

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.heliyon.com

Molecular interaction studies of binary systems comprising [C₂mim] [BF₄] with ethyl acetoacetate or benzaldehyde

Bakusele Kabane, Rajasekhar Chokkareddy, Gan G. Redhi

Physical Chemistry Laboratories, Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa

ARTICLE INFO	A B S T R A C T			
<i>Keywords:</i> Physical chemistry	In this work, new data for the binary mixtures containing 1-ethyl-3-methylimidazolium tetrafluoroborate ([C ₂ mim] [BF ₄]) ionic liquid (IL) with benzaldehyde or ethyl acetoacetate were investigated under atmospheric pressure ($p = 0.1$ MPa) and at temperatures (293.15–313.15) K. The binary mixtures were completely miscible at all proportions. Densities (ρ), viscosities (η) as well as speeds of sound (u) were conducted across the entire range			
	of mole fraction ($x_i = 0$ to 1). The excess properties which include excess molar volumes (V_m^E), intermolecular free length (L_f), deviations in viscosity ($\Delta\eta$), isentropic compressibility(k_s), apparent molar isentropic compressibility (K_{ϕ}) as well as deviation in isentropic compressibility (Δk_s) were determined from the experimentally found results of speed of sound, viscosity and density. The obtained derived properties have been elucidated in terms of solute-solvent interactions taking place in the systems. The investigation of thermophysical properties of organic solvents with ionic liquids is essential as they decide the transformation of ionic liquids from small laboratory scale to large industrial applications. The obtained results are important and essential as they describe the mo- lecular interactions, and can be used in constructing the structure-property correlation as well as molecular modelling that exist between [C_2 mim] [BF ₄] with benzaldehyde or ethyl acetoacetate. Redlich-Kister polynomial			

1. Introduction

During recent years, ionic liquids (ILs) which are known to be the topic of interest in the science research community, focussing on acute examination as a new solution of designer solvents. Large organic cations are used to compose these types of solvents; they contain a diverse functionalized groups or alkyl substituents and organic or inorganic anions. One of the main reasons in support of the low melting temperatures of the ionic liquid are the asymmetric and large features [1,2]. Attributable to their ionic nature, nearly all of the ILs are known to present useful properties, which include non-flammability [3], insignificant vapour pressure [4], increased conductivity [5], and also their considerable ability to dissolve inorganic and organic material. These are liquids with feasible applications in several fields which include electrochemistry (solar panels, fuel cells, and batteries), chemistry (synthesis, catalysis, and polymerization), and biotechnology (bio-catalysis, protein purification) as well pharmaceutical industries. As a result, a clear understanding of their properties and behaviour with organic solvents is essential for a proper development of these

applications [6,7].

According to the properties possessed by the ionic liquids, these liquids are environmentally friendly, but they can be pollutants as well if procedures used in handling these liquids are incorrect, because inappropriate handling may result in high possible soil and water contamination as a consequence of unexpected spills or incompetent waste water management [8]. If the ionic liquids contain any amount of water, this can extremely influence the ionic liquids phase equilibrium and thermodynamic properties [9,10]. As a result, in previous years, a notable number of studies have been focussing on examining thermodynamic and physical properties, which includes density and viscosity for the water saturated ionic liquids [11,12,13,14,15,16]. Imidazolium cations are the most measured class of ionic liquid and these ionic liquids have been utilised in many areas including catalysis, electrochemistry, synthesis as well as industrial applications [17,18,19,20,21]. Imidazolium based ionic liquids are also useful in the procedure for the removal of carbon dioxide from natural gas [22] as well as in extractive desulfurization of liquid fuels, principally with consideration of those sulphur compounds that are extremely complex to remove by ordinary hydrodesulfurization

Received 21 November 2018; Received in revised form 26 March 2019; Accepted 17 April 2019

^{*} Corresponding author. *E-mail address:* redhigg@dut.ac.za (G.G. Redhi).

https://doi.org/10.1016/j.heliyon.2019.e01548

^{2405-8440/© 2019} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-ad/4.0/).

(HDS) processes [23]. Recently, osmium oxide has been recycled by the use of 1-ethy-3-methylimidazolium tetrafluoroborate [C2mim] [BF4] [24]. In the capillary electrophoretic technique, this viscous liquid electrolyte is mostly utilised, in grape seed extract it is used for settling phenolic compounds. Normally, the level of toxicity of the imidazolium based liquids depends on the lower order n-alkyl chain which have low to average degree of potential damage, and in particular [C₂mim] [BF₄] is likely to cause serious harm when swallowed [25]. Examination of the intermolecular interaction aggregate response between the organic solvents and the ionic liquids becomes notable, as that type of interaction may produce positive results on mechanism and thermodynamic equilibrium of the reaction, as well the reaction rate of the reaction. In the family of aromatic aldehydes, benzaldehyde is one of the most industrially functional members in the group. Large numbers of industries have been using benzaldehyde as a raw material in organic synthesis, which also include perfumery chemicals [26]. A notable large amount of benzaldehyde is used in the production of other aldehydes, which include cinnamic, methylcinnamic and hexylcinnamic. In the process of many organic compounds, ethyl acetoacetate is mostly used as an intermediate. It is also utilised in the manufacturing of synthetic drugs and dves. According to the literature search, no work was done on the investigation of excess properties between 1-ethyl-3-methylimidazolim tetrafluoroborate with benzaldehyde or ethyl acetoacetate mixtures. The systems comprising 1-ethyl-3-methylimidazolim tetrafluoroborate with benzaldehyde or ethyl acetoacetate are also useful for the design of many industrial and technological processes.

2. Experimental

2.1. Chemicals

The investigated ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate) (Fig. 1) were supplied by Sigma Aldrich (South Africa), ethyl acetoacetate was supplied by Acros Organics New Jersey (USA) and benzaldehyde was supplied by Merck (South Africa) with stated purity of \geq 99.5% (GC) for both chemicals and were used as received. The content of water of the ionic liquid used was removed by the use of vacuum treatment at 340 K under reduced pressure of 5×10^{-2} Pa. The content of water was examined by the use of Karl-Fischer auto titrator before commencement of the experimental work. The ionic liquid mass percent water content was found to be 340×10^{-6} % and the purity was \geq 98% (determined by HPLC).

2.2. Method and apparatus

The binary mixtures were prepared in air tight stoppered glass vials by syringing exact amounts of pure compounds ($[C_2mim]$ [BF₄] and ethyl acetoacetate or benzaldehyde). The weighed mass of each component was determined by the use of an OHAUS analytical mass balance with a precision of ± 0.0001 g. Every safeguard was taken to minimise any type

of contamination. A digital vibrating tube density meter and sound velocity analyser with automatic micro-viscometer (Anton Paar DSA 5000 M) with accuracy of \pm 5 \times 10⁻⁶ g cm³ in density, \pm 0.5 m s⁻¹ in sound velocity, ± 1 mPa s in viscosity and ± 0.01 K in temperature was used to conduct the speed of sound, viscosity and density measurements for the prepared binary mixtures and pure compounds. The densimeter was calibrated as instructed by the supplier using standard solutions given by the supplier. For the density measurements, the principle employed by the instrument is a well-known oscillating U-tube, the DSA 5000 M is able to measure simultaneously the sound velocity between (1000–2000) m \cdot s^{-1} and density over the range of (0–3 $x10^3)~kg\cdot m^{-3}$ at temperatures between (273. 15 to 343.15) K, with a pressure difference ranging from (0-0.3) MPa and at low frequency of about 3 MHz. The approximate density and sound velocity uncertainty measurements were below \pm 2 imes 10^{-5} g cm⁻³ for the density and ± 0.8 m s⁻¹ for sound velocity, and the temperature was maintained to ± 0.02 K. For the derived properties (k_s $\Delta k_{\rm s}$ and V_{\rm m}^{\rm E}), the estimated uncertainty was approximately \pm 2 \times 10⁻⁸ Pa⁻¹, $\pm 0.7 \times 10^{-8}$ Pa⁻¹ and ± 0.006 cm³ mol⁻¹ correspondingly (see Tables 1 and 2).

3. Results and discussion

3.1. Measured properties

3.1.1. Density

The experimental density (ρ) for ([C₂mim] [BF₄] with benzaldehyde or ethyl acetoacetate) binary mixtures was conducted at (293.15–313.15) K, as a function of mole fraction (x) [C₂mim] [BF₄]. Fig. 2 shows the dependence of density with temperature for the pure ionic liquid. The results are displayed in Tables 3 and 4 as well as in Figs. 3 and 4 for the prepared miscible binary mixtures of [C₂mim] [BF₄] with benzaldehyde or ethyl acetoacetate. Looking at Figs. 3 and 4 of the binary mixtures, the density is directly proportional to the ionic liquid concentration, and it also decreases as the temperature increase at all intervals. Both Figs. 3 and 4 show a simple linear correlation with the mole fraction of ionic liquid.

Table 1

C ₂ mim] [BF ₄] ionic liquid	benzaldehyde and eth	yl acetoacetate specifications.
---	----------------------	---------------------------------

Chemical Name	Supplier	Method used for purification	Initial Purity %	Analysis method
[C ₂ mim] [BF ₄]	Sigma Aldrich	Vacuum drying and kept away from offensive wavelength	≥98	HPLC
Ethyl	Acros Organics	Used as received	≥99.5	GC
Acetoacetate Benzaldehyde	Merck	Used as received	≥99.5	GC

Fig. 1. Structure of the ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate) used in this study.

Component	T/K	$\rho/(g \cdot cm^{-3})$	$\rho/(g \cdot cm^{-3})$		$u/(m \cdot s^{-1})$		η (mPa · s)	
		Exp.	Lit.	Exp.	Lit.	Exp.	Lit.	
[C ₂ mim][BF ₄]	293.15	1.2844	1.2830 ^a	1634.1	1631.1 ^a	49.32	45.29 ^c	
	298.15	1.2806	1.2887 ^b	1628.6	1629.6 ^b	41.01	37.19 ^c	
	303.15	1.2768	1.2761 ^a	1610.3	1609.5 ^a	34.71	31.36 ^c	
	308.15	1.2730	1.2824 ^b	1605.2	1606.0 ^b	28.80	25.56 ^c	
	313.15	1.2693	1.2685 ^a	1587.1	1586.2 ^a	22.63	21.54 ^c	
Ethyl acetoacetate	293.15	1.0283	1.029 ^d	1350.9	1351.9 ^d	1.82		
	298.15	1.0231	1.023 ^e	1332.1	1332.9 ^f	1.65	1.48 ^e	
	303.15	1.0179	1.015 ^e	1313.1	1313.5 ^d	1.51	1.34 ^e	
	308.15	1.0127	1.013 ^f	1294.1	1294.6 ^d	1.39	1.24 ^e	
	313.15	1.0074	1.008 ^g	1275.3	1276.1 ^d	1.29		
Benzaldehyde	293.15	1.0450	1.0455 ^h	1477.2	1476.7 ^h	1.57	1.56 ⁱ	
-	298.15	1.0405	1.0410 ^h	1458.9	1458.2 ^h	1.45	1.43 ⁱ	
	303.15	1.0360	1.0365 ^h	1440.6	1439.7 ^h	1.34	1.32 ⁱ	
	308.15	1.0315	1.0320^{h}	1422.3	1421.2^{h}	1.25	1.22^{i}	
	313.15	1.0270	1.0272^{h}	1404.0	1402.9 ^h	1.16	1.13 ⁱ	

Densities, speed of sound and viscosity comparison between experimental and literature values of [C₂mim] [BF₄], benzaldehyde and ethyl acetoacetate.

The standard uncertainties u are u (T) = \pm 0.02 K, u (p) = \pm 0.04 MPa, u (ρ) = \pm 2 × 10⁻⁵g.cm⁻³, u (u) = \pm 0.8 m s⁻¹, u (η) = 2 %.

^a (Rao et al., 2017).

- ^b (Vercher et al., 2015).
- ^c (Zhang et al., 2004).
- ^d (Amalendu et al., 2013).
- ^e (Navak et al., 2003).
- f (Bermúdez-Salguero et al., 2011).
- ^g (Gao et al., 2008).
- ^h (Malek et al., 2012).
- ⁱ (Ranjbar et al., 2009).

Fig. 2. Density (ρ) graph of the pure ionic liquid [C₂mim][BF₄] at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K compared to the literature values.

3.1.2. Speed of sound

This is a necessary and essential parameter that gives a clear sign about the density as well as viscosity, eg (the lower the speed of sound, the denser the medium). As much as it is not easy to give a clear detailed type of interaction occurring between the liquid mixtures, this parameter is functional, because it also describes the interactions occurring in the mixture which includes solvent-solvent, solvent-solute and solute-solute interactions between the liquid mixtures [27,28]. Speed of sound was measured simultaneously with the density at all investigated temperatures and mole fraction measurements, and the results are given in Tables 3 and 4 for the measured binary systems. Fig. 5 shows the dependence of speed of sound with temperature, and it is also evident that speed of sound is inversely proportional to the temperature. From Figs. 6 and 7, it is easily observed that the sound velocity increase as the concentration of $[C_2mim]$ [BF₄] increases, and then decrease as the temperature increases.

3.1.3. Viscosity

Viscosity is one of the most commonly studied parameters which yield thermodynamic insight regarding to the activation energy for viscous flow. This is one of the highly sensitive parameters relating to the presence of impurities. Safety precautions were taken to consideration as to eliminate and avoid the adsorption of moisture during the experimental handling which may have a huge impact on the results. The viscosity results for the measurements of pure elements and both of the binary mixtures are specified in Table 5. The estimated uncertainty of measured viscosity values was estimated to be 2 %.

3.2. Calculated properties

3.2.1. Excess molar volumes

Eq. (1) below was used to determine excess molar volumes, which was computed from the experimentally determined densities of the binary mixtures and pure liquids at corresponding mole fractions and different temperatures (293.15–313.15) K respectively.

$$\mathbf{V}_{\rm m}^{\rm E} = \sum_{i=1}^{2} x_i M_i \left(\rho^{-1} - \rho_i^{-1} \right) \tag{1}$$

From Eq. (1) above, x_i indicates the mole fraction, ρ and ρ_i represent the densities of the pure liquids and binary systems of $([C_2mim] [BF_4] +$ benzaldehyde or ethyl acetoacetate) respectively, M_1 and M_2 denotes the molar mass of the IL and molar mass of benzaldehyde or ethyl acetoacetate. The calculated results are summarised in Tables 3 and 4, and Figs. 8 and 9. Negative values were observed for the calculated excess molar volume across the entire mole fraction range and at all investigated temperatures for both of the studied mixtures. The negative data for the computed V_m^E increase as the temperatures increases. Such occurrence has been noticed for the binary systems containing ionic liquids [29]. By closely looking at the values given in Tables 3 and 4 of the binary mixtures, they clearly shows that [C₂mim] [BF₄] has a capacity to strongly interact with benzaldehyde or ethyl acetoacetate molecules, this effect might result from the dipolar interactions and hydrogen bonding [30,31, 32]. The observed negative values simply indicate a well organised packing or attractive interactions occurred when the ionic liquid under investigation and benzaldehyde or ethyl acetoacetate molecules were assorted, resulting in volume contraction. The other factor that contributes towards negative values of V_m^E might rise from the unlike molecular interactions, which leads to the action of charge transfer and hydrogen bonding. Over the whole temperature range described in this present

Densities (ρ), sound velocity (u), excess molar volume (V_m^E), isentropic compressibility (k_s), deviation in isentropic compressibility (Δk_s), and intermolecular free length (L_f), of [C_2 mim] [BF₄] + benzaldehyde binary systems at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K and at p = 0.1 MPa.

<i>x</i> ₁	$ ho/{ m g\cdot cm^{-3}}$	$u/m \cdot s^{-1}$	$V_m^E/cm^3 \cdot mol^{-1}$	$10^8 \cdot k_s / \mathrm{Pa}^{-1}$	$10^8 \cdot \Delta k_s / \mathrm{Pa}^{-1}$	$L_f/(10^{-7} \text{ m})$
293.15 K						
0	1.0450	1477.2	0	43.9	0	1.35
0.0182	1.0540	1485.5	-0.2323	43.0	-0.59	1.34
0.0416	1 0644	1493.6	-0.4516	42.1	-1.12	1.32
0.0803	1 0805	1505.0	-0 7295	40.9	-1 79	1 30
0.1062	1.0003	1505.0	-0.7273	40.1	-1.75	1.30
0.1002	1.0907	1511.9	-0.0893	70.1	-2.10	1.29
0.2055	1.1230	1555.4	-1.2307	37.7	-3.09	1.25
0.3031	1.1340	1555.7	-1.4321	35.6	-3.33	1.22
0.4059	1.1810	15/3.0	-1.4048	34.2	-3.01	1.19
0.5056	1.2037	1589.2	-1.3885	32.9	-3.42	1.17
0.6051	1.2237	1602.6	-1.2250	31.8	-3.01	1.15
0.7056	1.2417	1614.5	-0.9925	30.9	-2.44	1.13
0.8054	1.2577	1624.7	-0.7025	30.1	-1.72	1.12
0.9060	1.2722	1633.5	-0.3638	29.5	-0.88	1.11
1	1.2844	1634.0	0	28.9	0	1.09
298.15 K						
0	1.0405	1458.9	0	45.2	0	1.38
0.0182	1.0495	1467.5	-0.2377	44.2	-0.62	1.37
0.0416	1.0600	1475.9	-0.4622	43.3	-1.19	1.35
0.0803	1.0761	1487.8	-0.7456	42.0	-1.91	1.33
0.1062	1.0863	1495.0	-0.9082	41.2	-2.30	1.32
0.2053	1.1208	1519.4	-1.2825	38.6	-3.28	1.28
0.3051	1.1507	1540.7	-1.4610	36.6	-3.75	1.24
0.4059	1.1769	1559 4	-1.4945	34 9	-3.83	1 22
0.5056	1 1997	1575.6	-1 4164	33.6	-3.63	1 10
0.6051	1 2107	1589.6	-1 2407	32.0	-3.20	1.17
0 7056	1 2278	1601.0	-1 0123	21.5	-3.20	1.17
0.2054	1.2570	1612 5	0.7164	20.7	-2.50	1.15
0.0054	1.2000	1612.5	-0.7104	30.7	-1.82	1.14
0.9000	1.2004	1621.2	-0.3707	30.0	-0.92	1.13
1	1.2800	1628.6	0	29.4	0	1.12
303.15 K	1.0000	1440.6	0		0	1.40
0	1.0360	1440.6	0	40.5	0	1.42
0.0182	1.0451	1449.5	-0.2439	45.5	-0.66	1.40
0.0416	1.0556	1458.2	-0.4/31	44.6	-1.27	1.39
0.0803	1.0718	1470.4	-0.7622	43.2	-2.03	1.36
0.1062	1.0820	1477.9	-0.9279	42.3	-2.44	1.34
0.2053	1.1166	1503.2	-1.3093	39.6	-3.48	1.31
0.3051	1.1466	1525.4	-1.4911	37.5	-3.98	1.27
0.4059	1.1729	1544.9	-1.5244	35.7	-4.07	1.24
0.5056	1.1957	1561.9	-1.4442	34.3	-3.86	1.21
0.6051	1.2158	1576.4	-1.2746	33.1	-3.39	1.19
0.7056	1.2339	1589.3	-1.0328	32.1	-2.74	1.18
0.8054	1.2500	1600.3	-0.7307	31.2	-1.94	1.16
0.9060	1.2645	1609.3	-0.3782	30.5	-0.98	1.15
1	1.2768	1610.3	0	30.0	0	1.14
308.15 K						
0	1.0315	1422.3	0	47.9	0	1.45
0.0182	1.0406	1431.4	-0.2502	46.9	-0.71	1.43
0.0416	1.0512	1440.3	-0.4848	45.9	-1.35	1.42
0.0803	1.0675	1453.0	-0.7801	44.4	-2.25	1.39
0.1062	1.0777	1460.8	-0.9491	43.5	-2.59	1.38
0.2053	1.1124	1487.1	-1.3376	40.7	-3.69	1.34
0.3051	1.1425	1510.2	-1.5230	38.4	-4.23	1.29
0.4059	1 1689	1530.6	-1 5567	36.5	-4 33	1.25
0.5056	1 1017	1548.2	-1 4741	35.0	-4.10	1.2/
0.6051	1.1017	1563.3	-1.3008	33.8	-3.61	1.24
0.0051	1.2119	1505.5	1.0542	20.7	-5.01	1.22
0.7030	1.2300	15/0.0	-1.0342	32.7	-2.91	1.20
0.8054	1.2461	1587.8	-0.7461	31.8	-2.05	1.19
0.9060	1.2607	1597.4	-0.3863	31.1	-1.04	1.18
1	1.2730	1605.2	0	30.5	0	1.16
313.15 K	1 0070	1404.0	0	10.4	0	1.40
0	1.02/0	1404.0	0	49.4	0	1.49
0.0182	1.0361	1413.4	-0.256/	48.3	-0./5	1.47
0.0416	1.0468	1422.6	-0.4968	47.2	-1.43	1.45
0.0803	1.0631	1435.7	-0.7984	45.6	-2.28	1.43
0.1062	1.0734	1443.7	-0.9705	44.7	-2.75	1.41
0.2053	1.1082	1471.0	-1.3670	41.7	-3.92	1.36
0.3051	1.1384	1495.1	-1.5560	39.3	-4.49	1.32
0.4059	1.1648	1516.3	-1.5901	37.3	-4.60	1.29
0.5056	1.1878	1534.7	-1.5056	35.7	-4.36	1.26
0.6051	1.2080	1550.3	-1.3273	34.4	-3.84	1.24
0.7056	1.2262	1563.9	-1.0749	33.3	-3.09	1.22
0.8054	1.2423	1575.6	-0.7613	32.4	-2.17	1.2

(continued on next page)

Table 3 (continued)

<i>x</i> ₁	ρ/g·cm ^{−3}	$u/m \cdot s^{-1}$	$V_m^E/cm^3 \cdot mol^{-1}$	$10^8 \cdot k_s / \mathrm{Pa}^{-1}$	$10^8 \cdot \Delta k_s / \mathrm{Pa}^{-1}$	$L_f/(10^{-7} \text{ m})$
0.9060	1.2569	1585.6	-0.3939	31.6	-1.11	1.19

The standard uncertainties u are u (T) = ± 0.02 K, u (p) = ± 0.04 MPa, u (ρ) = $\pm 2 \times 10^{-5}$ g.cm⁻³, u (u) = ± 0.8 m s⁻¹, u (V_m^E) = $\pm 6.00 \times 10^{-3}$ cm³ mol⁻¹, u (Δk_s) = $\pm 0.7 \times 10^{-8}$ Pa⁻¹ and u (k_s) = $\pm 2 \times 10^{-8}$ Pa⁻¹.

3.2.2. Isentropic and deviation in isentropic compressibility

The word isentropic implies that as the sound waves passes into and out of a liquid, the temperature and pressure fluctuates inside of each microscopic volume but the entropy of the entire system remains unchanged. This statement holds true, especially when utilizing a low frequency generator (DSA 5000 M transducer that produces about 3 MHz frequencies) to measure speed of sound, velocity dispersion and absorption of waves occurs at high frequency more than 100 MHz, and is due to the connection of molecular processes with liquids [34]. k_s values were calculated with the use of the Newton Laplace Eq. (2).

$$k_s = \frac{1}{\rho u^2} \tag{2}$$

In Newton Laplace equation, ρ represents the densities and u denotes the speed of sound for the prepared binary systems. Δk_s values were derived with the use of Eq. (3) below.

$$\Delta k_s = k_s - \sum_{i}^{2} \phi k_s, i \tag{3}$$

From the above equation, k_s and ϕ_i , are isentropic compressibilities and volume fractions of the pure liquids correspondingly. The computed values for k_s and Δk_s for the binary mixtures of ([C₂mim] [BF₄] + benzaldehyde or ethyl acetoacetate) at all investigated temperatures are presented in Tables 3 and 4. Based on the calculated results for k_s and Δk_s , it is clearly noticeable that the k_s values are inversely proportional to the mole fraction of the investigated IL at all temperatures; this effect arises from the increase in thermal agitation creating the soluble liquids more compressible [30,35]. Interactions that occurred in the binary mixtures contributed towards a decrease in free-space, and this effect contributes towards the negative Δk_s values [35]. The Δk_s negative values Figs. 10 and 11, shows that these miscible solutions are less compressible in comparison to the ideal mixtures. Due to the stronger interactions and closer approach of unlike molecules between benzaldehyde or ethyl acetoacetate and [C₂mim] [BF₄] binary mixtures, this leads in a decrease in compressibility of the mixtures, the observed effect is most likely. According to the volumetric studies, these observations are in good agreement. In addition, the Δk_s values across the mole fraction range of [C₂mim] [BF₄] are inversely proportional to the temperature. The $\Delta k_{s,\text{min}}$ values obtained are -4.6 $\times 10^{-8}$ Pa⁻¹ and -6.5 $\times 10^{-8}$ Pa⁻¹ which occurs at $x_i = 0.4059$ and 0.4053, for ([C₂mim] [BF₄] + benzaldehyde or ethyl acetoacetate) respectively, at all temperatures.

3.2.3. Intermolecular free length

Intermolecular forces (IMFs) are the forces which mediate interaction among the molecules, including forces of repulsion or attraction which act between molecules as well as other types of neighbouring particles, to give an example of ions or atoms. Intermolecular free length (L_f), Eq. (4) is determined from Jacobson empirical relation and this helps to interpret the nature of intermolecular interaction [36].

$$L_f = k_j \left(k_s\right)^{1/2}$$
 (4)

In the equation above, Jacobson's constant temperature dependent $(93.875 + 0.375 \text{ T}) \cdot 10^{-8}$ is denoted by k_i and k_s denote the isentropic compressibilities. The intermolecular free length values for the calculated binary mixtures at different temperatures are given in Tables 3 and 4. Comparing the data of L_f for the pure [C₂mim] [BF₄] with those of benzaldehyde or ethyl acetoacetate, the values for the organic solvents are higher in comparison, but they are noticed to be inversely proportional to the concentration of $[C_2mim]$ [BF₄] in the two mixtures. These conditions clearly specify the occurrence of the molecular interactions amongst the constituents of the investigated mixtures. Furthermore, the intermolecular free length is directly proportional to the temperature. The length between the surfaces of the two molecules which guide to a decrease in the sound velocity is caused by the progressive increase in the L_f . By closely inspecting Figs. 12 and 13 as well as Tables 3 and 4, it can be seen that the L_f and sound velocity are connected in an inverse manner. Intermolecular free length was utilized as to determine the properties that exist in the binary mixtures which consist of attractive and repulsive forces, and a simple linear correlation with the mole fraction of the ionic liquid was observed.

3.2.4. Apparent molar isentropic compressibility

Eq. (5) below was utilized to determine the apparent molar isentropic compressibility (K_{ϕ}) values.

$$K_{\phi} = \left[\frac{1000(\rho_0 \ k_s - k_0 \ \rho)}{m \ \rho \rho_0}\right] + \left[\frac{Mk}{\rho}\right]$$
(5)

where ρ_0 and ρ indicates densities of the pure solvent and binary mixtures correspondingly; molar mass of solute and molality of the solution are denoted by M and m, respectively, k_s and k_0 represents the isentropic compressibilities of the solution and solvent correspondingly. The data for K_{ϕ} are also displayed in Table 6. It is observed that, if the solution is ideal, the K_{ϕ} of the solute is that of the pure component. The dissimilarities among these quantities contemplate the degree of molecular interactions such as solute-solvent and solute-solute interactions. Negative values in the system containing ethyl acetoacetate at low concentration of the ionic liquid were observed. This effect reflects that ethyl acetoacetate molecules are less compressible than in the high concentration of the ionic liquid. Hall et al and others [37,38], proposed the analysis of disagreement of lower values in regards of geometrical and structural compressibility. The geometrical compressibility is due to simultaneous compression of the molecules whereas structural compressibility is due from the breakdown of intermolecular bonds resulting in a decrease in the average intermolecular length. A slight change in K_{ϕ} of solute at all investigated temperatures against $(m)^{1/2}$ have been shown in Figs. 14 and 15.

3.2.5. Deviations in viscosity

Any deviation of physical properties of liquid mixtures, the dissimilarity among the viscosity of the ideal-mixture and viscosity of mixtures at the equivalent thermodynamic state (η^{id}) is explained as the deviation in viscosity ($\Delta \eta$). Eq. (6) below was used to determine the deviations in viscosity of liquid systems and results are displayed in Table 7.

$$\Delta \eta = \eta - \eta^{\rm id} \tag{6}$$

Densities (ρ), sound velocity (u), excess molar volume (V_m^E), isentropic compressibility (k_s), deviation in isentropic compressibility (Δk_s), and intermolecular free length (L_f), of [C_2 mim] [BF₄] + ethyl acetoacetate binary systems at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K and at p = 0.1 MPa.

<i>x</i> ₁	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	$u/m \cdot s^{-1}$	$V_m^E/cm^3 \cdot mol^{-1}$	$10^8 \cdot k_s / \mathrm{Pa}^{-1}$	$10^8 \cdot \Delta k_s / \mathrm{Pa}^{-1}$	$L_f/(10^{-7} \text{ m})$
293.15 K						
0	1.0283	1350.9	0	53.3	0	1.49
0.0167	1.0353	1360.1	-0.2245	52.2	-0.67	1.47
0.0455	1.0464	1373.1	-0.5028	50.7	-1.50	1.45
0.0885	1.0618	1390.2	-0.7814	48.7	-2.40	1.42
0.1056	1.0680	1396.8	-0.9108	48.0	-2.73	1.41
0.2055	1.1007	1432.9	-1.3241	44.2	-4.04	1.36
0.3057	1.1306	1467.3	-1.5349	41.1	-4.76	1.31
0.4053	1.1579	1499.5	-1.5955	38.4	-5.01	1.26
0.5053	1.1832	1529.7	-1.5319	36.1	-4.87	1.22
0.6054	1.2066	1557.3	-1.3649	34.2	-4.37	1.19
0.7055	1.2284	1581.9	-1.1112	32.5	-3.58	1.16
0.8058	1.2487	1604.1	-0.7843	31.1	-2.54	1.14
0.9053	1.2677	1623.6	-0.4137	29.9	-1.32	1.11
1 200 15 V	1.2844	1034.0	0	28.9	0	1.10
230.13 K	1 0231	1332.1	0	55 1	0	1 53
0 0167	1.0201	1341.6	-0.2328	53.0	-0.72	1.55
0.0455	1.0302	1354.8	-0.5210	52.3	-0.72	1.51
0.0885	1.0569	1372.3	-0.8097	50.2	-2.57	1.15
0.1056	1.0631	1379.0	-0.9429	49.5	-2.92	1.10
0.2055	1.0960	1416.1	-1.3697	45.5	-4.31	1.39
0.3057	1.1260	1451.3	-1.5876	42.2	-5.08	1.34
0.4053	1.1535	1484.3	-1.6509	39.3	-5.34	1.29
0.5053	1.1790	1515.3	-1.5859	36.9	-5.19	1.25
0.6054	1.2025	1543.6	-1.4128	34.9	-4.66	1.21
0.7055	1.2244	1568.9	-1.1507	33.2	-3.81	1.18
0.8058	1.2448	1591.7	-0.8123	31.7	-2.71	1.16
0.9053	1.2638	1611.4	-0.4279	30.5	-1.39	1.13
1	1.2806	1628.6	0	29.4	0	1.12
303.15 K						
0	1.0179	1313.1	0	57.0	0	1.57
0.0167	1.0250	1322.8	-0.2419	55.8	-0.78	1.55
0.0455	1.0364	1336.3	-0.5403	54.0	-1.72	1.53
0.0885	1.0519	1354.2	-0.8398	51.8	-2.75	1.49
0.1056	1.0582	1361.1	-0.9764	51.0	-3.12	1.48
0.2055	1.0913	1398.9	-1.4180	46.8	-4.61	1.42
0.3057	1.1215	1435.1	-1.6431	43.3	-5.42	1.37
0.4053	1.1492	1468.9	-1./081	40.3	-5.70	1.32
0.5053	1.1/48	1500.8	-1.6399	37.8	-5.53	1.28
0.0054	1.1984	1529.8	-1.4605	35.7	-4.97	1.24
0.7055	1.2204	1550.0	-0.8409	33.9	-4.00	1.21
0.9053	1 2599	1599.4	-0.4429	31.0	-1.49	1.10
1	1.2768	1610.3	0	30.0	0	1.14
308.15 K			-		-	
0	1.0127	1294.1	0	59.0	0	1.61
0.0167	1.0199	1304.1	-0.2512	57.7	-0.83	1.59
0.0455	1.0313	1317.9	-0.5606	55.8	-1.84	1.56
0.0885	1.0470	1336.2	-0.8708	53.5	-2.94	1.53
0.1056	1.0533	1343.2	-1.0120	52.6	-3.34	1.52
0.2055	1.0866	1381.9	-1.4684	48.2	-4.92	1.45
0.3057	1.1171	1418.9	-1.7008	44.5	-5.79	1.40
0.4053	1.1448	1453.7	-1.7678	41.3	-6.09	1.35
0.5053	1.1706	1486.3	-1.6971	38.7	-5.90	1.30
0.6054	1.1943	1516.1	-1.5112	36.4	-5.30	1.26
0.7055	1.2164	1542.7	-1.2317	34.5	-4.33	1.23
0.8058	1.2369	1500.5	-0.8707	32.9	-3.07	1.20
0.9053	1.2501	1587.5	-0.4587	31.6	-1.59	1.18
1 919 15 V	1.2/30	1005.2	0	30.5	0	1.10
0	1 0074	1275 3	0	61.0	0	1.65
0 0167	1.0074	1285 5	-0.2611	59.6	-0.89	1.03
0.0455	1.0263	1200.0	-0.5816	57.7	-1 97	1.03
0.0885	1.0421	1318 2	-0.9035	55.2	-3.15	1.50
0.1056	1.0484	1325 4	-1.0485	54.3	-3.57	1.57
0.2055	1.0819	1365.1	-1.5202	49.6	-5.26	1.49
0.3057	1.1126	1402.9	-1.7607	45.7	-6.19	1.43
0.4053	1.1405	1438.5	-1.8298	42.4	-6.50	1.38
0.5053	1.1664	1472.0	-1.7565	39.6	-6.30	1.33
0.6054	1.1903	1502.6	-1.5640	37.2	-5.65	1.29
0.7055	1.2124	1529.8	-1.2740	35.2	-4.62	1.25
0.8058	1.2330	1554.1	-0.9007	33.6	-3.27	1.22

(continued on next page)

В.	Kabane	et	al
----	--------	----	----

Table 4 (continued)

<i>x</i> ₁	$\rho/g \cdot cm^{-3}$	$u/m \cdot s^{-1}$	$V_m^E/cm^3 \cdot mol^{-1}$	$10^8 \cdot k_s / \mathrm{Pa}^{-1}$	$10^8 \cdot \Delta k_s / \mathrm{Pa}^{-1}$	$L_f/(10^{-7} \text{ m})$
0.9053	1.2522	1575.6	-0.4745	32.2	-1.70	1.20
1	1.2692	1587.1	0	31.0	0	1.18

The standard uncertainties u are u (T) = ± 0.02 K, u (p) = ± 0.04 MPa, u (ρ) = $\pm 2 \times 10^{-5}$ g.cm⁻³, u (u) = ± 0.8 m s⁻¹, u (V_m^E) = $\pm 6.00 \times 10^{-3}$ cm³ mol⁻¹, u (Δk_s) = $\pm 0.7 \times 10^{-8}$ Pa⁻¹ and u (k_s) = $\pm 2 \times 10^{-8}$ Pa⁻¹.

Fig. 3. Density of the binary mixtures of { $[C_2mim][BF_4](x_1) + benzaldehyde(x_2)$ } at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Fig. 4. Density of the binary mixtures of $\{[C_2mim][BF_4](x_1) + \text{ethyl acetoa-cetate}(x_2)\}$ at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Fig. 5. Speed of sound (u) of IL against temperature ranges T = (293.15, 298.15, 303.15, 308.15 and 313.15) K compared to the literature values.

As much as there are many methods to determine η^{id} , the most commonly utilized procedure by the research groups is that determined on a mole fraction basis [39], Eq. (7).

$$\eta^{\rm id} = x_1 \eta_1^0 + x_2 \eta_2^0 \tag{7}$$

In the equation above, η_1^0 represent viscosity of pure liquid *i*, at the mixture pressure and temperature. The deviation in viscosities values

Fig. 6. Speed of sound (*u*) graph for the binary mixtures of {[C_2mim][BF_4] (x_1) + benzaldehyde (x_2) } at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Fig. 7. Speed of sound (*u*) graph for the binary mixtures of $\{[C_2mim][BF_4](x_1) + ethyl acetoacetate (x_2)\}$ at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Fig. 8. Excess molar volume (V_m^E) of the miscible prepared mixtures of $\{[C_2mim][BF_4](x_1) + benzaldehyde(x_2)\}$ as a function of mole fraction of ionic liquid at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K. The plot was fitted by using the Redlich-Kister equation.

Fig. 9. Excess molar volume (V_m^E) of the miscible prepared mixtures of $\{[C_2mim][BF_4](x_1) + \text{ethyl acetoacetate } (x_2)\}$ as a function of mole fraction of ionic liquid, at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K. The plot was fitted by using the Redlich-Kister equation.

Fig. 10. Deviation in isentropic compressibility Δk_s , of the binary mixtures of {[C₂mim] [BF₄] (x_1) + benzaldehyde (x_2)} expressed in mole fraction of [C₂mim] [BF₄] at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K. The plot was fitted by using the Redlich-Kister equation.

Fig. 11. Deviation in isentropic compressibility Δk_s , of the binary mixtures of {[C₂mim] [BF₄] (x_1) + ethyl acetoacetate (x_2)} expressed in mole fraction of [C₂mim] [BF₄] at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K. The plot was fitted by using the Redlich-Kister equation.

against mole fraction x_1 are plotted in Figs. 16 and 17 for both of the studied binary mixtures for all experimental temperatures. When benzaldehyde or ethyl acetoacetate is mixed with the investigated [C₂mim] [BF₄] ionic liquid, a sudden decrease in viscosities of the binary mixtures was observed, mainly at low temperatures. In the dilute solutions containing organic compounds in the IL, the decrease is specifically strong.

Fig. 12. Intermolecular free length L_f , of the binary mixtures of ([C₂mim][BF₄] + benzaldehyde) as a function of mole fraction of IL (x_1) at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Fig. 13. Intermolecular free length L_f , of the binary mixtures of ([C₂mim][BF₄] + ethyl acetoacetate) given as a function of mole fraction of IL (x_1) at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Between $[C_2mim]$ and tetrafluoroborate anions, the strong coulomb interactions is weakened when mixed with benzaldehyde or ethyl acetoacetate, which results in a greater mobility of the ions leading to a reduced viscosity of the binary mixtures. Negative deviation in viscosities is observed in all cases [39].

3.3. Correlation of the calculated properties

The values for the calculated thermophysical properties (intermolecular free length, deviation in isentropic compressibility, deviation in viscosity and excess molar volumes) for the binary mixtures of [C₂mim] [BF₄] with benzaldehyde or ethyl acetoacetate are presented in Tables 3, 4, and 7. Redlich-Kister polynomial Eq. (8) given below was used to fit these properties by the technique of non-linear least squares.

$$X = x_1 x_2 \sum_{i=1}^{k} A_i \left(1 - 2x_1\right)^{i-1}$$
(8)

From Eq. (8) above, *x* represents the excess molar volume or deviation in isentropic compressibility. The values of the fitting parameters A_i was determined by the least square method. Standard deviation and the results are given in Table 8. For the correlation, the given Eq. (9) below was utilized to calculate the standard deviation (σ).

Viscosity $\eta(mPa\cdot s)$ for the binary mixtures of ([C_2mim] [BF_4] + ethyl acetoacetate or benzaldehyde) at T = (293.15–313.15) K and p = 0.1 MPa, as a function of mole fraction.

x_1	η (mPa · s)				
	T = 293.15	T = 298.15	T = 303.15	T = 308.15	T = 313.15
	K	K	K	К	K
[C ₂ mim]	[BF ₄] + Ethyl	acetoacetate			
0	1.82	1.65	1.51	1.39	1.29
0.0167	1.99	1.81	1.65	1.51	1.39
0.0455	2.29	2.07	1.88	1.72	1.58
0.0885	2.77	2.49	2.25	2.05	1.88
0.1056	2.99	2.68	2.42	2.20	2.01
0.2055	4.43	3.93	3.52	3.18	2.88
0.3057	6.33	5.56	4.93	4.41	3.97
0.4053	8.78	7.66	6.73	5.97	5.33
0.5053	11.85	10.30	8.99	7.91	7.01
0.6054	15.75	13.63	11.80	10.31	9.08
0.7055	20.86	17.82	15.29	13.27	11.61
0.8058	26.98	23.01	19.53	16.86	14.64
0.9053	34.83	29.69	25.55	21.34	18.38
1	49.32	41.01	34.71	28.80	22.63
[C ₂ mim]	[BF ₄] + Benza	ldehyde			
0	1.57	1.45	1.34	1.25	1.16
0.0182	1.77	1.62	1.49	1.38	1.29
0.0416	2.01	1.84	1.68	1.56	1.45
0.0803	2.47	2.24	2.05	1.88	1.73
0.1062	2.82	2.55	2.32	2.13	1.96
0.2053	4.49	3.99	3.58	3.24	2.95
0.3051	6.84	6.01	5.31	4.75	4.27
0.4059	10.01	8.70	7.61	6.72	5.98
0.5056	14.02	12.07	10.45	9.12	8.03
0.6051	19.00	16.17	13.84	11.98	10.47
0.7056	24.94	20.7	17.83	15.32	13.28
0.8054	30.99	25.68	22.18	18.92	16.33
0.9060	37.98	31.68	27.75	23.46	19.60
1	49.32	41.01	34.71	28.80	22.63

The standard uncertainties u are u (T) = \pm 0.02 K, u (p) = \pm 0.04 MPa and u (η) = 2.00 %.

Table 6

Apparent molar isentropic compressibility K_{ϕ} (m³ · mol⁻¹·Pa⁻¹) for the binary mixtures of ([C₂mim] [BF₄] + ethyl acetoacetate or benzaldehyde) at T = (293.15–313.15) K as a function of molality, m (mol Kg⁻¹).

m	$K_{\phi} (\mathrm{m}^3 \cdot \mathrm{mol}^{-1} \cdot \mathrm{Pa}^{-1})$	$\cdot Pa^{-1}$)			
	T = 293.15 K	T =	T =	T =	T =
		298.15 K	303.15 K	308.15 K	313.15 K
[C ₂ mim] []	BF ₄] + Benzaldehyd	le			
0.1746	1.15	0.75	0.92	1.10	0.72
0.4088	1.82	1.75	1.92	1.86	1.56
0.8231	2.45	2.37	2.42	2.35	2.16
1.1201	2.59	2.58	2.57	2.57	2.48
2.4348	3.14	3.12	3.15	3.20	3.15
4.1370	3.48	3.48	3.53	3.55	3.56
6.4389	3.71	3.72	3.78	3.82	3.84
9.6378	3.89	3.94	3.99	4.04	4.08
14.4395	4.04	4.09	4.17	4.24	4.28
22.5817	4.17	4.24	4.31	4.38	4.45
39.0043	4.27	4.36	4.43	4.52	4.60
90.8327	4.38	4.46	4.55	4.64	4.72
[C ₂ mim] []	$BF_4] + Ethyl acetoa$	cetate			
0.1306	-0.84	-1.40	-1.18	-1.71	-2.27
0.3661	0.35	0.01	-0.32	-0.64	-0.68
0.7459	1.08	0.88	0.69	0.51	0.33
0.9069	1.30	1.17	0.94	0.71	0.59
1.9873	2.07	2.01	1.89	1.78	1.68
3.3837	2.62	2.58	2.50	2.44	2.38
5.2367	3.00	2.97	2.95	2.90	2.89
7.8502	3.32	3.32	3.34	3.33	3.33
11.7897	3.62	3.64	3.67	3.68	3.70
18.4088	3.86	3.92	3.97	3.99	4.04
31.8798	4.09	4.15	4.21	4.27	4.35
73.4829	4.29	4.37	4.44	4.53	4.62

Fig. 14. Apparent molar isentropic compressibility K_{ϕ} , of binary mixtures ([C₂mim] [BF₄] + benzaldehyde) plotted against (m)^{1/2} at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Fig. 15. Apparent molar isentropic compressibility K_{ϕ} , of binary mixtures ([C₂mim] [BF₄] + ethyl acetoacetate) plotted against (m)^{1/2} at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Table 7

Deviation in viscosity $\Delta\eta$ (mPa \cdot s) for the binary mixtures of ([C₂mim] [BF₄] + ethyl acetoacetate or benzaldehyde) at T = (293.15–313.15) K and p = 0.1 MPa, as a function of mole fraction.

x_1	$\Delta \eta \text{ (mPa} \cdot \text{s)}$				
	T = 293.15	T = 298.15	T = 303.15	T = 308.15	T = 313.15
	K	К	К	К	K
[Comim]	[BF₄] + Ethyl a	retoacetate			<u> </u>
0	0	0	0	0	0
0.0167	-0.6175	-0.5028	-0.4238	-0.3414	-0.2515
0.0455	-1.6860	-1.3724	-1.1438	-0.9230	-0.6794
0.0885	-3.2528	-2.6474	-2.2011	-1.7693	-1.2992
0.1056	-3.8456	-3.1291	-2.5996	-2.0877	-1.5311
0.2055	-7.1485	-5.8074	-4.8138	-3.8497	-2.7931
0.3057	- 10.011	-8.1258	-6.7288	-5.3601	-3.8380
0.4053	-12.285	-9.9458	-8.2368	-6.5306	-4.6025
0.5053	-13.968	-11.236	-9.3038	-7.3375	-5.0589
0.6054	-14.822	-11.849	-9.8165	-7.6780	-5.1284
0.7055	-14.468	-11.597	-9.6423	-7.4633	-4.7367
0.8058	-13.113	-10.355	-8.7298	-6.6183	-3.8414
0.9053	-9.9928	-7.5938	-6.0174	-4.8705	-2.2278
1	0	0	0	0	0
[C ₂ mim]	[BF ₄] + Benzal	dehyde			
0	0	0	0	0	0
0.0182	-0.6774	-0.5513	-0.4548	-0.3627	-0.2639
0.0416	-1.5504	-1.2577	-1.0417	-0.8314	-0.6062
0.0803	-2.9406	-2.3894	-1.9757	-1.5786	-1.1499
0.1062	-3.8241	-3.1034	-2.5648	-2.0472	-1.4857
0.2053	-6.8924	-5.5876	-4.6123	-3.6649	-2.6222
0.3051	-9.3047	-7.5060	-6.2057	-4.9029	-3.4365
0.4059	-10.9417	-8.8067	-7.2756	-5.7140	-3.8988
0.5056	-11.7001	-9.3809	-7.7649	-6.0536	-3.9797
0.6051	-11.4669	-9.2154	-7.6915	-5.9346	-3.6787
0.7056	-10.3215	-8.6617	-7.0557	-5.3687	-3.0283
0.8054	-9.0390	-7.6318	-6.0367	-4.5191	-2.1237
0.9060	-6.8518	-5.6113	-3.8233	-2.7498	-1.0121
1	0	0	0	0	0

The standard uncertainties u are u (T) = \pm 0.02 K, u (p) = \pm 0.04 MPa and u (η) = 2.00 %.

Fig. 16. Deviations in viscosity, $\Delta\eta$, of the binary mixtures of ([C₂mim][BF₄] + benzaldehyde) given as a function of mole fraction of IL (x_1) at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Fig. 17. Deviations in viscosity, $\Delta \eta$, of the binary mixtures of ([C₂mim][BF₄] + ethyl acetoacetate) given as a function of mole fraction of IL (x_1) at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K.

Standard deviations σ , and coefficients A_{i_2} achieved for the binary solution ([C₂mim] [BF₄] + Benzaldehyde or ethyl acetoacetate) at pressure p = 0.1 MPa and different temperatures for Redlich-Kister Eq. (8).

	T/K	A ₀	A_1	A_2	A ₃	σ				
[Emim] [BF ₄] + Benzaldehyde										
V ^E _m /cm ³ .mol	293.15	-5.524	-2.134	-1.985	-1.943	0.019				
	298.15	-5.635	-2.174	-2.032	-2.007	0.020				
	303.15	-5.747	-2.217	-2.090	-2.069	0.020				
	308.15	-5.866	-2.265	-2.153	-2.13	0.021				
	313.15	-5.988	-2.322	-2.208	-2.187	0.022				
10^8 . $\Delta k_s/Pa^{-1}$	293.15	-13.614	-5.287	-4.686	-4.775	0.052				
	298.15	-14.454	-5.604	-4.909	-5.277	0.054				
	303.15	-15.345	-5.952	-5.256	-5.556	0.060				
	308.15	-16.297	-6.182	-5.724	-6.570	0.073				
	313.15	-17.346	-6.720	-5.752	-6.273	0.075				
$L_{f}/(10^{-7} m)$	293.15	3.952	-2.058	13.895	10.191	0.666				
	298.15	4.025	-2.083	14.197	10.44	0.682				
	303.15	4.1	-2.141	14.574	10.735	0.699				
	308.15	4.189	-2.205	14.876	11.001	0.713				
	313.15	4.259	-2.274	15.119	11.48	0.73				
$\Delta \eta \text{ (mPa} \cdot \text{s)}$	93.15	-2.362	-2.185	-2.098	-2.014	0.026				
	298.15	-2.383	-2.218	-2.137	-2.109	0.028				
	303.15	-2.402	-2.239	-2.209	-2.157	0.030				
	308.15	-2.414	-2.279	-2.225	-2.195	0.031				
	313.15	-2.435	-2.384	-2.301	-2.209	0.034				
[Emim] [BF ₄] + Ethyl acetoacetate										
V ^E _m /cm ³ .mol	293.15	-6.099	-2.055	-1.671	-1.762	0.022				
	298.15	-6.312	-2.11	-1.731	-1.854	0.023				
	303.15	-6.527	-2.188	-1.813	-1.923	0.024				
	308.15	-6.754	-2.263	-1.894	-2.007	0.025				
	313.15	-6.989	-2.343	-1.97	-2.101	0.027				

Table 8 (continued)									
	T/K	A ₀	A ₁	A ₂	A ₃	σ			
	293.15	-19.369	-5.48	-4.272	-5.591	0.064			
	298.15	-20.648	-5.81	-4.559	-6.253	0.069			
10^{8} . $\Delta K_{s}/Pa^{-1}$	303.15	-22.012	-6.256	-4.954	-6.621	0.075			
	308.15	-23.491	-6.745	-5.325	-7.075	0.081			
	313.15	-25.069	-7.277	-5.764	-7.528	0.088			
	293.15	4.154	-1.871	14.495	11.1	0.716			
	298.15	4.239	-1.899	14.836	11.477	0.734			
$L_{f}/(10^{-7} m)$	303.15	4.341	-1.959	15.152	11.769	0.753			
	308.15	4.415	-1.966	15.513	12.073	0.770			
	313.15	4.512	-2.003	15.850	12.493	0.788			
$\Delta \eta$ (mPa · s)	293.15	-2.286	-2.238	-2.097	-2.018	0.025			
	298.15	-2.426	-2.385	-2.179	-2.143	0.027			
	303.15	-2.484	-2.430	-2.382	-2.274	0.029			
	308.15	-2 507	-2.472	-2.396	-2.297	0.032			
	313.15	-2.902	-2.598	-2.441	-2.371	0.035			

$$\sigma(X) = \sum_{i=1}^{n} \left[\frac{X_{expt} - X_{calc}}{(N-k)} \right]^{1/2}$$
(9)

The number of experimental points is indicated by N and k denote the coefficient utilized in the Redlich-Kister equation. For all of the derived properties, the standard deviation showed low values at all studied temperatures. Based on these data, it can be seen that there is a good correlation with the experimental results.

4. Conclusions

In this study, new data for thermophysical properties measurements, which includes density, viscosity and speed of sound, have been determined as a function of temperature for [C₂mim] [BF₄], benzaldehyde, ethyl acetoacetate and their binary mixtures, and have been reported over the entire range of mole fractions ($x_i = 0$ to 1). From the experimentally found data of the measured speed of sound and density, the important and essential excess parameters such as excess molar volumes, isentropic compressibilities, deviation in isentropic compressibilities, apparent molar isentropic compressibility, and deviation in viscosity, intermolecular free length and apparent molar isentropic compressibility have been derived. Excess molar volume and deviation in isentropic compressibility were fitted with the use of the Redlich-Kister polynomial equation in order to test the correlation of derived parameters, and a great correlation for both mixtures was achieved. For the derived properties (excess molar volumes and deviation in isentropic compressibilities), negative differences were noticed for the investigated mixtures at all given temperatures, this effect suggests strong interactions that occurs in the binary mixtures of [C₂mim] [BF₄] with benzaldehyde or ethyl acetoacetate molecules. Large negative values of derived deviation in isentropic compressibilities and excess molar volumes have been observed in the binary mixtures containing ethyl acetoacetate, as well as ion dipole interactions as compared to the benzaldehyde mixtures. Negative deviations on viscosity across the temperatures and whole range of compositions were observed, and they are increasing, i.e. becomes less negative with increasing temperatures. Intermolecular free length has been discussed as well. The results obtained in this work are useful as they give insight into the possible molecular interactions that exists between the imidazolium based ionic liquids with benzaldehyde or ethyl acetoacetate mixtures.

Declarations

Author contribution statement

Gan Redhi: Conceived and designed the experiments; Wrote the paper.

Bakusele Kabane: Performed the experiments; Analyzed and interpreted the data.

Rajasekhar Chokkareddy: Contributed reagents, materials, analysis tools or data.

Funding statement

This work was supported by the Durban University of Technology and National Research Foundation (NRF) South Africa (Grant UID: 106653).

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

- M.A. Martins, C.M. Neves, K.A. Kurnia, P.J. Carvalho, M.A. Rocha, L.M. Santos, M.G. Freire, Densities, viscosities and derived thermophysical properties of watersaturated imidazolium-based ionic liquids, Fluid Phase Equilib. 407 (2016) 188–196.
- [2] B. Kirchner, Topics in Current Chemistry. Ionic Liquids, Springer-Verlag, New York, 2009.
- [3] J.D. Holbrey, R.D. Rogers, R.A. Mantz, P.C. Trulove, V.A. Cocalia, A.E. Visser, T. Welton, Physicochemical Properties. Ionic Liquids in Synthesis 2, Wiley-VCH, Britain, 2008.
- [4] M. Smiglak, W.M. Reichert, J.D. Holbrey, J.S. Wilkes, L. Sun, J.S. Thrasher, R.D. Rogers, Combustible ionic liquids by design: is laboratory safety another ionic liquid myth, Chem. Commun. 24 (2006) 2554–2556.
- [5] D. Freudenmann, S. Wolf, M. Wolff, C. Feldmann, Ionic liquids: new perspectives for inorganic synthesis, Angew. Chem. Int. Ed. 47 (2011) 11050–11060.
- [6] E. Vercher, F.J. Llopis, V. González-Alfaro, P.J. Miguel, V. Orchillés, A. Martínez-Andreu, Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures, J. Chem. Thermodyn. 90 (2015) 174–184.
- [7] R.F. Frade, C.A. Afonso, Impact of ionic liquids in environment and humans: an overview, Hum. Exp. Toxicol. 29 (2010) 1038–1054.
- [8] M.C. Bubalo, K. Radošević, I.R. Redovniković, J. Halambek, V.G. Srček, A brief overview of the potential environmental hazards of ionic liquids, Ecotoxicol. Environ. Saf. 99 (2014) 1–12.
- [9] C.M. Neves, M.L. Batista, A.F.M. Cláudio, L.M. Santos, I.M. Marrucho, M.G. Freire, J.A. Coutinho, Thermophysical properties and water saturation of [PF6]-based ionic liquids, J. Chem. Eng. Data 55 (2010) 5065–5073.
- [10] C.M. Neves, P.J. Carvalho, M.G. Freire, J.A. Coutinho, Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids, J. Chem. Thermodyn. 43 (2011) 948–957.
- [11] P.J. Carvalho, T. Regueira, L.M. Santos, J. Fernandez, J.A. Coutinho, Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1butyl-3-methylimidazolium tricyanomethane at atmospheric pressure, J. Chem. Eng. Data 55 (2009) 645–652.
- [12] F.R. Zhang, W. Huang, S.M. Chen, L.D. Sun, H. Liu, Y. Li, T.S. Chu, Genomewide association study of leprosy, N. Engl. J. Med. 361 (2009) 2609–2618.
- [13] R.L. Gardas, J.A. Coutinho, A group contribution method for viscosity estimation of ionic liquids, Fluid Phase Equilib. 266 (2008) 195–201.
- [14] M.A. Rocha, C.M. Neves, M.G. Freire, O. Russina, A. Triolo, J.A. Coutinho, L.M. Santos, Alkylimidazolium based ionic liquids: impact of cation symmetry on their nanoscale structural organization, J. Phys. Chem. 117 (2013) 10889–10897.
- [15] C.M. Neves, K.A. Kurnia, J.A. Coutinho, I.M. Marrucho, J.N.C. Lopes, M.G. Freire, L.P.N. Rebelo, Systematic study of the thermophysical properties of imidazoliumbased ionic liquids with cyano-functionalized anions, J. Phys. Chem. 117 (2013) 10271–10283.
- [16] H. Rodríguez, J.F. Brennecke, Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid, J. Chem. Eng. Data 51 (2006) 2145–2155.

- [17] P. Wasserscheid, W. Keim, Ionic liquids—new solutions for transition metal catalysis, Angew. Chem. Int. Ed. 39 (2000) 3772–3789.
- [18] J.S. Wilkes, Properties of ionic liquid solvents for catalysis, J. Mol. Catal. 214 (2004) 11–17.
- [19] V.R. Koch, L.A. Dominey, C. Nanjundiah, M.J. Ondrechen, The intrinsic anodic stability of several anions comprising solvent-free ionic liquids, J. Electrochem. Soc. 143 (1996) 798–803.
- [20] H. Every, A.G. Bishop, M. Forsyth, D.R. MacFarlane, Ion diffusion in molten salt mixtures, Electrochim. Acta 45 (2000) 1279–1284.
- [21] M. Doyle, S.K. Choi, G. Proulx, High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites, J. Electrochem. Soc. 147 (2000) 34–37.
- [22] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO₂ capture by a task-specific ionic liquid, J. Am. Chem. Soc. 124 (2002) 926–927.
- [23] V.S. Rao, T.V. Krishna, T.M. Mohan, P.M. Rao, Partial molar volumes and partial molar isentropic compressibilities of 1-butyl-3-methylimidazolium tetrafluoroborate + N-methylaniline binary mixture at temperatures T = (293.15 to 323.15) K and atmospheric pressure, J. Mol. Liq. 220 (2016) 813–822.
- [24] R. Yanada, Y. Takemoto, OsO4-catalyzed dihydroxylation of olefins in ionic liquid [emim] BF₄: a recoverable and reusable osmium, Tetrahedron Lett. 43 (2002) 6849–6851.
- [25] A. Latała, M. Nędzi, P. Stepnowski, Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms), Green Chem. 11 (2009) 580–588.
- [26] G. Zhan, Y. Hong, F. Lu, A.R. Ibrahim, M. Du, D. Sun, J. Li, Kinetics of liquid phase oxidation of benzyl alcohol with hydrogen peroxide over bio-reduced Au/TS-1 catalysts, J. Mol. Catal. A Chem. 366 (2013) 215–221.
- [27] Y.A. Sanmamed, D. González-Salgado, J. Troncoso, C.A. Cerdeirina, L. Romani, Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry, Fluid Phase Equilib. 252 (2007) 96–102.
- [28] M. Gowrisankar, P. Venkateswarlu, K. Sivakumar, S. Sivarambabu, Ultrasonic studies on molecular interactions in binary mixtures of N-methyl aniline with methyl isobutylketone, + 3-pentanone, and + cycloalkanones at 303.15 K, J. Solut. Chem. 42 (2013) 916–935.
- [29] C. Han, S. Xia, P. Ma, F. Zeng, Densities of ionic liquid [BMIM][BF4] + ethanol,+ benzene, and + acetonitrile at different temperature and pressure, J. Chem. Eng. Data 54 (2009) 2971–2977.
- [30] S. Singh, I. Bahadur, G.G. Redhi, E.E. Ebenso, D. Ramjugernath, Influence of the alkyl group on thermophysical properties of carboxylic acids in 1-butyl-3-methylimidazolium thiocyanate ionic liquid at various temperatures, J. Chem. Thermodyn. 89 (2015) 104–111.
- [31] Z.P. McAtee, M.P. Heitz, Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system, J. Chem. Thermodyn. 93 (2016) 34–44.
- [32] B. Kabane, R. Chokkareddy, N.K. Bhajanthri, G.G. Redhi, Intermolecular interactions in binary mixtures of phosphonium based ionic liquid and propanoic acid, Indian J. Chem., Sect. A 57 (2018) 753–760.
- [33] V.S. Rao, T.V. Krishna, T.M. Mohan, P.M. Rao, Investigations of molecular interactions in binary mixtures of the ionic liquid [emim] [BF 4] and Nmethylaniline at temperatures from 293.15 to 323.15 K, J. Solut. Chem. 46 (2017) 281–304.
- [34] T.J. Fortin, A. Laesecke, M. Freund, S. Outcalt, Advanced calibration, adjustment, and operation of a density and sound speed analyzer, J. Chem. Thermodyn. 57 (2013) 276–285.
- [35] I. Bahadur, N. Deenadayalu, P. Naidoo, D. Ramjugernath, Volumetric, acoustic and refractive index for the binary system (butyric acid + hexanoic acid) at different temperatures, J. Solut. Chem. 43 (2014) 787–803.
- [36] B. Jacobson, Ultrasonic velocity in liquids and liquid mixtures, J. Chem. Phys. 20 (1952) 927–928.
- [37] L. Hall, The origin of ultrasonic absorption in water, Phys. Rev. 73 (1948) 775.
- [38] S.K. Mehta, R.K. Chauhan, Ultrasonic velocity and apparent isentropic compressibilities in mixtures of nonelectrolytes, J. Solut. Chem. 26 (1997) 295–308.
- [39] Y. Tian, X. Wang, J. Wang, Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + molecular solvent binary mixtures, J. Chem. Eng. Data 53 (2008) 2056–2059.