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Abstract. Trained pathologists base colorectal cancer iden-
tification on the visual interpretation of microscope images. 
However, image labeling is not always straightforward and this 
repetitive task is prone to mistakes due to human distraction. 
Significant efforts are underway to develop informative tools 
to assist pathologists and decrease the burden and frequency 
of errors. The present study proposes a deep learning approach 
to recognize four different stages of cancerous tissue develop-
ment, including normal mucosa, early preneoplastic lesion, 
adenoma and cancer. A dataset of human colon tissue images 
collected and labeled over a 10‑year period by a team of 
pathologists was partitioned into three sets. These were used to 
train, validate and test the neural network, comprising several 
convolutional and a few linear layers. The approach used in the 
present study is ‘direct’; it labels raw images and bypasses the 
segmentation step. An overall accuracy of >95% was achieved, 
with the majority of mislabeling referring to a near category. 
Tests on an external dataset with a different resolution yielded 
accuracies >80%. The present study demonstrated that the 
neural network, when properly trained, can provide fast, accu-
rate and reproducible labeling for colon cancer images, with 
the potential to significantly improve the quality and speed of 
medical diagnoses.

Introduction

Colorectal cancer (CRC) ranks among the three most common 
types of cancer in terms of both incidence and cancer‑asso-
ciated mortality in Western industrialized countries (1). Each 
year nearly 1.3 million new cases of CRC are reported, and 

~700,000 patients succumb to the disease worldwide (2). The 
lifetime risk of developing CRC may reach 6% of the population 
living in developed countries (3,4). CRC ranks highest in inci-
dence rates in Europe, second only to lung cancer, and it causes 
~204,000 deaths every year (5). The age‑specific incidence of 
CRC rises sharply after 35 years of age, with ~90% of cases 
occurring in persons >50 years of age (6). As in other developed 
areas, in Italy, the incidence rate of CRC ranks third highest 
for men (after prostate and lung cancer), and second for women 
(after breast cancer) (7). The burden of the disease, however, 
remains a serious concern in Italy as well as worldwide, due to 
the social impact, costs and rates of mortality (8). According 
to the theory by Vogelstein, CRC progresses through three 
precisely‑connected stages: Initiation, a process that modifies 
the molecular message of the normal cell; promotion, in which 
signal transduction cascades are altered; and progression, 
which involves phenotypically‑altered, transformed cells (9). 
The first morphological changes observed in the progression 
of CRC are represented by the formation of aberrant crypt 
foci (ACF). The most striking feature of the ACF is the shape 
of the gland lumen, which is considerably modified when 
compared with the normal mucosa, and strongly dependent 
on the histological structure (10). Furthermore, the phenotypic 
and genotypic characteristics of ACF are different from those 
of normal crypts. These characteristics were first described by 
Bird in mice exposed to azoxymethane, and were subsequently 
studied extensively in humans by Roncucci (11,12). Currently, 
it is impossible to identify the ACF via routine colonoscopy; 
however, in humans, the presence of ACF is identifiable via 
the use of high‑resolution chromoendoscopy with the aid of 
particular dyes, such as methylene blue or indigo carmine (13). 
A previous study reported that ACF occurs sporadically 
between 40 and 45 years of age, when predominantly 
single foci are observed (14). After 45 years, the number 
of ACF rapidly increases to reach the plateau phase at ~60 
years of age, and slowly decreases thereafter. Other studies 
have reported similar incidence rates of ACF in these age 
brackets (15,16). It is essential to identify and remove these 
early lesions for an adequate CRC prevention strategy (17). 
Furthermore, accurate tumor grading is necessary for patient 
survival and can be achieved most effectively in stained histo-
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pathological sections harvested via biopsy or during surgery. 
Medical databases are fundamental in the development of new 
techniques for early detection of neoplastic cells. They are, 
however, difficult to obtain, since the labeling of the images is 
often operator‑dependent and requires specialized skills. The 
considerable complexity and quantity of the structures present 
in the biological tissue represents a fascinating challenge for 
pathologists both in manual and automatic analyses of histo-
pathological slides. Although certain studies have presented 
a reasonable consensus among experienced pathologists and 
satisfactory results on their intra‑observer reliability, other 
studies have stated that even experienced pathologists often 
disagree on tissue classification. Therefore, the use of expert 
scores as a gold standard for histopathological examination 
could lead to inappropriate evaluations (18‑20). In addition, 
quantitative characterization of pathology imagery is impor-
tant not only for clinical applications but also for research 
applications. Recent studies have proven that the deep learning 
(DL) approach is superior for tasks of classification and 
segmentation on histological whole‑slide images, as compared 
with the previous image processing techniques (21‑23). As 
examples, DL models have been developed to detect metastatic 
breast cancer (24), to identify mitotically active cells (25), 
to identify basal cell carcinoma (26) and to grade brain 
gliomas (27) using hematoxylin and eosin (H&E)‑stained 
images. Histopathological sections of colon tissues, stained 
with H&E representative of the adenoma‑carcinoma sequence 
are presented in Fig. 1.

DL techniques for image recognition have proven extremely 
effective in a broad number of applications, often surpassing 
human performances. The general idea is that a sufficiently 
flexible software network can be trained, i.e., values can be 
assigned to its parameters, in order to recognize images by 
examining a broad set of labeled images. Once trained, the 
network can be used on unlabeled images to assign the correct 
corresponding label.

Although the field is still rapidly evolving, some general 
features of the network structure required to perform a given 
task are sufficiently understood, meaning that the primary 
obstacle for new applications is the lack of labeled training sets.

Several applications of DL techniques to classify colorectal 
cells have been published. A summary of the approaches used 
is reported in the GLAS challenge contest summary (28). By 
the very nature of the challenge, these methods are based on 
segmentation, i.e., individual pixel labeling (29), which is an 
effective and sensible approach from a computational perspec-
tive, but requires significant investment in preparing a training 
set where each individual pixels is assigned by human inspec-
tion to a given part of the cell or the background. In addition, it 
is not clear how the trained networks would perform on images 
obtained with different instruments and resolutions. As the 
quality of colorectal tissue images is instrument‑dependent 
and tends to improve over time as new microscopes replace 
older models, this last point is particularly relevant.

The aim of the present study was to use a DL algorithm to 
classify images of colorectal tissues that bypasses segmenta-
tion and labels the raw image directly. Thus, the method used 
in the present study did not rely on a segmented training set, 
but rather on the readily available labeled images, as routinely 
found in a pathologist report. Hence, the network created in 

the present study can be easily retrained whenever the quality 
of the images changes, with minimal human effort.

In addition, a more articulate classification was performed 
in the present study; instead of two labels (benign and malig-
nant), four categories were employed (normal, preneoplastic, 
adenoma and cancer) representing the disease progression. On 
the one hand, this implied more uncertainty in the labeling, as 
images for neighboring categories may appear similar and a 
trained pathologist would rely also on other information and/or 
a collection of several images to provide a diagnosis. On the 
other hand, the ability to recognize the different stages of 
cancer development will prove extremely valuable in providing 
more specific diagnoses and eventually early treatments.

In the present study highly accurate and reproducible 
results were obtained from biomedical image analysis (overall 
accuracy, >95%), with the potential to significantly improve 
both the quality and speed of medical diagnoses. The present 
study also states the performance level of the DL algorithm 
on the GLAS challenge images. Although no patent should 
be based on this work without explicit written consent from 
the authors, the algorithm used is not proprietary and other 
researchers are invited to share it for testing purposes.

Materials and methods

Patients and samples. The database used in the present study 
consisted of 393 images, divided into the 4 categories or labels: 
Normal mucosa (m), preneoplastic lesion (ACF) (p), adenoma 
(a) and colon cancer (k). All images were obtained from patients 
who underwent primary surgery or colonoscopy at the Modena 
University Hospital between 1998‑2008. Normal mucosa 
images were obtained from 44 patients, preneoplastic lesions 
(ACF) from 45 patients, adenoma images from 76 patients, and 
colon cancer tissue images from 58 patients diagnosed with 
CRC. The present study was granted ethical approval by the 
local operative ethics committee of the Policlinico Hospital 
of Modena. Written informed consent was not required, since 
the present study was retrospective in design and the amount 
of specimens obtained was extensive. Tissue images were 
stained with haematoxylin and eosin (H&E) and digitized with 
an optical microscope Leica IRBE with CCD Rising Tech. 
Sony CCD Sensor (USB2.0 5.0MP CCD ICX452AQ) camera 
and Software Image Pro Plus (v4.5). Images were captured 
under x20 magnification and a resolution of 600 dpi. Slides 
were scanned using a unique study ID and without identifiable 
data linked to the patient. In the present study, two patholo-
gists from the Unit of Pathology of Modena, and Bologna 
independently reviewed the whole‑slide images in the training 
and test datasets in order to identify the type of colorectal 
lesions as reference standards. When disagreements regarding 
the image classification occurred, the pathologists resolved the 
issue through further discussions. When it was not possible to 
reach a consensus on a lesion type for an image, that image 
was discarded and replaced by a new one in order to maintain 
accuracy.

Dataset and the DL algorithm. The present study divided 
each image in the database into 9 subimages, each 864x648 
pixels, and relabeled each one individually, discarding those 
not recognizable, resulting in a final dataset containing 2,513 
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images. Disjoint subsets were then randomly created the: 
Training (2,012 images), validation (251 images) and test 
(250 images). Each of the given sets was further divided into 
the label categories reported in Table I. This was referred to 
as the Small Dataset. A Large Dataset was also created as 
follows: Each image, within the corresponding subset, was 
rotated 180 degrees, and reflected along both the vertical and 
horizontal axes, in order to obtain a dataset four times larger, 
i.e., comprising 10,052 images (Table I). The DL algorithm 
created in the present study was implemented on the Pytorch 
platform with hardware Nvidia Titan XP and Quadro P6000 
and consisted of the sequences reported in Fig. 1.

Given the relatively small training set, a small batch size, 
consisting of 10 images was selected. During the validation, 
performed initially using the Small Dataset, the optimizer 
Adam was selected over SGD and Adagrad, which provided 
slightly worse levels of accuracy (‑5%). For the loss function 
calculation, the present study opted for Softmax. The weight 
decay was set to 10‑5 and cycles of 200 epochs were performed 
with different learning rates. A short training of two cycles 
was used, with learning rates of 10‑3 and 10‑4, respectively, and 
a long training, which included a third cycle with a learning 
rate 10 ‑5. The loss function during training is reported 
in Fig. 2. During training, each epoch runs in ~58 sec (Small 
Dataset) or 3.50 min (Large Dataset), so the complete training 
is completed in <10 (Small) or 40 (Large) hours on this system. 
Evaluation of the test set took ~10-2 sec/image, making this 

Neural Network practical for fast screening of thousands of 
images in seconds. In order to estimate the stability of the opti-
mized network, after the aforementioned training, the present 
study performed 10 evaluations of the test set separated by 
4 epochs of further training. The accuracies are reported as 
the average value from these 10 evaluations, and the standard 
deviation was used as an estimate of the uncertainty. The same 
procedure was followed for a number of optimizations starting 
from scratch and using different partitions of the original 
image dataset and different weights for the Adam optimizer. 
It was observed that the accuracies were generally within two 
standard deviations of each other.

Results

The accuracy of the test set following the Short and Long 
trainings is presented in Table II. The present study also 
measured the accuracy for the nearest match. Accuracies, 
expressed as a percentage of correct results ± standard 
deviation, were computed for the test set using different 
optimization and evaluation conditions. Short training 
indicates 200 epochs with learning rate 10‑3 and 200 epochs 
with learning rate 10‑4. Long training adds another 200 epochs 
with learning rate 10‑5. For the exact match, predictions were 
considered correct only if they matched the target exactly. In 
the nearest match, neighboring labels were also regarded as 
correct, as described later. The Small Dataset refers to the 

Table I. Small dataset and large dataset.

A, Small dataset

Small Dataset Normal mucosa Preneoplastic lesion Adenoma Colon cancer Total

Training 404 407 685 534 2,012
Validation 50 51 86 64 251
Test 50 51 85 64 250

B, Large dataset

 Normal mucosa Preneoplastic lesion Adenoma Colon cancer Total

Training 1,616 1,628 2,736 2,068 8,048
Validation 200 204 344 256 1,004
Test 200 204 340 256 1,000

Figure 1. Neural network comprising four modules, each consisting of Convolution (3x3 kernels with 1pixel padding), BatchNorm2d, RELU and Maxpool, 
followed by a flattening operator, and 3 linear modules consisting of Linear, RELU and BatchNorm1d; RELU, rectified linear unit.
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original 2,513 images divided into training, validation and test 
sets. The Large Dataset also includes rotations and reflections, 
for a total of 10,052 images. For normal mucosa (m) the nearest 
match is the preneoplastic lesion (p); for (p), they are (m) and 
(a) the adenoma; for (a), they are (p) and (k) cancer; while 
for (k) is just (a). Representative histological images of the 
aforementioned categories are presented in Fig. 3, and these 
four images were all correctly labeled by the DL algorithm.

The GLAS challenge dataset (29,30) was used to further 
validate the approach of the present study against drasti-
cally different images. All images from the GLAS training 
were considered, including test A and test B sets combined. 
These differ from those of the present study: Both sets refer 
to x20 magnification, but the images used in the present 
study were collected with a resolution of 0.426 mm/pixel, vs. 
0.620 mm/pixel in the GLAS dataset. They were also different 
sizes. Hence, each GLAS image was expanded by bicubic 
interpolation by a factor of 0.620/0.426 in order to achieve the 
same nominal resolution as that in the present study. Of course, 
this introduces some blurring and the quality of the resulting 
images was different from that used for training. Each of the 
GLAS images were then cropped to 864x648 pixels. Of the 
165 GLAS images, 14 were discarded, as they were too small. 

The majority of the remaining 151 were then cropped to focus 
on the central part of the image. A few cases comprising 
significant portions of non‑tissue background were cropped 
close to one edge or corner in order to include as much tissue 
as possible.

Discussion

Researchers both in the image analysis and pathology fields 
have recognized the importance of quantitative analysis of 
pathology images. The current pathological diagnosis is based 
on a detailed and careful observation of the abnormal morpho-
logical changes, and is based on specific and precise criteria. 
However, it is a subjective, though educated opinion. Thus, 
the need for a quantitative assessment based on slide images 
of digital pathology is urgently required. This quantitative 
analysis of digital pathology is important not only from the 
diagnostic point of view, but also to understand the reasons 
that led to a specific diagnosis (for example, the altered size 
of the lumen glands of the Lieberkuhn crypts, indicating a 
potential malignant hyperplasia). Furthermore, the quantita-
tive characterization of pathological images is important both 
for clinical applications (e.g., to decrease/eliminate inter‑ and 

Table II. Test accuracy after short and long training. 

 Exact match Nearest match Exact match Nearest match
Training large dataset (%)  large dataset (%) small dataset (%) small dataset (%)

Short  93.79±0.76  99.85±0.11 92.92±0.86 99.20±0.25
Long  95.28±0.19  99.90±0.00 93.08±0.57 99.20±0.00 

Accuracies for the test set of different optimization and evaluation conditions are expressed as the percentage of correct results ± standard 
deviation.

Figure 2. Logarithmic plot of loss‑of‑function during typical optimization.
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intra‑observer variations in diagnosis) and for research 
applications (e.g., to understand the biological mechanisms 
underlying the pathological process). From a histopathological 
perspective, the crypts of the Lieberkuhn have different char-
acterizing components, including the lumen, epithelial cells 
and stroma (connective tissue, blood vessels, nervous tissue, 
etc.). The epithelial cells form the outline of the gland, which 
encloses the cytoplasm and the lumen, while the stroma is not 
considered part of the gland. If only non‑cancerous (benign) 
glands are considered, the DL algorithms must actually be 

able to manage and recognize a significant variability of 
shape, size, position, consistency and staining of the glands. 
Obviously, when the analysis is performed on the cancerous 
tissue, the glands appear significantly different from the 
benign glands, and the presence of artefacts or corrupted areas 
further aggravates the problem. Therefore, machine learning 
approaches are primarily used to develop extremely precise 
models trained with labelled examples that can address the 
problematic tissue variability. An effective algorithm for 
medical diagnoses requires large training datasets, which, in 

Table III. Confusion matrix for long training and large dataset. Rows correspond to predictions, columns to true labels.

True→ Predicted↓ M P A K Precision False positive

M 18.2 0.3 0.0 0.0 98.2 1.8
P 1.9 18.3 0.8 0.0 87.3 12.7
A 0.0 1.5 33.1 0.0 95.6 4.4
K 0.0 0.1 0.8 25.6 99.3 0.7
Recall False negative 90.7 9.3 90.3 9.7 97.4 2.6 100.0 0.0 95.3 4.7 

Rows correspond to predictions, columns to true labels. Each box contains the percentage with respect to all 1,006 test cases. The diagonal (bold) 
data contains correct predictions, all other data contains mislabeling. Bottom right box indicates the overall precision end error. M, normal 
mucosa; P, preneoplastic; K, cancer; A, adenoma.

Figure 3. Histopathological sections of hematoxylin and eosin stained colon tissues that are representative of colorectal carcinogenesis. (A) Normal mucosa 
exhibits benign glands consisting of a regular circular lumen in cross section. (B) Pre‑neoplastic lesion (aberrant crypt foci) consists of larger glands with 
enlarged epithelial nuclei, often stratified and crowded. (C) Adenoma is characterized by ovoid enlarged nuclei, vesicular dispersed chromatin and occasional 
mitoses. Sections exhibit an uneven distribution of goblet cells within crypts, luminal serration, budding, branching, crowding and fusion of glands. (D) In 
carcinoma, architectural changes increase with evolution and progression of malignancy. Luminal serration, budding, branching, crowding and fusion of 
glands are presented. Scale bar, 210 µm.
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general, are extremely difficult to obtain, in order to correctly 
classify the different features of benign and malignant gland 
types (Fig. 3). Colorectal carcinogenesis is a multi‑step 
process characterized by marked morphological changes. The 
normal epithelium becomes a hyperproliferative mucosa and 
subsequently gives rise to a benign adenoma, which can then 
progress into carcinoma and metastases (9). Furthermore, CRC 
presents an intratumor heterogeneity highlighted by genetic 
analysis (31). From the reported accuracies, it was observed 
in the present study that the Large Dataset generally provided 
better results than the Small Dataset. Thus, as previously 
reported (28,29), including the same image with different 
orientations is a viable strategy to improve the dataset. In 
the present study, the transformed images were placed in the 
same set (training, validation or test) as the original so as to 
not bias the results by including the same image in the test 
set as was used in training, with a different orientation. The 
effect of a total randomization of the Large Dataset was also 
tested, and although the performance was slightly improved, 
the differences were within two standard deviations. The 
reported results also indicated that the last 200 epochs in 
the Long training time had a small effect on the loss. This 
seemed to improve the accuracy for the exact match, but not 
for the neighboring match. Although from Table I it appears 
that the standard deviation was significantly smaller after the 
Long training, this effect was largely due to the 10 samples 
used to compute the average and standard deviation being 
separated by 4 epochs of training. The learning rate for this 
extra training was 10‑4 after the Short optimization, but it was 
10 times smaller after the Long one. Since the parameters 
change was tied to the learning rate, the sets of parameters 
used for the 10 cases after the Long optimization were more 
similar to each other than those after the Short optimization, 
hence they provided more similar classifications. Thus, a direct 
comparison of standard deviations is only meaningful when the 
same learning rate is used. In the present study, this effect was 
tested by increasing the learning rate or the number of epochs 
between evaluations after the Long training, and revealed that 
this was indeed the case. This also indicates that there is an 
association between the 10 evaluations after the Long training, 
so the present study recommends using the standard deviation 
from the Short training to estimate the uncertainty. The results 
for the Long training and Large Dataset are detailed in the 
confusion matrix in Table III, where percentages are presented 
as averages over the 10 measures. In this case, only 1 of the 
1,006 test cases falls outside the nearest neighbor range. When 
repeating the optimization it was typically observed that this 
number was between 0 and 2. The accuracy for exact matches 
was close to 95%, making the procedure attractive for clinical 
use. In addition, when the nearest cases were included, it 
surpassed 99.8%, indicating that most mislabeling refer to one 
of the nearest neighbors. As mentioned in the ‘Introduction’ 
of the present study, when using four labels, this kind of 
mislabeling would not be unusual even for trained patholo-
gists. Finally, the reported DL network structure derives from 
several attempts where different numbers and sizes of hidden 
layers were used. Although efforts were made to maximize the 
accuracy on the validation set, it is still possible that modifica-
tions of the network used in the present study may improve the 
performance. To the best of our knowledge, there are currently 

no alternative methods for automatic classification into the 
four key categories of colorectal tissue images based on the 
approach that is proposed in the present study. A comparison 
can be attempted with the GLAS Challenge contest (28), 
although the aim there was segmentation and classification 
based on only two categories. Furthermore, accuracies were 
based on individual pixels and segmented objects, and were 
between 80‑90%, significantly lower than the ones obtained in 
the present study. To this end, the present study processed the 
GLAS dataset as described in the previous section, obtaining 
images that are comparable to those in the present study, 
but with a different resolution. As the GLAS challenge only 
has two categories (benign and malignant), three of the four 
categories (preneoplastic, adenoma and cancer) were grouped 
as malignant, leaving the fourth (normal mucosa) as benign. 
The same evaluation as in the test of the present study, i.e., 
10 evaluations separated by 10 training epochs, yields an 
accuracy of 81.7 with standard deviation 1.1. This accuracy is 
smaller than those obtained by some GLAS challenge partici-
pants (29). However, considering that the network training 
is based on images obtained with different instruments and 
resolution, and that the classification scheme is not the same, 
it demonstrates that the approach used in the present study is 
viable and could be exported to broader datasets, provided 
enough diversity is included in the training set. This result 
also indicates that networks trained on images from a given 
microscope model may not perform as well on images from 
another one, making the unsegmented approach of the present 
study more appealing for easy adjustments. The fact that our 
approach is fundamentally different from those used in the 
GLAS challenge should be noted, as it is not based on segmen-
tation and recognition of individual features, but rather on 
direct classification from raw images.

The results from the present study suggest the potential for 
this method to become of practical assistance to pathologists.

In conclusion, the present study collected a microscope 
image database of human colorectal tissue, including normal 
mucosa, preneoplastic lesion, adenoma and carcinoma. The 
DL algorithm used in the present study, trained on part of the 
dataset, was able to correctly assign >95% of the test cases, 
and the majority of the mislabeled images were assigned to 
neighboring categories. The results from the present study 
suggest that DL techniques may provide a valuable tool to 
assist human operators for histological classification of the 
different steps of the adenoma‑carcinoma sequence, typical of 
colorectal tumors.
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