5.30 3.51 4.04 1.97 2.90 4.86 2.71 1.75

Movement artifacts, Gaussian noise r01 -2.65 2.02 2.31 1.25 1.57 2.32 2.44 0.58 1.66

r02 -5.94 10.58 11.43 10.22 10.68 11.36 10.30 7.47 9.49

Movement artifacts, Ambient noise r01 -3.52 2.41 4.27 1.74 2.66 3.95 4.06 1.34 2.69

r02 -7.43 10.84 12.88 11.72 12.70 10.45 11.27 11.11 10.40

Gaussian noise, Ambient noise r01 -4.65 0.83 1.01 0.37 0.76 0.67 1.15 0.46 0.57

r02 -9.43 5.70 9.34 5.98 7.89 6.70 9.40 4.56 3.91

mHSs, Movement artifacts, Gaussian noise r01 -2.94 2.09 3.21 1.81 2.00 3.02 2.92 1.10 2.51

r02 -6.48 10.99 12.02 11.28 11.13 10.42 10.80 8.49 7.33

mHSs, Movement artifacts, Gaussian noise r01 -3.75 2.15 4.49 2.11 3.00 4.60 4.44 1.51 2.99

r02 -7.82 11.75 13.24 11.95 12.37 12.75 11.12 11.60 10.18

mHSs, Gaussian noise, Ambient noise r01 -4.84 1.26 2.13 0.69 0.79 0.88 1.15 0.64 1.37

r02 -9.67 8.02 10.91 8.78 8.82 7.53 10.49 6.68 4.30

Movement artifacts, Gaussian noise, Ambient noise r01 -5.73 4.55 8.65 4.60 6.90 6.41 8.23 6.82 3.25

r02 -10.57 12.11 14.93 13.85 13.81 12.73 13.87 12.51 10.91

mHSs, Movement artifacts, Gaussian noise, Ambient

noise

r01 -5.87 6.29 9.12 5.68 6.90 7.74 8.63 7.03 2.67

r02 -10.76 12.87 13.86 13.75 13.89 12.84 13.30 12.91 11.87

Average values - - 4.42 5.12 4.31 4.40 4.53 4.78 3.50 3.27

https://doi.org/10.1371/journal.pone.0269884.t007
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For S-G filter, FIR filter, AWT and MODWT the optimal parameter settings are summa-

rised in Table 2 and for VMD, EMD, EEMD and CEEMDAN in Table 3. For S-G filter it was

necessary to set the length of the window and the polynomial order. For FIR filter it was neces-

sary to choose an appropriate filter system (the BPF type with a frequency band of 20–110 Hz

was used). For the AWT and MODWT methods it was necessary to choose an appropriate

type of wavelet, wavelet width and number of decomposition levels. The symlet, coiflet and

Daubechies wavelets were tested because their shape, energy and frequency spectrum is similar

to that of fHSs [3]. For the EEMD a CEEMDAN methods it was necessary to choose the appro-

priate number of ensemble trials N and the standard deviation of the added noise Nstd. All

four methods VMD, EMD, EEMD, and CEEMDAN were based on the principle of

Fig 2. An example of reference signals and four individual types of disturbance which the reference signals were loaded with.

Example a) represents reference signal r01 and a lower level of disturbance compared to b) reference signal r02, which was loaded

with higher levels of disturbance (SNR values of input disturbance signals are in Tables 2–7).

https://doi.org/10.1371/journal.pone.0269884.g002

Fig 3. Process of choosing the optimal setting of algorithm parameters.

https://doi.org/10.1371/journal.pone.0269884.g003
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decomposition of the input signal into simpler signals-IMFs. The total number of extracted

IMFs was dependent on the character of the input signal and extraction of IMFs took place as

long as it was not possible to extract further IMFs. This was in the case where the signal was a

constant, monotone function or a function with one extreme. For these methods it was there-

fore necessary to choose an appropriate combination of IMFs, which contributed to the crea-

tion of the resulting filtered signal. An example of three IMFs for the VMD, EMD, EEMD, and

CEEMDAN methods is shown in Fig 4.

Results

The efficiency of the S-G filter, FIR filter, AWT, MODWT, VMD, EMD, EEMD and CEEM-

DAN was evaluated against reference signals. In total 15 types of disturbance were filtered

(four individual types of disturbance and eleven combinations) for two recordings r01 and

r02. Evaluation of the effectiveness of the methods was carried out by detection of S1 and S2

sounds, calculation of SNR improvement and determination of parameter jDTij. The best

result for the given type of disturbance was highlighted in the table (for detection of S1 and S2

sounds and SNR improvement the highest values were highlighted and for parameter jDTij the

lowest values).

Accuracy of S1 and S2 sounds detection

Evaluation of the accuracy of S1 and S2 sounds detection was carried out by determining the

values of TP, FP and FN, and then calculating the ACC parameter. The resulting ACC values

for detection of S1 sounds for both recordings r01 and r02 are summarised in Table 4 and the

resulting ACC values for detection of S2 sounds for both recordings r01 and r02 are summa-

rised in Table 5.

According to Table 4 all tested algorithms, except VMD, achieved effective extraction and

accurate detection of S1 sounds, as the average ACC values exceeded 80%. Based on the aver-

age of the ACC values, the most effective algorithm was the CEEMDAN (91.53%), followed by

the EEMD method, which also achieved an average ACC value of over 90% (90.16%). The S-G

filter, FIR filter, AWT, MODWT and EMD methods can be considered less suitable as their

average ACC values did not exceed 90% (88.87%, 83.92%, 88.45%, 87.78%, and 84.92%, respec-

tively). The VMD method reached an average accuracy of 78.84% and can be considered the

least effective.

According to Table 5 in the detection of S2 sounds, lower accuracy was generally achieved,

as none of the methods reached an average ACC value of over 80%. Based on the average of

the ACC values, the most effective algorithm was the CEEMDAN (68.89%), followed by the

MODWT (68.75%) and FIR filter (68.48%). The EEMD, EMD and S-G filter with an average

accuracy of 66.50%, 63.36%, and 60.01%, respectively, can be considered even less effective.

The S2 sounds were significantly suppressed by VMD and AWT, which reached the lowest

average ACC values (52.10% and 49.34%, respectively).

Signal-to-Noise ratio improvement

The resulting SNR improvement values are summarised for both recordings r01 and r02 in

Table 6. The best results in SNR improvement were achieved with the CEEMDAN method

with an average value of 9.75 dB, followed by EEMD with an average value of 8.30 dB. Lower

average SNR improvement values were obtained by AWT (7.63 dB) and FIR filter (7.40 dB).

These methods reached satisfactory results in some cases, but low in others which caused the

average SNR improvement to be lower. For example, AWT achieved the highest SNR
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improvement in the case of Gaussian noise and ambient noise in both r01 and r02 recordings

(14.10 dB, 11.23 dB, 13.96 dB, and 12.27 dB, respectively) or for the combination of Gaussian

noise and ambient noise in r01 recording (12.08 dB). But on the other hand, in the case of

mHSs in r02 recording, AWT achieved the lowest SNR improvement value (4.59 dB). The situ-

ation was similar for the FIR filter, which achieved the highest value of SNR improvement in

the case of a combination of mHSs and Gaussian noise in r01 recording (11.91 dB) but the sec-

ond lowest value in the case of a combination of movement artifacts, Gaussian and ambient

noise in r02 recording (3.53 dB) or in the case of the combination of all four types of interfer-

ence in r02 recording (3.31 dB). The lowest SNR improvement was achieved with VMD, S-G

filter, EMD and MODWT (6.78 dB, 6.77 dB, 6.19 dB, and 5.60 dB, respectively).

Mean error of heart interval measurement

The resulting values of the jDTij parameter are summarised for both recordings r01 and r02 in

Table 7. The lowest average jDTij value and thus the best result was obtained again using the

CEEMDAN method with an average value of 3.27 ms, followed by EEMD with an average

value of 3.50 ms. Less effective were AWT, MODWT, S-G filter, VMD and EMD, as the aver-

age jDTij values exceeded 4 ms (4.31 ms, 4.40 ms, 4.42 ms, 4.53 ms, and 4.78 ms, respectively).

Fig 4. Example of three IMFs extracted by the a) VMD, b) EMD, c) EEMD, and d) CEEMDAN.

https://doi.org/10.1371/journal.pone.0269884.g004
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The FIR filter can be considered the least effective, as the average jDTij value exceeded 5 ms

(5.12 ms).

Statistical analysis

To determine whether the differences of the results provided by the individual algorithms are

statistically significant, we performed a statistical analysis of the results obtained for all evalua-

tion parameters used (ACC when detecting S1 and S2, SNR improvement and jDTij). Statisti-

cal analysis was performed using R Core Team [63]. In all cases, statistical significance was set

at p<0.05.

First, normality of the data was tested for each algorithm and each interference level using

the Shapiro-Wilk test. In some cases, statistically significant deviations from normality were

detected, and therefore non-parametric methods, median and interquartile range (IQR), were

selected to describe the data. Descriptive statistics were performed separately for record r01,

which was exposed to lower levels of interference (referred to as low noise level), and sepa-

rately for record r02, which was subjected to higher levels of interference (referred to as high

noise level).

The Kruskal-Wallis test was used to determine statistically significant differences between

the compared algorithms in terms of individual evaluation parameters (H0: Medians of the

evaluation parameter are the same for all algorithms, HA: Difference between at least one pair

of medians of the evaluation parameters is statistically significant). If a statistically significant

difference between the compared algorithms was detected for the medians of an evaluation

parameter, a post hoc analysis was performed using Dunn’s test and multiple comparison p-

values were adjusted with the Benjamin-Hochberg method.

For the ACC parameter, a statistically significant difference was found between the com-

pared algorithms in the case of signals affected by low interference levels, both in the detection

of S1 sounds and in the detection of S2 sounds (p-value<0.001 in both cases), see Table 8. In

the case of S1 sounds detection, the VMD algorithm was identified as the algorithm with low

ACC, the difference of the rest of the compared algorithms was not statistically significant in

terms of the ACC parameter.

In the case of S2 sounds detection, two homogeneous subgroups of algorithms were identi-

fied, i.e. subgroups of algorithms where the difference between medians of the ACC parameter

was not statistically significant. The first group consisted of the S-G, FIR, MODWT, EMD,

EEMD, and CEEMDAN algorithms; the second homogeneous subgroup consisted of the S-G,

AWT, and VMD algorithms. It can be noted that the S-G algorithm can be classified in terms

of the ACC parameter both in the subgroup of algorithms with higher ACC and in the sub-

group of algorithms with lower ACC.

For signal affected by high levels of interference, no statistically significant difference was

observed between the compared algorithms in terms of ACC parameter in the detection of S1

sounds (p-value = 0.355), nor in the detection of S2 sounds (p-value = 0.364), see Table 8. A

comparison of algorithms in S1 and S2 detection assessed by the ACC parameter is shown in

Figs 5 and 6, respectively.

In the case of the SNR improvement, a statistically significant difference was found between

the compared algorithms at low and high interference levels (in both cases p-value<0.001),

see Table 9. At a low interference level, three homogeneous subgroups of algorithms were

identified. The first two subgroups included algorithms with higher values of SNR improve-

ment; the first subgroup consisted of FIR, AWT, EEMD, and CEEMDAN, the second sub-

group consisted of S-G, FIR, AWT, VMD, and EMD. On the other hand, statistically

significantly lowest values of SNR improvement were observed with the MODWT algorithm,
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forming the third subgroup. In the case of a high level of interference, the CEEMDAN algo-

rithm was identified as the algorithm with the statistically significantly highest SNR improve-

ment; no statistically significant differences were observed between the other algorithms.

In the case of the parameter jDTij, no statistically significant difference was found between

the compared algorithms, both for the signals affected by low interference levels (p-

value = 0.692) and those affected with high interference levels (p-value = 0.704), see Table 9.

Graphical presentation of the comparison of algorithms in terms of SNR improvement and

jDTij is demonstrated in Figs 7 and 8, respectively.

To verify the effect of the interference level on the ACC parameter, the ACC ratios of the

low and high interference levels for all compared algorithms were analyzed for both S1 and S2

Table 8. Statistical analysis of ACC parameter depending on the compared algorithms.

Algorithms ACC (%)

S1 sounds S2 sounds

Low noise level Median (IQR) High noise level Median (IQR) Low noise level Median (IQR) High noise level Median (IQR)

S-G 99.27 (96.17; 100.00) 80.67 (71.25; 91.85) 77.76 (64.23; 91.37) 36.16 (23.89; 57.83)

FIR 98.98 (91.35; 100.00) 72.94 (57.06; 94.83) 89.10 (78.69; 99.28) 42.42 (33.21; 75.74)

AWT 99.57 (97.44; 100.00) 85.55 (65.89; 93.22) 60.05 (52.95; 66.57) 32.61 (28.65; 46.34)

MODWT 99.57 (96.00; 100.00) 79.41 (63.28; 97.64) 86.25 (79.45; 95.27) 46.85 (38.48; 75.26)

VMD 88.46 (82.64; 88.64) 75.45 (61.22; 85.01) 65.95 (46.80; 75.97) 37.76 (26.61; 57.74)

EMD 98.70 (91.28; 100.00) 70.20 (61.65; 95.10) 87.19 (77.04; 95.92) 41.53 (25.59; 56.53)

EEMD 99.85 (98.62; 100.00) 91.51 (67.91; 97.49) 91.82 (72.27; 95.36) 45.21 (26.46; 64.44)

CEEMDAN 99.71 (95.50; 100.00) 92.49 (73.55; 97.84) 93.08 (82.76; 98.33) 36.98 (33.75; 77.07)

Between-groups diff. (p-value) < 0.001a 0.355 < 0.001b 0.364

Kruskal-Wallis test for the between-group differences. Post-hoc analysis (homogenous subgroups):
a—(S-G, FIR, AWT, MODWT, EMD, EEMD, CEEMDAN), VMD,
b—(S-G, FIR, MODWT, EMD, EEMD, CEEMDAN), (S-G, AWT, VMD).

https://doi.org/10.1371/journal.pone.0269884.t008

Fig 5. Hybrid boxplots providing comparison of the S1 detection assessed by ACC parameter for all compared algorithms and

two interference levels (low and high).

https://doi.org/10.1371/journal.pone.0269884.g005
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sounds detection. Statistically significant difference (median ACC ratio less than or greater

than one) meant that there was a statistically significant difference between ACC for low noise

level and high noise level. The ACC ratio values greater than one thus indicated a higher ACC

at low interference levels. Non-parametric methods were again used for descriptive statistics as

well as for statistical induction methods. Significance of ACC ratio was tested by two-tailed

Wilcoxon signed-rank test (H0: The median of ACC ratio is equal to one, HA: The median of

ACC ratio is not equal to one). For all compared algorithms, both in the case of S1 sounds

detection and in the case of S2 sounds detection, a statistically significant effect of the interfer-

ence level on the ACC parameter was identified (in all cases p-values� 0.002), see Table 10.

Fig 6. Hybrid boxplots providing comparison of the S2 detection assessed by ACC parameter for all compared algorithms and

two interference levels (low and high).

https://doi.org/10.1371/journal.pone.0269884.g006

Table 9. Statistical analysis of SNR improvement and jDTij parameters depending on the compared algorithms.

Algorithms SNR improvement (dB) jDTij (ms)

S1 sounds S2 sounds

Low noise level Median (IQR) High noise level Median (IQR) Low noise level Median (IQR) High noise level Median (IQR)

S-G 7.06 (6.08; 8.30) 5.98 (4.50; 7.49) 0.83 (0.24; 2.12) 7.19 (4.22; 10.91)

FIR 7.37 (6.87; 9.29) 6.19 (5.25; 8.05) 1.01 (0.16; 3.74) 9.34 (2.79; 12.45)

AWT 7.93 (6.14; 9.72) 6.04 (4.54; 8.22) 0.69 (0.22; 1.77) 6.44 (3.79; 11.50)

MODWT 4.67 (3.73; 5.08) 6.36 (5.62; 8.23) 0.76 (0.28; 2.33) 7.89 (1.73; 11.75)

VMD 6.78 (5.85; 6.96) 6.92 (6.03; 8.02) 0.83 (0.63; 3.48) 6.70 (2.92; 10.90)

EMD 7.33 (5.57; 9.11) 5.74 (3.40; 6.58) 1.15 (0.23; 3.49) 9.40 (2.27; 10.96)

EEMD 9.91 (8.73; 10.79) 7.80 (3.44; 9.49) 0.56 (0.14; 1.22) 4.56 (1.46; 9.80)

CEEMDAN 9.90 (8.02; 10.16) 9.74 (8.78; 10.95) 0.57 (0.22; 2.59) 3.91 (1.51; 9.84)

Between-groups diff. (p-value) < 0.001a < 0.001b 0.692 0.704

Kruskal-Wallis test for the between-group differences. Post-hoc analysis (homogenous subgroups):
a—(FIR, AWT, EEMD, CEEMDAN), (S-G, FIR, AWT, VMD, EMD), MODWT,
b—CEEMDAN, (S-G, FIR, AWT, MODWT, VMD, EMD, EEMD).

https://doi.org/10.1371/journal.pone.0269884.t009
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Finally, we used the Kruskal-Wallis test to find statistically significant differences between

the compared algorithms with respect to the ACC ratio (H0: The medians of the ACC ratio are

the same for all compared algorithms, HA: The difference of at least one pair of medians is sta-

tistically significant). With regard to the ACC ratio, no statistically significant difference was

found between the compared algorithms, both in the detection of S1 sounds (p-value = 0.725)

and in the detection of S2 sounds (p-value = 0.579), see Table 10. The Figs 9 and 10 provide a

comparison of the algorithms using the hybrid boxplots in terms of the ACC ratio for S1 and

S2 sounds, respectively.

Fig 7. Hybrid boxplots providing comparison of the SNR improvement for all compared algorithms and two interference levels

(low and high).

https://doi.org/10.1371/journal.pone.0269884.g007

Fig 8. Hybrid boxplots providing comparison of the jDTij for all compared algorithms and two interference levels (low and

high).

https://doi.org/10.1371/journal.pone.0269884.g008
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Discussion

Based on the evaluation of average values of objective parameters in the detection of S1 and S2

sounds, SNR improvement and jDTij parameter, the best results were achieved using the

CEEMDAN method. The EEMD method achieved very promising, although slightly worse

results than CEEMDAN for all evaluated parameters. In addition, EEMD was computationally

more complex than CEEMDAN. The EMD and VMD methods only achieved satisfactory

results according to the parameter jDTij. In detection of S1 and S2 sounds and in SNR

improvement its performance was poor. However, compared to the EEMD and CEEMDAN

Table 10. Statistical analysis of ACC ratios (low noise level/high noise level) depending on the compared algorithms.

Algorithms ACC ratio

S1 sounds S2 sounds

Median (IQR) Wilcoxon test (p-value) Median (IQR) Wilcoxon test (p-value)

S-G 1.23 (1.09; 1.35) 0.001 1.92 (1.56; 2.63) <0.001

FIR 1.36 (1.05; 1.60) 0.001 1.78 (1.21; 2.10) <0.001

AWT 1.16 (1.07; 1.48) 0.001 1.79 (1.57; 1.93) <0.001

MODWT 1.25 (1.02; 1.52) 0.001 1.73 (1.26; 2.02) <0.001

VMD 1.17 (1.04; 1.37) <0.001 1.73 (1.17; 2.11) <0.001

EMD 1.41 (1.05; 1.50) <0.001 2.12 (1.64; 2.43) <0.001

EEMD 1.09 (1.03; 1.45) 0.002 1.69 (1.47; 2.69) <0.001

CEEMDAN 1.08 (1.02; 1.30) 0.001 1.83 (1.27; 2.43) <0.001

Between-groups diff. (p-value) 0.725 0.579

p-value of two-sided Wilcoxon signed-rank sum test: H0: The median of ACC ratio is equal to one.

Kruskal-Wallis test for the between-groups differences.

https://doi.org/10.1371/journal.pone.0269884.t010

Fig 9. Hybrid boxplots providing comparison of the ACC ratio (low noise level/high noise level) for S1 sounds detection.

https://doi.org/10.1371/journal.pone.0269884.g009
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methods, their computational complexity was significantly lower. The AWT and MODWT

methods achieved very promising results in detection of S1 sounds according to the jDTij

parameter. AWT achieved satisfactory results in SNR improvement, but on the other hand it

achieved the worst average results of all methods in detection of S2 sounds. MODWT was

effective in detection of S2 sounds, however it achieved the worst average results in SNR

improvement. The FIR filter achieved satisfactory results in detection of S2 sounds and SNR

improvement, however weak results in detection of S1 sounds and the worst results according

to the jDTij parameter. The S-G filter achieved very promising results in detection of S1

sounds and according to the jDTij parameter, however in detection of S2 sounds and SNR

improvement its performance was unsatisfactory.

In this section, the difference in extraction accuracy achieved by individual methods will be

presented, especially in terms of S1 and S2 sounds detection. Furthermore, the influence of the

interference level and the presence of multiple types of disturbance will be shown. An example

of extracted signals for recording r02 loaded with individual types of disturbance is shown in

Fig 11. It can be seen that all types of interference were sufficiently suppressed with regard to

S1 sounds detection and S1 sounds could therefore be accurately detected (all methods in fil-

tering of all four types of interference achieved ACC> 86%). However, during filtering mHSs,

S-G filter, AWT, VMD and EMD were unable to effectively eliminate the maternal compo-

nent, which led to lower accuracy in detection of S2 sounds (ACC < 81%). When filtering

movement artifacts, elimination of interference was not sufficient using the S-G filter and

AWT, which also led to very low accuracy in detection of S2 sounds (ACC < 60%). In the case

of Gaussian noise, the AWT method effectively suppressed the interference, but in addition,

the S2 sounds were also suppressed and their detection was therefore not successful

(ACC = 60.81%). Detection of S2 sounds was also unsuccessful when using the VMD method,

as interference was not sufficiently suppressed and S2 sounds were not correctly detected

(ACC = 55.39%). When filtering ambient noise, the AWT and MODWT methods suppressed

Fig 10. Hybrid boxplots providing comparison of the ACC ratio (low noise level/high noise level) for S2 sounds detection.

https://doi.org/10.1371/journal.pone.0269884.g010
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interference as well as S2 sounds, which led to low accuracy in their detection (ACC = 54.10%

and 77.12%, respectively). On the other hand, the VMD and EMD methods were unable to

sufficiently suppress interference and detection of S2 sounds was also inaccurate

(ACC = 60.09% and 41.53%, respectively).

The results of the study also showed the effect of level of interference on the resulting qual-

ity of the extracted signals, see Fig 12. Results for recording r01, which was loaded with a lower

level of interference (SNR of signal with mHSs: -0.53 dB, movement artifacts: -0.84 dB, Gauss-

ian noise: -1.20 dB, and ambient noise: -2.25 dB) were compared with recording r02, which

was loaded with a higher level of interference (SNR of signal with mHSs: -1.82 dB, movement

Fig 11. Comparison of extracted signals using all methods when filtering mHSs, movement artifacts, Gaussian noise, and

ambient noise in recording r02.

https://doi.org/10.1371/journal.pone.0269884.g011
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artifacts: -2.49 dB, Gaussian noise: -3.56 dB, and ambient noise: -5.74 dB). When filtering

mHSs in recording r01 the maternal component was completely eliminated (in detection of S1

and S2 sounds ACC = 100%), however in the case of recording r02 residues of the maternal

component remained in the signal. Although it did not significantly affect the accuracy of

detection of S1 sounds (ACC = 99.13%), it decreased the accuracy of detection of S2 sounds

(ACC = 92.89%). This was similar when filtering movement artifacts. In the case of recording

r01 accurate detection of S1 (ACC = 100%) and S2 sounds (ACC = 98.41%) was achieved. But

in the case of recording r02, the insufficient elimination of interference led to a fall in accuracy

in detection of S1 sounds (ACC = 95.43%) and inaccurate detection of S2 sounds

(ACC = 78.28%). When suppressing Gaussian noise, interference was effectively filtered in

both recordings r01 and r02 and detection of S1 sounds was accurate (in both recordings

ACC = 100%). However, residues of interference led to slightly worse extraction in recording

r02 and lower accuracy in S2 sounds detection (ACC = 94.83%) compared to recording r01

(ACC = 99.27%). In the case of ambient noise, the level of interference also significantly influ-

enced the resulting quality of the extracted signal. In recording r01 accurate detection of S1

(ACC = 100%) and S2 sounds (ACC = 98.7%) was achieved, but in the case of recording r02,

interference was not filtered out, which led to less accurate detection of S1 (ACC = 97.69%)

and S2 sounds (ACC = 84.58%).

As well as the level of interference, the presence of multiple types of disturbance influenced

the overall extraction quality, see an example for recording r02 in Fig 13. If only mHSs were

present in the signal, the interference was eliminated and accurate detection of S1

(ACC = 99.13%) and S2 sounds (ACC = 92.89%) was achieved. If movement artifacts were

Fig 12. Comparison of the resulting quality of the extracted signals by the CEEMDAN method depending on the level of

interference.

https://doi.org/10.1371/journal.pone.0269884.g012
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added to mHSs, residues of interference led to a slightly lower accuracy of S1 sounds detection

(ACC = 95.53%), but a significantly lower accuracy of S2 sounds detection (ACC = 52.34%).

When adding further interference in the form of Gaussian noise, the interference was not suffi-

ciently suppressed. This led to significantly lower values of S1 (ACC = 80.23%) and S2 sounds

(ACC = 34.64%) detection. The worst results in detection of S1 (ACC = 55.02%) and S2 sounds

(ACC = 29.3%) was achieved when adding ambient noise, and therefore loading the signal

with all four types of interference.

Summary and future directions

This study focused on the comparison of eight single-channel both conventional (S-G filter,

FIR filter) and advanced (AWT, MODWT, VMD, EMD, EEMD, CEEMDAN) signal-process-

ing algorithms. The use of a relatively large number of algorithms and objective evaluation

parameters (accuracy of S1 and S2 sounds detection, SNR improvement and jDTij parameter)

can be considered as an advantage of this study. In particular, the evaluation of the accuracy of

S2 detection is not very common in the field of fPCG (except for very few publications, e.g.

[16–18]), although this information is useful for clinical practice. The benefit of the study is

also to test the performance of algorithms in many scenarios, such as different types and levels

of interference. Overall, the methods were tested on signals loaded with 30 levels of interfer-

ence (SNR values from -0.53 dB to -10.76 dB), including the most common types of interfer-

ence (mHSs, movement artifacts, Gaussian noise, ambient noise) and their combinations. In

particular, testing on signals affected with more than one type of interference is valuable as it

reflects situations that are very likely to occur when measuring in real conditions. In addition,

to our best knowledge, some algorithms (MODWT or CEEMDAN) have not yet been tested

and published at all for the fPCG extraction.

Fig 13. Comparison of presence of multiple types of disturbance on resulting quality of extracted signals using the CEEMDAN

method.

https://doi.org/10.1371/journal.pone.0269884.g013
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Conversely, performing experiments solely on synthetic signals can be considered a limita-

tion of this study since tests on real signals can show slightly different results. In addition, test-

ing was performed only on signals corresponding to the 40th week of pregnancy. As fPCG

signals change throughout pregnancy, especially in terms of useful signal amplitude, further

testing of algorithms on fPCG signals corresponding to other gestational ages is necessary.

Another disadvantage may be offline testing, which may not fully address the problems associ-

ated with online implementation. This is associated mainly with the need to optimize algo-

rithms in real time or to process the input signals piece-by-piece (as opposed to having the

entire input signal available).

The results of statistical analysis presented herein showed no statistically significant differ-

ence between performance of the individual algorithms in terms of the parameter jDTij at sig-

nals with low as well as high interference levels. For the ACC parameter, assessing the ability to

detect S1 and S2, this applied at signals loaded by high interference levels. Contrary, when the

signal was loaded with low levels of interference, a statistically significant difference was identi-

fied between the algorithms for the ACC parameter. A statistically significant difference

between the algorithms was also found in the case of the SNR improvement parameter when

the signal was loaded with both low and high levels of interference. Furthermore, for all com-

pared algorithms, a statistically significant effect of the interference level on the ACC parame-

ter was identified in the case of both S1 and S2 sounds detection. However, with respect to the

ACC ratio (low noise level/high noise level), no statistically significant difference was found

between the compared algorithms, both in the detection of S1 and S2.

Based on the evaluation of average values of objective parameters, CEEMDAN proved to be

the most effective method for detecting S1 and S2 sounds with average accuracy of

ACC = 91.53% in the detection of S1 and ACC = 68.89% when S2 is detected. In addition,

CEEMDAN also outperformed the other tested methods in terms of improving SNR and the

jDTij parameter. Compared to EEMD, CEEMDAN was computationally faster and allowed

implementation in real-time operating device. The benefits of the CEEMDAN algorithm can

be summarized as follows:

• Single-channel approach—channel approach—provides higher comfort and mobility for the

pregnant woman.

• High quality extraction—even for signals with relatively noisy signals.

• High accuracy in detecting S1—ensures the ability to determine fHR accurately.

• Low computational complexity—enables implementation in real-time operating devices.

On the other hand, accurate detection of S2 sounds proved to be difficult for all algorithms,

including CEEMDAN. This was probably due to the lower magnitude of S2 compared to S1.

As a result, S2 sounds were less distinct from noise and their subsequent extraction and detec-

tion was inaccurate. Therefore, future research should be focused on the refinement of S2

detection.

It would also be beneficial for clinical practice to detect and classify pathological heart mur-

murs that can help detect congenital heart defects. Algorithms based on artificial intelligence

and machine learning could be used for classification of fetal pathological conditions. How-

ever, very few authors have dealt with the use of artificial intelligence and machine learning in

the field of fPCG. This may be because these methods require a large amount of physiological

and pathological data for both training and testing, but these data are not available in the field

of fPCG. For these reasons, our further research will focus on creating a large dataset contain-

ing both real pathological and physiological fPCG records. The dataset will include

PLOS ONE A comparative study of single-channel signal processing methods in fPCG

PLOS ONE | https://doi.org/10.1371/journal.pone.0269884 August 19, 2022 28 / 32

https://doi.org/10.1371/journal.pone.0269884


information on fetal gestational age, sensor placement, maternal and fetal health, and reference

annotations with fetal and maternal HSs locations will be created so that the efficiency of

extraction algorithms can be objectively evaluated. Thus, other filtering methods will be fur-

ther tested in the future, including multi-channel algorithms or hybrid methods combining

multiple algorithms to achieve more accurate extraction.

Conclusion

In this study eight algorithms were compared (S-G filter, FIR filter, AWT, MODWT, VMD,

EMD, EEMD, and CEEMDAN) for fPCG extraction to eliminate mHSs, movement artifacts,

Gaussian noise, ambient noise and eleven combinations of these disturbances. Testing was car-

ried out on two synthetic recordings r01 and r02, where recording r02 was loaded with higher

levels of interference than recording r01. The evaluation was performed by the assessment of

the accuracy of S1 and S2 sounds detection, SNR improvement and jDTij parameter. In all

parameters the best results were achieved by the CEEMDAN method. Very promising results

were also achieved using the EEMD method, however compared to CEEMDAN, EEMD was

computationally more complex. It was shown that when loading an input signal with a higher

level of interference or multiple types of disturbance, the quality of extraction was worsened

and important clinical information was lost. When recording fPCG it is therefore necessary to

ensure optimal conditions, particularly appropriate placing of the sensor and eliminating

interference, which could unnecessarily contaminate a useful signal. Future research will focus

on testing the CEEMDAN method on real physiological and pathological recordings and on

creating our own database with real recordings which will be provided to the scientific com-

munity for testing extraction algorithms. Furthermore, other algorithms will be tested, includ-

ing multichannel algorithms or hybrid methods combining multiple algorithms to increase

extraction efficiency.
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23. Kovacs F, Horváth C,Balogh ÁT, Hosszú G. Extended Noninvasive Fetal Monitoring by Detailed Analy-

sis of Data Measured With Phonocardiography. IEEE Transactions on Biomedical Engineering. 2011;

58(1):64–70. https://doi.org/10.1109/TBME.2010.2071871 PMID: 20813630

24. Ruffo M, Cesarelli M, Romano M, Bifulco P, Fratini A. An Algorithm for FHR Estimation from Foetal Pho-

nocardiographic Signals. Biomedical Signal Processing and Control. 2010; 5(2):131–141. https://doi.

org/10.1016/j.bspc.2010.02.002

25. Soysa WNM, Godaliyadda RI, Wijayakulasooriya JV, Ekanayake MPB, Kandauda IC. Extraction and

Analysis of Fetal Heart Signals with Abnormalities an Eigen-analysis Based Approach. In: 2013 IEEE

8th International Conference on Industrial and Information Systems. Peradeniya, Sri Lanka: IEEE;

2013. p. 294–299.

26. Dia N, Fontecave-Jallon J, Gumery PY, Rivet B. Fetal Heart Rate Estimation from a Single Phonocar-

diogram Signal Using Non-Negative Matrix Factorization. In: 2019 41st Annual International Confer-

ence of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE; 2019.

p. 5983–5986.

27. Huimin W, Xingyu L. Extraction Method of Fetal Phonocardiogram Based on Lifting Wavelet Analysis.

Journal of Physics: Conference Series. 2020; 1544(1):012103.

28. Zahorian SA, Zuckerwar AJ, Karnjanadecha M. Dual Transmission Model and Related Spectral Con-

tent of the Fetal Heart Sounds. Computer Methods and Programs in Biomedicine. 2012; 108(1):20–27.

https://doi.org/10.1016/j.cmpb.2011.12.006 PMID: 22285458

29. Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. A Nonlinear Generalization of the Savitzky-Golay Fil-

ter and the Quantitative Analysis of Saccades. Journal of Vision. 2017; 17(9):10. https://doi.org/10.

1167/17.9.10 PMID: 28813566

30. Ostertagova E, Ostertag O. Methodology and Application of Savitzky-Golay Moving Average Polyno-

mial Smoother. Global J Pure Applied Math. 2016; 12:3201–3210.

31. Orfanidis SJ. Introduction to Signal Processing. Pearson Education, Inc; 2016.

32. Zhdanov DS, Bureev AS, Kutsov MS, Kiseleva EY, Kistenev YV. Algorithm for Extraction of Fetal Heart

Tones during Fetal Phonocardiography. Biol Med (Aligarh). 2015; 7(3):2.

33. Wu JMT, Tsai MH, Huang YZ, Islam SH, Hassan MM, Alelaiwi A, et al. Applying an Ensemble Convolu-

tional Neural Network with Savitzky–Golay Filter to Construct a Phonocardiogram Prediction Model.

Applied Soft Computing. 2019; 78:29–40. https://doi.org/10.1016/j.asoc.2019.01.019

34. Krishnan PT, Balasubramanian P, Umapathy S. Automated Heart Sound Classification System from

Unsegmented Phonocardiogram (PCG) Using Deep Neural Network. Physical and Engineering Sci-

ences in Medicine. 2020; 43(2):505–515. https://doi.org/10.1007/s13246-020-00851-w PMID:

32524434

35. Marchon N. Efficient FIR Filters for Biomedical Signals. In: TENCON 2019—2019 IEEE Region 10 Con-

ference (TENCON). Kochi, India: IEEE; 2019. p. 1947–1951.

36. Wulf M, Staude G, Knopp A, Felderhoff T. Efficient Design of FIR Filter Based Low-Pass Differentiators

for Biomedical Signal Processing. Current Directions in Biomedical Engineering. 2016; 2(1):215–219.

https://doi.org/10.1515/cdbme-2016-0048

37. Cherif LH, Mostafi M, Debbal SM. Digital Filters in Heart Sound Analysis. International Journal of Clini-

cal Medicine Research. 2014; 1(3):97–108.

38. Rafiee J, Rafiee MA, Prause N, Schoen MP. Wavelet Basis Functions in Biomedical Signal Processing.

Expert Systems with Applications. 2011; 38(5):6190–6201. https://doi.org/10.1016/j.eswa.2010.11.050

39. Alarcon-Aquino V, Barria JA. Change Detection in Time Series Using the Maximal Overlap Discrete

Wavelet Transform. Latin American applied research. 2009; 39(2):145–152.

40. Starck JL, Fadili J, Murtagh F. The Undecimated Wavelet Decomposition and Its Reconstruction. IEEE

Transactions on Image Processing. 2007; 16(2):297–309. https://doi.org/10.1109/TIP.2006.887733

PMID: 17269625

41. Alkhodari M, Fraiwan L. Convolutional and Recurrent Neural Networks for the Detection of Valvular

Heart Diseases in Phonocardiogram Recordings. Computer Methods and Programs in Biomedicine.

2021; 200:105940. https://doi.org/10.1016/j.cmpb.2021.105940 PMID: 33494031

42. Dragomiretskiy K, Zosso D. Variational Mode Decomposition. IEEE Transactions on Signal Processing.

2014; 62(3):531–544. https://doi.org/10.1109/TSP.2013.2288675

PLOS ONE A comparative study of single-channel signal processing methods in fPCG

PLOS ONE | https://doi.org/10.1371/journal.pone.0269884 August 19, 2022 31 / 32

https://doi.org/10.1109/TBME.2010.2071871
http://www.ncbi.nlm.nih.gov/pubmed/20813630
https://doi.org/10.1016/j.bspc.2010.02.002
https://doi.org/10.1016/j.bspc.2010.02.002
https://doi.org/10.1016/j.cmpb.2011.12.006
http://www.ncbi.nlm.nih.gov/pubmed/22285458
https://doi.org/10.1167/17.9.10
https://doi.org/10.1167/17.9.10
http://www.ncbi.nlm.nih.gov/pubmed/28813566
https://doi.org/10.1016/j.asoc.2019.01.019
https://doi.org/10.1007/s13246-020-00851-w
http://www.ncbi.nlm.nih.gov/pubmed/32524434
https://doi.org/10.1515/cdbme-2016-0048
https://doi.org/10.1016/j.eswa.2010.11.050
https://doi.org/10.1109/TIP.2006.887733
http://www.ncbi.nlm.nih.gov/pubmed/17269625
https://doi.org/10.1016/j.cmpb.2021.105940
http://www.ncbi.nlm.nih.gov/pubmed/33494031
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1371/journal.pone.0269884


43. Isham MF, Leong MS, Lim MH, Ahmad ZA. Variational Mode Decomposition: Mode Determination

Method for Rotating Machinery Diagnosis. Journal of Vibroengineering. 2018; 20(7):2604–2621. https://

doi.org/10.21595/jve.2018.19479

44. Sujadevi VG, Soman KP, Kumar SS, Mohan N, Arunjith AS. Denoising of Phonocardiogram Signals

Using Variational Mode Decomposition. In: 2017 International Conference on Advances in Computing,

Communications and Informatics (ICACCI). Udupi: IEEE; 2017. p. 1443–1446.

45. Nie Z. A Fetal Heart Sound Signal De-Noising Approach Based on VMD and JADE Algorithm. In: Pro-

ceedings of the 2018 International Conference on Network, Communication, Computer Engineering

(NCCE 2018). Chongqing, China: Atlantis Press; 2018.

46. Ge H, Chen G, Yu H, Chen H, An F. Theoretical Analysis of Empirical Mode Decomposition. Symmetry.

2018; 10(11):623. https://doi.org/10.3390/sym10110623

47. Attoh-Okine N, Barner K, Bentil D, Zhang R. The Empirical Mode Decomposition and the Hilbert-Huang

Transform. EURASIP Journal on Advances in Signal Processing. 2008; 2008(1):251518, 2008/251518.

https://doi.org/10.1155/2008/251518

48. Lin J. Improved Ensemble Empirical Mode Decomposition Method and Its Simulation. In: Lee G, editor.

Advances in Intelligent Systems. vol. 138. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p.

109–115.

49. Ismail S, Siddiqi I, Akram U. Localization and Classification of Heart Beats in Phonocardiography Sig-

nals —a Comprehensive Review. EURASIP Journal on Advances in Signal Processing. 2018; 2018

(1):26. https://doi.org/10.1186/s13634-018-0545-9

50. Cheema A, Singh M. An Application of Phonocardiography Signals for Psychological Stress Detection

Using Non-Linear Entropy Based Features in Empirical Mode Decomposition Domain. Applied Soft

Computing. 2019; 77:24–33. https://doi.org/10.1016/j.asoc.2019.01.006

51. Ghosh PK, Poonia D. Comparison of Some EMD Based Technique for Baseline Wander Correction in

Fetal ECG Signa. International Journal of Computer Applications. 2015; 116(15):48–52. https://doi.org/

10.5120/20416-2836

52. Wu Z, Huang NE. Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method.

Advances in Adaptive Data Analysis. 2009; 01(01):1–41. https://doi.org/10.1142/S1793536909000047

53. Papadaniil CD, Hadjileontiadis LJ. Efficient Heart Sound Segmentation and Extraction Using Ensemble

Empirical Mode Decomposition and Kurtosis Features. IEEE Journal of Biomedical and Health Infor-

matics. 2014; 18(4):1138–1152. https://doi.org/10.1109/JBHI.2013.2294399 PMID: 25014929

54. Jimenez JA, Becerra MA, Delgado-Trejos E. Heart Murmur Detection Using Ensemble Empirical Mode

Decomposition and Derivations of the Mel-Frequency Cepstral Coefficients on 4-Area Phonocardio-

graphic Signals. In: Computing in Cardiology 2014. IEEE; 2014. p. 493–496.

55. Colominas MA, Schlotthauer G, Torres ME. Improved Complete Ensemble EMD: A Suitable Tool for

Biomedical Signal Processing. Biomedical Signal Processing and Control. 2014; 14:19–29. https://doi.

org/10.1016/j.bspc.2014.06.009

56. Liu T, Luo Z, Huang J, Yan S. A Comparative Study of Four Kinds of Adaptive Decomposition Algo-

rithms and Their Applications. Sensors. 2018; 18(7):2120. https://doi.org/10.3390/s18072120 PMID:

30004429

57. Cheng X, Wang P, She C. Biometric Identification Method for Heart Sound Based on Multimodal Multi-

scale Dispersion Entropy. Entropy. 2020; 22(2):238. https://doi.org/10.3390/e22020238 PMID:

33286012

58. Tu Z, Cao G, Li Q, Xianxia Zhang, Jun Shi. Improved Methods for Detecting Main Components of Heart

Sounds. In: 2010 Sixth International Conference on Natural Computation. Yantai, China: IEEE; 2010.

p. 3585–3588.

59. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, Physio-

Toolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals.

Circulation. 2000; 101(23). https://doi.org/10.1161/01.CIR.101.23.e215 PMID: 10851218

60. Barnova K, Kahankova R, Jaros R, Martinek R. Synthetic Abdominal PCG Signals and Extracted Fetal

PCG Signals. 2022.

61. Billeci L, Varanini M. A Combined Independent Source Separation and Quality Index Optimization

Method for Fetal ECG Extraction from Abdominal Maternal Leads. Sensors. 2017; 17(5):1135. https://

doi.org/10.3390/s17051135 PMID: 28509860

62. Kupka T, Matonia A, Jezewski M, Jezewski J, Horoba K, Wrobel J, et al. New Method for Beat-to-Beat

Fetal Heart Rate Measurement Using Doppler Ultrasound Signal. Sensors. 2020; 20(15):4079. https://

doi.org/10.3390/s20154079 PMID: 32707863

63. R: The R Project for Statistical Computing;. https://www.r-project.org/.

PLOS ONE A comparative study of single-channel signal processing methods in fPCG

PLOS ONE | https://doi.org/10.1371/journal.pone.0269884 August 19, 2022 32 / 32

https://doi.org/10.21595/jve.2018.19479
https://doi.org/10.21595/jve.2018.19479
https://doi.org/10.3390/sym10110623
https://doi.org/10.1155/2008/251518
https://doi.org/10.1186/s13634-018-0545-9
https://doi.org/10.1016/j.asoc.2019.01.006
https://doi.org/10.5120/20416-2836
https://doi.org/10.5120/20416-2836
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1109/JBHI.2013.2294399
http://www.ncbi.nlm.nih.gov/pubmed/25014929
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.3390/s18072120
http://www.ncbi.nlm.nih.gov/pubmed/30004429
https://doi.org/10.3390/e22020238
http://www.ncbi.nlm.nih.gov/pubmed/33286012
https://doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.3390/s17051135
https://doi.org/10.3390/s17051135
http://www.ncbi.nlm.nih.gov/pubmed/28509860
https://doi.org/10.3390/s20154079
https://doi.org/10.3390/s20154079
http://www.ncbi.nlm.nih.gov/pubmed/32707863
https://www.r-project.org/
https://doi.org/10.1371/journal.pone.0269884

