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Abstract: Metal-insulator-semiconductor-insulator-metal (MISIM) heterostructures, with rectifying
current-voltage characteristics and photosensitivity in the visible and near-infrared spectra, are
fabricated and studied. It is shown that the photocurrent can be enhanced by adding a multi-walled
carbon nanotube film in the contact region to achieve a responsivity higher than 100 mA W−1 under
incandescent light of 0.1 mW cm−2. The optoelectrical characteristics of the MISIM heterostructures are
investigated at lower and higher biases and are explained by a band model based on two asymmetric
back-to-back Schottky barriers. The forward current of the heterojunctions is due to majority-carrier
injection over the lower barrier, while the reverse current exhibits two different conduction regimes
corresponding to the diffusion of thermal/photo generated carriers and majority-carrier tunneling
through the higher Schottky barrier. The two conduction regimes in reverse bias generate two
plateaus, over which the photocurrent increases linearly with the light intensity that endows the
detector with bias-controlled photocurrent.
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1. Introduction

Carbon nanotubes (CNTs) have been attracting a lot of attention in the past three decades due to
their remarkable chemical, mechanical, and electrical properties [1–4]. In both single-walled (SWCNT)
and multi-walled (MWCNT) forms, carbon nanotubes have been considered in several electronic
applications, such as transistors [5–8], diodes [9,10], memory devices [11,12], photovoltaic cells [13,14],
photodetectors [15–17], strain [18] and chemical sensors [19–22], and field emitters [23–26], etc.

Although standalone CNT photodetectors have shown limited performance, low-noise and
enhanced light detection can be achieved by combining nanotubes with traditional semiconductors in
hybrid devices [27,28]. The CNT type, whether single- or multi-walled, their quality and configuration
in bundles or films of different density and thickness as well as the role of the semiconductor substrate
in such hybrid structures have been widely investigated [14,29–31]. In this context, photodetectors
based on MWCNT [32–34] or SWCNT [35,36] films over Si have been the preferred devices for their
fast response and high detection capability combined with easy fabrication, low cost, high reliability,
and compatibility with existing technologies. Optimized devices realized with SWCNT films have

Nanomaterials 2019, 9, 1598; doi:10.3390/nano9111598 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-3629-726X
https://orcid.org/0000-0003-2233-3810
https://orcid.org/0000-0002-9071-2647
https://orcid.org/0000-0003-2109-1370
https://orcid.org/0000-0002-3680-5295
http://www.mdpi.com/2079-4991/9/11/1598?type=check_update&version=1
http://dx.doi.org/10.3390/nano9111598
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 1598 2 of 12

achieved time response and photoresponsivity in the order of 10 µs and 1 AW−1 under LED light
(460 nm) at 2 mW cm−2 incident power [37].

CNT films in contact with Si form rectifying junctions where the CNTs, owing to their high
electrical conductivity and optical transparency, work both as an antireflective layer and conductive
electrode for photocharge collection [38–41]. Depending on the thickness, density, and orientation, the
CNT film can also play a role in the photocharge generation and injection over the junction, especially
under low-energy irradiation [42,43].

The CNT/Si photodetector fabrication includes the formation of metal contacts on the CNT film
and the Si substrate. Care and expensive processing are required to make these contacts ohmic and
low resistive [44]. Very often, the ohmic behavior is taken for granted as a needed simplification for
the analysis of the electrical behavior. Only a few studies have considered that extra Schottky junctions
can be formed by the contacts, and none have investigated such a possibility in depth [32,45].

With the present study, we try to fill this gap by studying a Pt-Ta_CNT/Si3N4/n-Si/Si3N4/Ta-Pt
MISIM heterostructure, with the top Pt-Ta contact connected to a film of MWCNTs. We apply electrical
stress to transform the two insulating layers in conductive barriers and study the optoelectrical
response of the so-obtained device both in the low and high bias regimes. The structure, described
by two back-to-back asymmetric Schottky barriers, behaves as a diode with forward current due
to electrons injected over the lower barrier and reverse current exhibiting two conduction regimes
attributed to thermal/photo generation and to electron tunneling over the junction with higher Schottky
barrier. The two conduction regimes in reverse bias cause two plateaus and enable the control of
the photocurrent gain by bias. The photocurrent increases linearly with the light intensity and is
generated mainly in the n-Si substrate. The presence of a MWCNT film in the contact region enhances
the photoresponse of the device, mainly by increasing the photosensitive area of the junction.

2. Materials and Methods

The layout of the device under study, as seen in Figure 1a, consists of an n-type Si substrate
(resistivity 1–5 Ω cm, doping ∼ 1015 cm−3) with the top and bottom surfaces covered by 140 nm thick
Si3N4 layers. Two 1 mm2 Pt-Ta pads (50 nm Pt over 10 nm Ta) are sputtered at a distance of 2 mm from
each other on the top side and immersed in a 6× 5 mm2 film of MWCNTs. A film of Pt-Ta covers the
entire bottom side of the substrate.

The growth of the CNT film on a specific area of the Si substrate started with the thermal
evaporation of a 3 nm thick Ni film under a pressure of 10−6 Torr. Ni was used as the catalyst for the
selective chemical vapour deposition (CVD) of the nanotubes [46]. The partially Ni-coated substrate
was inserted in a quartz CVD reactor that was pumped down to less than 10-7 Torr using a turbo
molecular pump. In order to form the catalytic particles in the nanometer size, the substrate was
pre-treated in H2 gas with a flow rate of 5 sccm for 10 min at 750 ◦C. The MWCNTs were grown by
adding C2H2 at a flow rate of 20 sccm for 20 min at the same temperature of the H2 pre-treatment.

The morphological analysis of MWCNT film was performed with a field-emission scanning
electron microscope (SEM, Zeiss LEO 1530, Oberkochen, Germany) at an accelerating voltage of 10 kV.
The MWCNTs are aligned by crowding effect and have a length of about 15 µm and an average
diameter of about 20 nm (Figure 1b). Ni particles are visible at their top (bottom inset of Figure 1b),
indicating a weak catalyst adhesion to Si3N4 and a dominant “tip growth” mechanism.

A high-resolution transmission electron microscope (HRTEM, 200 CM Philips, Eindhoven,
Netherlands) operating at 200 kV was used for the structural analysis the MWCNTs. The observations
were performed on a piece of the film taken from the sample volume and deposited on a TEM copper
grid. TEM analysis (Figure 1c) revealed the presence of MWCNTs with inner and outer diameters in
the range of 5–15 nm and 10–35 nm, respectively. In addition, high-resolution transmission electron
microscopy (HRTEM) measurements showed a typical interlayer spacing of 0.34 nm characteristic of
the graphene in high oriented graphite.
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We further checked the quality of the as-grown CNTs by Raman spectroscopy. The Raman
scattering spectra were recorded at room temperature using a LabRam HR High-Resolution Raman
Microscope HORIBA Jobin Yvon (Kyoto, Japan). We used the 632.8 nm (1.96 eV) excitation line from a
He-Ne laser (spatial resolution of ~1 µm). Raman shift was calibrated by the Raman peak of crystalline
silicon. We report in Figure 1d a Raman spectrum taken on the top of the film. The Raman spectrum
presents two main peaks attributed to the D and G bands. The presence of defective graphitic structures
accounts for the intense D-band and the broadening of the G-band at ~1600 cm−1. These bands result
from the disordered layer at the top of the CNT film (right bottom inset of Figure 1b) [46].
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Figure 1. (a) Top image of the device after the multi-walled carbon nanotube (MWCNT) growth
(black area) and layout of the device with the setup used for the electrical characterization of the
Pt-Ta_CNT/Si3N4/Si/Si3N4/Pt-Ta heterostructure. (b) Scanning electron microscope (SEM) image of the
MWCNT film. The insets show the distribution of the outer diameter (top inset) and the top view of
the film (bottom inset). (c) Transmission electron microscope and high-resolution transmission electron
microscope (HRTEM) (bottom inset) images of the MWCNTs. (d) Raman spectrum of the MWCNT film.

The uniform MWCNT film forms an electrical connection between the two Pt-Ta pads, while
the MWCNT film together with the Pt-Ta contacts isolated from the Si substrate by the Si3N4 layers,
constitute a metal-insulator-semiconductor (MIS) heterostructure, which is initially in a high resistive
state because of the thick Si3N4 barrier.

3. Results and Discussion

Figure 2a shows the I-V characteristics measured between the two top Pt-Ta pads with the floating
bottom contact. The I-V characteristics of the Pt-Ta/CNT/Pt-Ta structure are linear with a resistance of
R ≈ 5 kΩ, which does not change when the sample is exposed to the light from a 100 W incandescent
lamp. The prevailing metallic character of the MWCNTs is the reason for the ohmic behavior and the
poor photoconductivity.
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Figure 2. (a) I-V characteristics measured between the two top Ta-Pt pads for the Ta-Pt/CNT/Ta-Pt
heterostructure. (b) SEM images showing the formation of Ni filaments in the Si3N4 layer after electric
stress at increasing voltage.

The device was then subjected to a series of electric stresses at high voltage, which permanently
damaged both the top and bottom Si3N4 layers, rendering them stable tunnel barriers. The damaging
process is investigated in the SEM images of Figure 2b, related to the top Si3N4 layer, which show the
gradual formation of conductive metallic filaments upon application of a growing voltage. For the
top insulating layer, the metal of the filaments used for the CNT growth is mainly Ni, while Ta
filaments from the Pt-Ta film are formed inside the bottom Si3N4 layer. Both metals, in contact with
n-Si, can form Schottky junctions [47–49]. Due to the different work functions (5.04–5.35 eV for Ni
and 4.0–4.8 for Ta) [50], the electron Schottky barrier is higher for Ni, typically around 0.7 eV [51], and
lower for Ta, usually <0.5 eV [52].

Once the repeated electrical stress set the two Si3N4 barriers in a conductive and stable
state, we started the systematic characterization of the MISIM device before and after the
mechanical removal of the MWCNT film, that is, of the Pt-Ta_CNT/Si3N4/n-Si/Si3N4/Pt-Ta and
the Pt-Ta/Si3N4/n-Si/Si3N4/Pt-Ta vertical structures.

Figure 3a shows the results of I-V measurements performed in the dark and under illumination
by the incandescent lamp gradually attenuated by optical filters of different transmittance.

The dark I-V characteristics show a rectifying behavior with the forward current for the positive
bias on the top pad. The reverse current exhibits a dependence on the applied bias as well as a
dramatic increase when the device is exposed to light. The light does not affect the forward current.
We note a small peak on the reverse current at a bias around −2.9 V. At a lower voltage, for V
< −6.5 V, the reverse current suddenly increases. However, we can exclude a breakdown that is
expected at VBD ≈ −300 V, according to the semi-empirical formula of the one-sided step junction:

VBD ≈ − 60 (EG/1.1 eV)1.5
(
ND/1016 cm−3

)−0.75
(here, EG ≈ 1.1 eV is the semiconductor bandgap

in eV, ND is the doping density in cm−3) [53].
Figure 3b demonstrates that the dependence of the reverse current at a given bias on the light

intensity is monotonic. The linear response makes the device appealing for photodetection, with a
differential responsivity of R = dI/dP ≈ 1.7 mA/W (I is the current and P is the incident optical power
with a maximum of ≈ 0.1 mW cm−2).

To understand the role of the carbon nanotubes in the device, we mechanically removed the
MWCNT film with a cotton swab and then performed the same optoelectric characterization on the
Pt-Ta/Si3N4/n-Si/Si3N4/Pt-Ta MISIM heterostructure. Figure 3c,d show that the removal of the CNTs
does not substantially change the properties of the device and demonstrate that the main effect of the
MWCNT film is an increased reverse leakage current and photocurrent, as expected considering the
wider contact surface area.
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Figure 3. I-V characteristics and reverse current at –3 V as a function of the illumination intensity
(percentage) of the Pt-Ta_CNT/Si3N4/n-Si/Si3N4/Pt-Ta (a,b) and Pt-Ta/Si3N4/n-Si/Si3N4/Pt-Ta (c,d)
MISIM heterostructures.

We point out that the increased photocurrent is an important advantage of the device. Owing to its
transparency, the MWCNT film increases the photosensitive area of the top contact to the whole surface
of the film, while the reflecting Pt-Ta contact is photosensitive only in the region around its perimeter.

The similar behavior of the MISIM structures, with and without CNTs, is maintained when a
wider voltage bias is applied. The I-V curves shown in Figure 4a,b on the semilogarithmic scale
highlight an additional feature, that is, a sudden raise in the reverse current for V < −6.5 V, which leads
to a second photocurrent plateau at a higher reverse bias. Figure 4c shows that for V < −10 V, the I-V
curves corresponding to the second plateau are well fitted by a quadratic law I ∼ V2, indicating a
space-charge limited conduction mechanism [54] that could arise from trapping in the two insulating
barriers, the low doped Si as well as the accumulation of photogenerated holes at Si3N4/Si interface.
The corresponding series resistance decreases from ∼ 300 kΩ in the dark to ∼ 150 kΩ at the highest
light intensity.

More importantly, Figure 4d, displaying the photocurrent at a given bias versus light intensity,
demonstrates that the linear behavior is kept and that a photocurrent gain occurs at high reverse
bias (the gain is ∼ 65 at V = −15 V). Such a gain enhances the photoresponsivity of the device to
∼ 110 mA/W under the incandescent light of 0.1 mWcm−2, a value competitive with that from other
carbon-based photodetectors [32,37,55,56]. The bias-tunable photoresponsivity endows the device
with additional functionalities and makes it suitable for lower or higher power applications.
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n-Si/Si3N4/Pt-Ta. (b) Metal-insulator-semiconductor-insulator-metal (MISIM) heterostructures in the
dark and under different degrees of illumination, on a semilogarithmic scale. (c) I-V characteristics
on a linear scale. (d) Reverse current at −3 V and −15 V as a function of the illumination intensity
(percentage) of the Pt-Ta_CNT/Si3N4/n-Si/Si3N4/Pt-Ta structure.

Figure 5 shows the I-V behavior of the vertical heterostructure, with and without MWCNT film,
when illuminated from the top by lights of selected wavelengths, obtained from an incandescent lamp
with passband optical filters of 50 nm bandwidth. Figure 5a,b demonstrate that the maximum reverse
photocurrent is achieved for a wavelength close to the Si bandgap, i.e., at 1010 nm (corresponding to
1.01 eV), while wavelengths such as 1290 or 1881 nm below the Si energy bandgap have minor effects.
This result confirms that photogeneration occurs mainly into the Si substrate, where a depletion layer
is formed.

Indeed, the comparison of the photocurrent of the heterostructure before and after CNT removal,
at the same wavelength (768 nm in Figure 5c,d), demonstrates that the sample with MWCNTs produces
a higher photocurrent. We attribute this to the increased effective photosensitive junction area. While
the reflective and opaque metal contact limits the photoconductive area to the perimeter region, the
MWCNT film is transparent and increases the photosensitive surface area. Remarkably, Figure 5d
shows that the MISIM with MWCNTs generates a photocurrent at 1881 nm (0.54 eV), which is not
present when the CNTs are removed. The photocurrent at 1881 nm, being produced by light with
energy below the Si bandgap, can be attributed to photoexcitation over the Schottky barrier by light
absorbed in the MWCNT film. This observation indicates that the MWCNT film contributes to the
photocharge generation as an active layer in addition to the function as antireflective and transparent
conductive electrode, in agreement with previous work [32–34,36].

We finally note in Figure 5d that the photocurrent in the two plateau regions is weakly dependent
on the reverse bias.
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Band Model

To explain the behavior of the device, we propose the band model shown in Figure 6, which
accounts for the rectification and the high photoconductivity by considering the interplay between two
asymmetric Schottky barriers [57]. We consider the electrically thinned Si3N4 layers as tunnel barriers,
which can sustain a voltage drop but are almost transparent to the current. We assume that Ni forms a
Schottky barrier at top slightly higher than the one formed by Ta at the bottom contact (Figure 6a).

In forward bias, when the top contact is positively biased, the voltage drop appears mostly
across the highest resistance point that is the reverse-biased Schottky junction of the bottom contact
(Figure 6b). Electrons are injected over this lower barrier, which can be further reduced by image force
barrier lowering [57–59]. The vanishing depletion layer at the top contact and the rapidly growing
current make the contribution of the photogenerated carriers negligible.

In reverse bias (Figure 6c,d), the depletion layer at the top contact gradually extends to the
maximum width, W =

√
2εs(Vbi −V)/qND ≈ 5 µm, at V = −20 V (εs is the dielectric constant of Si,

Vbi,, the built-in voltage q is the electron charge), causing the increase of the reverse current that is
due to thermal or photogeneration. The hole current is enhanced when the applied voltage makes the
Si3N4 valence band align with the Si valence band, which could explain the observed photocurrent
peak around −2.9 V. For increasing bias, the band bending and the image force barrier lowering
(not explicitly shown in the drawing) reduce the barrier width and height to a level that tunneling
of electrons from the top metal to the underneath Si substrate takes place (Figure 6d) [57–59]. Such
phenomena are responsible for the sudden increase of the current observed at V < −6.5 V in the
dark. Under illumination, the accumulation of positive charge in the valence band at the Si3N4/Si
top interface decreases the surface potential and increases the oxide voltage. The modified band
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diagrams shown by the red dotted lines in Figure 6c,d provide evidence of a reduced barrier resulting
in enhanced tunneling [60]. This accounts for the steeper increase of the current under illumination
observed for V < −6.5 V. In this voltage range, being V ≤ −6EG/q, this is the threshold used in the Si
one-sided junction for the avalanche breakdown when impact ionization might also occur, contributing
to the photocurrent gain. Finally, the plateaus observed at a higher reverse bias are caused by the series
resistance [61,62], which changes with the illumination.
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illumination. Empty and full circles represent holes and electrons, respectively.

We note that a photocurrent with a similar double plateau has been reported in reverse biased
Al/SiO2/n-Si MIS structures, where the second plateau has been attributed to the so called “soft pinning”
of oxide voltage at large negative gate bias, i.e., limited variation of the oxide voltage, which restricts
the further increase of the direct tunneling electron current [63]. Such an effect can be modeled as the
quenching effect of a series resistance that depends on the illumination of the n-Si substrate.

From an application standpoint, we highlight that the two observed photocurrent regimes, below
and above −6.5 V, add functionality to the device, which can operate at lower or higher voltages for the
detection of weaker or stronger light intensity.

4. Conclusions

We have fabricated and studied Pt-Ta_CNT/Si3N4/n-Si/Si3N4/Pt-Ta vertical MISIM heterostructures
and characterized their optoelectricbehavior. We have shown that such heterostructures exhibit
rectifying behavior, which we have explained by a band model based on two asymmetric Schottky
barriers. The forward current is due to electrons injected over the lower Schottky barrier, while the
reverse current is characterized by two different conduction regimes attributed to thermal/photo
generation and to the tunneling of majority carriers through the higher barrier, respectively. We have
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shown that the photocurrent increases linearly with the light intensity and is generated mainly in
the Si substrate, although there might be a contribution from the MWCNT film. At high bias, the
device achieves the responsivity of 110 mA W−1 under an incandescent light of 1 mW cm−2 intensity,
competitive with similar carbon-based devices.

This work demonstrates a promising device for photodetection and contributes to the
understanding of the physics underlying the electrical behavior of CNT-based MIS heterojunctions
needed for technological applications.
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