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Abstract

Background

The exact onset of brain injury in infants with congenital heart disease (CHD) is unknown.

Our aim was, therefore, to assess the association between prenatal Doppler flow patterns,

postnatal cerebral oxygenation and short-term neurological outcome.

Methods

Prenatally, we measured pulsatility indices of the middle cerebral (MCA-PI) and umbilical

artery (UA-PI) and calculated cerebroplacental ratio (CPR). After birth, cerebral oxygen sat-

uration (rcSO2) and fractional tissue oxygen extraction (FTOE) were assessed during the

first 3 days after birth, and during and for 24 hours after every surgical procedure within the

first 3 months after birth. Neurological outcome was determined preoperatively and at 3

months of age by assessing general movements and calculating the Motor Optimality Score

(MOS).

Results

Thirty-six infants were included. MOS at 3 months was associated with MCA-PI (rho 0.41, P

= 0.04), UA-PI (rho -0.39, P = 0.047, and CPR (rho 0.50, P = 0.01). Infants with abnormal

MOS had lower MCA-PI (P = 0.02) and CPR (P = 0.01) and higher UA-PI at the last mea-

surement (P = 0.03) before birth. In infants with abnormal MOS, rcSO2 tended to be lower

during the first 3 days after birth, and FTOE was significantly higher on the second day after

birth (P = 0.04). Intraoperative and postoperative rcSO2 and FTOE were not associated with

short-term neurological outcome.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0230414 March 25, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mebius MJ, Bilardo CM, Kneyber MCJ,

Modestini M, Ebels T, Berger RMF, et al. (2020)

Onset of brain injury in infants with prenatally

diagnosed congenital heart disease. PLoS ONE 15

(3): e0230414. https://doi.org/10.1371/journal.

pone.0230414

Editor: Emma Duerden, Western University,

CANADA

Received: May 9, 2019

Accepted: February 28, 2020

Published: March 25, 2020

Copyright: © 2020 Mebius et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: M.J. Mebius was financially supported by

a University of Groningen Junior Scientific

Masterclass grant.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-9037-8653
https://doi.org/10.1371/journal.pone.0230414
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230414&domain=pdf&date_stamp=2020-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230414&domain=pdf&date_stamp=2020-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230414&domain=pdf&date_stamp=2020-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230414&domain=pdf&date_stamp=2020-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230414&domain=pdf&date_stamp=2020-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230414&domain=pdf&date_stamp=2020-03-25
https://doi.org/10.1371/journal.pone.0230414
https://doi.org/10.1371/journal.pone.0230414
http://creativecommons.org/licenses/by/4.0/


Conclusion

In infants with prenatally diagnosed CHD, the prenatal period may play an important role in

developmental outcome. Additional research is needed to clarify the relationship between

preoperative, intra-operative and postoperative cerebral oxygenation and developmental

outcome in infants with prenatally diagnosed CHD.

Introduction

Up to 50% of infants with congenital heart disease (CHD) have neurodevelopmental impair-

ments later in life [1]. As a consequence, many adults with CHD experience psychosocial and

cognitive challenges that could affect quality of life [2,3]. Increasing evidence suggests that

neurodevelopmental impairments in infants with CHD may result from insults occurring

from as early as the second trimester.

Prenatally, circulatory alterations and impaired brain maturation have been frequently

observed [4]. Fetuses with CHD have increased cerebral blood flow [5,6], decreased cerebral

vascular resistance [5–9], smaller head circumference [7,8,10], lower total brain weight [11],

impairments in sulcation [12,13], altered cerebral metabolism [13,14], and abnormalities on

MRI that are in accordance with impaired brain maturation such as ventriculomegaly and

increased extra-axial cerebrospinal fluid spaces [15,16].

After birth, many of the prenatal findings, such as a smaller head circumference, lower total

brain volumes, and an altered cerebral metabolism persist [4,17–21]. Furthermore, in compar-

ison with healthy newborns, infants with CHD have lower cerebral oxygen saturation [22,23],

more neurobehavioral abnormalities [24], increased epileptic activity [25,26] and up to 53%

show brain abnormalities on MRI prior to surgery [27–29]. The most commonly observed

abnormalities include white matter injury, and stroke [27–29].

Surgical procedures and the postoperative period pose an additional threat to the young

brain. Ischemia and reperfusion injury, hypothermia, inflammatory and immune responses,

altered cerebral blood flow regulation and decreased cardiac output might all contribute to

brain injury during and after surgery [30,31]. New brain abnormalities on MRI after cardiac

surgery are reported in up to 78% of infants with CHD [32,33].

Currently, it is still unknown which period is the most threatening for the young developing

brain in infants with CHD. To date, no study has assessed cerebral abnormalities and its rela-

tion with neurological outcome from before birth to the postoperative period in these infants.

Our aim was, therefore, to perform a longitudinal assessment of prenatal Doppler flow pat-

terns and postnatal, intraoperative and postoperative cerebral oxygen saturation and extrac-

tion in relation to short-term neurological outcome in infants with CHD that were admitted to

the intensive care (ICU) immediately after birth.

Methods

Study population

A prospective observational cohort study (registration number: NTR5523) was conducted

at the fetal medicine unit, the NICU, congenital heart center and pediatric intensive care

unit of the University Medical Center Groningen. Between May 2014 and August 2016, all

fetuses with isolated CHD expected to require ICU admission immediately after birth were

prenatally enrolled when parental informed consent was obtained. After birth, infants were
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echocardiographically assessed by a pediatric cardiologist to confirm the cardiac diagnosis.

Infants were excluded from further participation if cardiac diagnosis could not be confirmed,

if born before a gestational age of 36 weeks, or in case of major chromosomal, genetic or struc-

tural anomalies that became apparent after birth. This study was approved by the Medical Eth-

ical Committee of the University Medical Center Groningen METc number: METc2014/083.

Neurological outcome

Neurological outcome was assessed by general movements (GMs) at two different moments.

Preoperatively, at the age of 7 days (5–10 days), a video recording of 30–60 minutes was made.

Postoperatively, at the age of 3 months, a video recording of approximately 10 minutes was

made [34]. During the recordings, the infants wore a diaper or body to ensure visibility of

movements. Video recordings during crying or sucking on a dummy were excluded from the

analysis.

The GMs were scored independently by two different assessors (MJM and AFB) and one of

them was unaware of the clinical condition of the patient (AFB). Both observers are certified

as advanced scorers by the GM Trust. At the age of 7 days, the GMs were scored as either nor-

mal or abnormal. Abnormal GMs included poor repertoire, chaotic, and cramped synchro-

nized movement patterns. Furthermore, we explored more detailed aspects of the motor

repertoire reflected in a motor optimality score (MOS). At this age, the MOS ranges from 8

(poor) to 18 (optimal) and MOS<15 was considered to be abnormal. At the age of 3 months

we assessed the presence and quality of fidgety movements (normal/abnormal/absent). Fur-

thermore, we assessed the MOS which ranges from 5 (poor) to 28 (optimal) at this age and

MOS <25 was considered to be abnormal [35–36].

Doppler flow patterns

During pregnancy, pulsatility indices of the middle cerebral artery (MCA-PI) and umbilical

artery (UA-PI) were measured repeatedly by an experienced fetal medicine expert (CMB) and

cerebroplacental ratio (CPR) was calculated. All Doppler parameters were converted into Z-

scores to adjust for differences in gestational age at fetal examinations. For statistical purposes,

the last available Doppler measurement before birth was used.

Near-infrared spectroscopy

After birth, cerebral oxygen saturation (rcSO2) was measured with the INVOS 5100c spec-

trometer (Medtronic, Dublin, Ireland) with neonatal sensors (Medtronic), placed on the fron-

toparietal side of the forehead. First, rcSO2 was measured daily for at least two consecutive and

stable hours during the first 3 days after birth starting immediately after stabilization of the

infant on the NICU. Preferably, the measurements were performed at the same time each day

to avoid possible effects of diurnal variation. Second, rcSO2 was measured during every correc-

tive/palliative surgical procedure within the first 3 months after birth. Third, rcSO2 was mea-

sured for 24 hours following each invasive cardiac procedure within the first 3 months after

birth. Simultaneously with rcSO2 measurements, we measured preductal arterial oxygen satu-

ration (SpO2) and calculated cerebral fractional tissue oxygen extraction (FTOE). For statisti-

cal purposes, we selected representative two-hour periods of stable rcSO2 measurements,

preferably at the same time during the day, and calculated mean rcSO2 and FTOE for each of

the first 3 days after birth. In addition, we calculated mean rcSO2 and FTOE during cardiac

surgery and for 24 hours after cardiac surgery. Furthermore, we assessed the burden of hyp-

oxia in two ways (percent of time <60% and percent of time <50%) and rcSO2 nadir during

cardiac surgery.
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Statistical analysis

For statistical analyses, we used SPSS version 23.0 (IBM Corp., Armonk, NY, USA) and for

graphical display GraphPad Prism version 5 was used. Data are presented as either median

(range) or number (percentage). First, we used descriptive statistics to visualize the association

between fetal Doppler flow patterns, postnatal, intraoperative and postoperative rcSO2 and

FTOE and short-term neurological outcome. Second, we used Spearman’s correlation coeffi-

cient or Mann-Whitney U test to assess the association between short-term neurological out-

come and fetal Doppler flow patterns, rcSO2 and FTOE. Third, we categorized fetal Doppler

flow patterns, postnatal rcSO2, intraoperative rcSO2 and postoperative rcSO2 as being either

normal or abnormal and used Fisher’s exact test to assess the association between the number

of abnormal values and short-term neurological outcome. Abnormal prenatal Doppler flow

patterns were defined as Z-scores >1.0 or <-1.0. Abnormal rcSO2 was defined as values<60%

or>90% [37–38]. The lower rcSO2 cut-off value was based on the hypoxia-ischemia threshold

of 33–44% for functional impairment. As these values were measured with a sensor that mea-

sures approximately 10% lower than the sensors we used, we chose for 60% as the lower cut-

off value [37]. The higher cut-off value was based on Verhagen et al. who found that values

>90% were associated with poorer outcome [38]. A P-value <0.05 was considered significant.

Results

Patient characteristics

Initially, 45 fetuses with CHD were included between May 2014 and August 2016 (Fig 1). After

birth, nine neonates were excluded, as they did not meet the inclusion criteria. Three infants

were not admitted to the ICU, three infants were excluded due to chromosomal or genetic

abnormalities (45XO, duplication chromosome 7 and Kabuki syndrome), two infants were

excluded because of preterm birth and one fetus was stillborn. Gestational age at birth was 39.1

(36.6–40.3) weeks and birth weight was 3535 (2100–4120) grams. One infant had an Apgar

score <6 at 5 minutes with a pH of the umbilical artery of 7.23. Shortly after birth, one infant

presented with a brief period of persistent pulmonary hypertension of the neonate. Seven

infants died; one because of massive myocardial infarction prior to surgery, two because of

inoperable cardiac lesions, two because of severe brain injury after cardiopulmonary resuscita-

tion, and two infants due to other (non-cardiac) reasons. Twenty-six infants (72%) underwent

cardiac surgery during the study period. Median (range) number of interventions was 1 (1–3)

and three infants (8%) between 2 and 27 days after birth. Patient characteristics are presented

in Table 1 and detailed aspects of the included cardiac lesions are presented in S1 Table.

Neurological outcome

Preoperatively, GMs were recorded in 25 infants. Fourteen infants (56%) had abnormal GMs.

They all scored poor repertoire, none had chaotic or cramped synchronized movements.

Motor optimality score was 13 (10–18). In eleven infants, GMs were not recorded due to

scheduled surgery prior to the age of five days (n = 4), immobility due to sedation (n = 1),

transfer to another hospital within five days after birth (n = 3) and mortality (n = 3).

At the age of three months, GMs were recorded in 29 infants. Two infants had absent fidg-

ety movements and one had abnormal fidgety movements. Motor optimality score was 26

(11–28). Based on the cut-off point of<25, twelve infants (41%) had abnormal motor optimal-

ity scores. Reasons for missing recordings at this age were mortality before the age of three

months (n = 6) and withdrawal from study participation (n = 1).
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Twenty-one infants had GMs assessment at both ages. Of these infants, ten remained stable,

three deteriorated and eight improved (Table 2). McNemar test confirmed that the trend of

deterioration of the infants over time was not significant (P = 0.25). Two of the three infants

with deteriorating neurological outcome had a complicated postoperative course. One infant

had low cardiac output syndrome and the other infant developed a cardiac tamponade needing

a re-intervention.

Fetal cerebral vascular resistance and neonatal cerebral oxygen saturation

Prenatal Doppler flow patterns were assessed in all infants. Gestational age at the last fetal

examination was 34.4 (21.1–39.1) weeks. In comparison with reference values of healthy

fetuses, we found slightly lower MCA-PI (-0.19 (-3.94 to 2.59), P = 0.35) and CPR (-0.65 (-4.06

to 2.80), P = 0.01) and slightly higher UA-PI Z-scores (0.44 (-1.74 to 4.01), P = 0.02).

After birth, rcSO2 increased from 61% (32%-89%) to 70% (52%-91%) during the first 3 days

after birth. On day 1, six neonates had rcSO2 values<50%, which could be explained by clinical

conditions (restrictive foramen ovale, fetal-maternal transfusion or perinatal asphyxia). All

neonates stabilized during the first 3 days and none of the neonates had rcSO2 values <50% on

day 3 after birth. Twenty-six neonates (72%) had at least one cardiac surgical procedure within

the first 3 months after birth. During surgical procedures, rcSO2 was lower in comparison with

the first 3 days after birth (53% (36%-69%)). Median duration of surgery was 7.0 (1.5–12.3)

hours. The median burden of hypoxia <60% and<50% was 68% (4%-100%) and 34% (0%-

95%) of the recording time, respectively. The median rcSO2 nadir during surgery was 22%

(15%-56%). Following cardiac surgery, rcSO2 increased to 61% (42%-78%).

Fig 1. Flow chart inclusion and exclusion. CHD, congenital heart disease; TOP, termination of pregnancy; IUFD, intrauterine

fetal demise; NICU, neonatal intensive care unit. � Cardiac lesions that require birth at a congenital heart center.

https://doi.org/10.1371/journal.pone.0230414.g001

PLOS ONE Onset of brain injury in infants with CHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0230414 March 25, 2020 5 / 14

https://doi.org/10.1371/journal.pone.0230414.g001
https://doi.org/10.1371/journal.pone.0230414


Table 1. Patient characteristics.

N = 36
Gestational age at birth (weeks) 39.1 (36.6–40.3)

Birth weight (grams) 3535 (2100–4120)

Birth weight <10th percentile 6 (16)

Male 21 (58)

Type of CHD

• TGA

• HLHS

• Pulmonary stenosis

• Pulmonary atresia

• Coarctation of the aorta

• Tetralogy of Fallot

• Common arterial trunk

• Complex CHD

• AVSD

• Tricuspid dysplasia

• DORV

9 (25)

4 (11)

1 (3)

2 (6)

4 (11)

4 (11)

3 (8)

4 (11)

1 (3)

1 (3)

3 (8)

Apgar at 5 minutes 8 (5–10)

Mortality 7 (19)

MABP day 1 44 (37–51)

MABP day 2 47 (34–56)

MABP day 3 46 (42–54)

Respiratory support day 1 (n = 35)

• None/low flow

• CPAP

• NIPPV

• SIMV/SIPPV

19 (54)

9 (26)

1 (3)

6 (17)

Respiratory support day 2 (n = 34)

• None/low flow

• CPAP

• NIPPV

• SIMV/SIPPV

19 (56)

3 (9)

2 (6)

10 (29)

Respiratory support day 3 (n = 32)

• None/low flow

• CPAP

• NIPPV

• SIMV/SIPPV

20 (63)

3 (9)

2 (6)

7 (22)

Medical treatment

Prostaglandin E1 day 1 (n = 35) 22 (63)

Prostaglandin E1 day 2 (n = 34) 22 (65)

Prostaglandin E1 day 3 (n = 32) 21 (66)

Sedatives day 1 (n = 35) 8 (23)

Sedatives day 2 (n = 34) 15 (44)

Sedatives day 3 (n = 32) 12 (38)

Placental insufficiency (pathology report) 4 (11)

Abnormality cerebral echocardiogram 7 (19)

ICU stay (days) 10 (4–90)

Age at surgery (days) 9 (2–27)

Data represent either median (range) or number (percentage). CHD, congenital heart disease; TGA, transposition of

the great arteries; HLHS, hypoplastic left heart syndrome; AVSD, atrioventricular septal defect; DORV, double outlet

right ventricle; MABP, mean arterial blood pressure; CPAP, continuous positive airway pressure; NIPPV, nasal

intermittent positive pressure ventilation; SIMV, synchronized intermittent mandatory ventilation; SIPPV,

synchronized intermittent positive pressure ventilation; ICU, intensive care unit.

https://doi.org/10.1371/journal.pone.0230414.t001
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Timing of occurrence of brain injury

Prenatal Doppler flow patterns strongly correlated with MOS at 3 months of age. Pulsatility index

of the middle cerebral artery (rho 0.41, P = 0.04) and CPR (rho 0.50, P = 0.01) positively correlated

with MOS, while UA-PI negatively correlated (rho -0.39, P = 0.04) with MOS at 3 months of age.

There were no significant correlations between postnatal, intraoperative (mean, burden of hyp-

oxia and nadir) and postoperative rcSO2 or FTOE and MOS at the age of 3 months.

Results were similar for abnormal and normal MOS (Fig 2 and S2 Table). Infants with

abnormal MOS had lower MCA-PI (P = 0.02), higher UA-PI (P = 0.03) and lower CPR

(P = 0.01) in comparison with infants with normal MOS at the age of 3 months. Cerebral oxy-

gen saturation during the first 3 days after birth was lower in infants with abnormal MOS,

however, this did not reach statistical significance. Both during and after surgical procedures

rcSO2 (mean, burden of hypoxia and nadir) was similar in infants with normal and infants

with abnormal MOS. In infants with abnormal MOS, FTOE tended to be higher during the

first three days after birth, reaching statistical significance on day 2 (P = 0.04). During and

after cardiac surgical procedures, there were no associations between FTOE and short-term

neurological outcome. The number of interventions was also not associated with GMs at an

age of 3months (P = 0.12).

Infants with a combination of abnormal prenatal and postnatal cerebral values were more

likely to have abnormal MOS in comparison with infants that had no abnormal cerebral values

or only at one of both periods (odds ratio = 9.33, P = 0.02).

Discussion

This is the first study assessing longitudinally the relationship between cerebral perfusion- or

oxygenation parameters and short-term neurological outcome in infants with prenatally

Table 2. The course of general movements in infants with CHD.

Infant GM 7 GM 3 Change Infant GM 7 GM 3 Change

1† x x na 19† A x na

2 x N na 20 N N =

3 A N " 21 A A =

4† N x na 22 x A na

5 A N " 23 A N "

6 A N " 24 N N =

7 x A na 25† A x na

8† N x na 26† x x na

9 N A # 27 A A =

10 N N = 28 x A na

11 A N " 29 A N "

12 N N = 30 x x na

13 x A na 31 A N "

14 x N na 32 N N =

15 x N na 33 N A #

16 N N = 34 N A #

17 A A = 35 A A =

18 x A na 36 A N "

GM 7, preoperative general movements at the age of 7 days; GM 3, postoperative general movements at the age of 3 months; x, not recorded; N, normal assessment; A,

abnormal assessment; na, not applicable; †, infant died before the age of 3 months.

https://doi.org/10.1371/journal.pone.0230414.t002
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diagnosed CHD. The study demonstrates that prenatal Doppler flow patterns indicative of

preferential brain perfusion are associated with poorer short-term neurological outcome in

infants with CHD. Furthermore, it suggests that abnormal short-term neurological outcomes

are likely the result of a cumulative effect of hypoxic-ischemic events during the prenatal

period and early postnatal life. Infants with abnormal perfusion or oxygenation both prenatally

as well as postnatally had a nine-fold increased risk of abnormal short-term neurological out-

come in comparison with infants with no abnormal cerebral findings or abnormal cerebral

findings only prenatally or postnatally.

Assessment of GMs is a widely accepted non-invasive method to determine the integrity of

the central nervous system of the newborn [39]. At present, GMs are considered the best avail-

able method to assess short-term neurological outcome with a high sensitivity and specificity.

Little is known about the quality of GMs in a CHD population. More is known on GMs in pre-

term born infants and, to a lesser extent, in term born infants [36,40–43]. The predictive value

for neurological outcome of poor repertoire during the writhing period (around term age) is

low [44]. However, absence of fidgety movements at an age of 3 months is strongly associated

with adverse neurological outcome at school age [36,41]. Furthermore, abnormal MOS at an

Fig 2. Fetal Doppler flow patterns, postnatal rcSO2 and FTOE according to GMs assessment at the age of 3 months. Data are shown in box-and-whisker

plots. Circles represent outliers. N, normal general movements based on MOS�25; A, abnormal general movements based on MOS<25; MCA-PI, pulsatility

index of the middle cerebral artery; UA-PI, pulsatility index of the umbilical artery; CPR, cerebroplacental ratio; rcSO2, regional cerebral oxygen saturation;

FTOE, fractional tissue oxygen extraction.

https://doi.org/10.1371/journal.pone.0230414.g002
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age of 3 months is also associated with motor impairments and minor neurological dysfunc-

tion at school age[40,42,43].

In our study, abnormal prenatal Doppler flow patterns indicative of preferential brain per-

fusion were associated with poorer short-term neurological outcome. Previous studies have

reported contradictory results concerning the association between prenatal Doppler flow pat-

terns and neurodevelopmental outcome in infants with CHD. Two studies found a negative

association between MCA-PI and psychomotor developmental index evaluated by the Bayley

scale of infant development II (BSID II) [7,45]. One study did not find any association between

MCA-PI and neurodevelopmental outcome and another study found a positive correlation

between MCA-PI and cognition measured by Bayley scale of infants and toddler development

III (Bayley III) [5,46]. These contradictory findings may be explained by differences in study

design (first vs. last Doppler measurement during pregnancy) and differences in cardiac

lesions included in the study (different types of CHD with different circulatory and pathophys-

iological effects).

Our results indicate that Doppler patterns indicative for compensatory “brain sparing”

mechanisms during fetal life actually suggest that oxygen delivery to the brain is insufficient to

meet metabolic demands in fetuses with CHD. This may lead to impaired brain maturation, a

finding that has been commonly reported in fetuses and neonates with CHD [10–15]. The pre-

term brain is likely to be more susceptible to hypoxic-ischemic events, explaining why fetuses

with abnormal Doppler flow patterns are more prone to have abnormal short-term neurologi-

cal outcomes [47].

While rcSO2 during the first 3 days was consistently lower and FTOE higher in infants with

abnormal MOS at 3 months of age, we were unable to demonstrate a statistically significant

association between preoperative cerebral oxygenation and developmental outcome. It might

be that there is no association between preoperative oxygenation and short-term neurological

outcome in infants with prenatally diagnosed CHD. We assessed neurological outcome at 3

months of age using the best available method at present, with a high sensitivity and specificity.

We speculate that the brain may, at least transiently, be able to recover from hypoxic-ischemic

events suffered immediately after birth. Brain development continues throughout childhood

and involves not only the onset of new pathways and connections, but also elimination of oth-

ers [48]. Due to the high plasticity of the young brain, previous abnormalities might disappear,

at least transiently. It might also be that preoperative rcSO2 is associated with developmental

outcome, but that our sample size was too small to reach statistical significance. Previous stud-

ies on the association between preoperative rcSO2 and neurodevelopmental outcome in infants

with CHD, however, support our first explanation, as they were also unable to demonstrate a

clear association between preoperative rcSO2 and neurodevelopmental outcome [49–50].

Cerebral oxygen saturation and FTOE during and after cardiac surgery were not associated

with short-term neurological outcome. This is in line with previous literature[48–51].

Although some of these studies found an association between immediate preoperative, intrao-

perative or postoperative rcSO2 and various domains of neurodevelopmental outcome, rcSO2

was never a strong predictor of neurodevelopmental outcome [49–52]. Advanced surgical

techniques and postoperative ICU care might prevent additional brain injury.

As we found that infants with abnormal perfusion or oxygenation both prenatally and post-

natally had a nine-fold increased risk of having abnormal short-term neurological outcome,

we suggest that there is a cumulative effect of hypoxic-ischemic events in infants with prena-

tally diagnosed CHD. This multiple-hit theory has been previously described in very preterm

born infants [53]. Abnormal Doppler flow patterns before birth could have increased vulnera-

bility of the brain to hypoxic-ischemic events after birth. Impaired brain maturation might be

an important contributor to this vulnerability [11–16].
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This study has several strengths and limitations. The longitudinal design from prenatal

diagnosis until the age of 3 months is unique and important since infants with CH D are at

risk of developing brain injury at various moments during early life. The observational design,

however, implied that some of the values were missing, which might have induced selection

bias. Other limitations were the relatively small sample size and the heterogeneity of the study

population. The included types of CHD might have different effects on cerebral oxygenation

and perfusion and they are associated with a different postnatal course (e.g. some infants

required multiple surgeries during the first 3 months, while others did not require surgery).

The infants with a more intense treatment course might have had less opportunity to develop

certain age-appropriate skills. This could have influenced GMs at an age of 3 months. None-

theless, our study population is a representative sample of an ICU and all included lesions have

been associated with neurodevelopmental impairments later in life [1]. Furthermore, we did

not have neuro-imaging data which could have confirmed brain injury or impaired brain mat-

uration to support our vulnerability hypothesis in infants with abnormal GMs. In addition, we

assessed short-term neurological outcome at only 3 months of age using GMs and MOS. The

prognostic value of GMs and MOS is excellent for cerebral palsy and very good for mild motor

abnormalities in preterm and healthy term infants. Less is known about the prognostic value

of GMs and MOS in infants with CHD. Furthermore the prognostic value for cognitive deficits

later on is less strong, which are a prominent finding in this population. Future studies should

address these limitations and include enough patients to stratify for cardiac lesion. It is also

crucial to extend neurodevelopmental testing to an older age in order to determine whether

the associations we found persist later in infancy and childhood. Furthermore, future studies

should address the cumulative effect of hypoxic-ischemic events, including multiple surgical

procedures. This is also known as the multiple hit theory. We hope, with this study, to set the

tone for these future larger (multicenter) longitudinal studies.

In conclusion, based on our findings we hypothesize that the prenatal period may play an

important role in developmental outcome in infants with CHD that were admitted to the ICU

immediately after birth. Additional research is needed to clarify the association between cere-

bral oxygenation during the first days after birth and neurological outcome in infants with

CHD.
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