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Abstract: Skeletal muscle is considered as a near-constant volume system, and the contractions
of the muscle are related to the changes in tissue thickness. Assessment of the skeletal muscle
contractile parameters such as maximum contraction thickness (Th), contraction time (Tc), contraction
velocity (Vc), sustain time (Ts), and half-relaxation (Tr) provides valuable information for various
medical applications. This paper presents a single-element wearable ultrasonic sensor (WUS) and
a method to measure the skeletal muscle contractile parameters in A-mode ultrasonic data acquisition.
The developed WUS was made of double-layer polyvinylidene fluoride (PVDF) piezoelectric polymer
films with a simple and low-cost fabrication process. A flexible, lightweight, thin, and small
size WUS would provide a secure attachment to the skin surface without affecting the muscle
contraction dynamics of interest. The developed WUS was employed to monitor the contractions of
gastrocnemius (GC) muscle of a human subject. The GC muscle contractions were evoked by the
electrical muscle stimulation (EMS) at varying EMS frequencies from 2 Hz up to 30 Hz. The tissue
thickness changes due to the muscle contractions were measured by utilizing a time-of-flight method
in the ultrasonic through-transmission mode. The developed WUS demonstrated the capability to
monitor the tissue thickness changes during the unfused and fused tetanic contractions. The tetanic
progression level was quantitatively assessed using the parameter of the fusion index (FI) obtained.
In addition, the contractile parameters (Th, Tc, Vc, Ts, and Tr) were successfully extracted from the
measured tissue thickness changes. In addition, the unfused and fused tetanus frequencies were
estimated from the obtained FI-EMS frequency curve. The WUS and ultrasonic method proposed in
this study could be a valuable tool for inexpensive, non-invasive, and continuous monitoring of the
skeletal muscle contractile properties.

Keywords: wearable and flexible ultrasonic sensor; single-element ultrasonic sensor; ultrasonic
transducer; piezoelectric PVDF film; skeletal muscle monitoring; electrical muscle stimulation; tetanic
contraction; fusion index; muscle contractile parameters

1. Introduction

The analysis of the skeletal muscle mechanical characteristics is of great interest for a wide
range of medical applications. The measurement of changes in the muscle physical parameters
during contractions provides valuable information. For instance, the assessment of muscle helps
in investigating the muscle fatigue [1,2], diagnosing the neuromuscular diseases [3,4], evaluating
the progression of treatment and rehabilitation [5–7], evaluating the efficiency and effectiveness of
physical training [6], estimating the injury risks [8,9], and controlling the prosthetic devices [10–13].
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The skeletal muscle is considered as a near-constant volume system; therefore, the changes in muscle
length due to contractions are paralleled by the changes in muscle thickness [9,14]. Monitoring of
the change in muscle thickness during contractions would be a useful tool to assess the muscle
contractile properties [9,15]. Several studies have provided evidence that the relative changes
of the muscle contractile parameters were associated with the skeletal muscle atrophy [16,17],
the percentage of muscle fiber types [18,19], general and local muscle fatigue [9,20–25], and muscle
force production [26–28]. Various measurement techniques have been explored and employed for the
assessment of muscle functions. The common non-invasive methods include surface electromyography
(SEMG), mechanomyography (MMG), and ultrasound imaging.

SEMG is a conventional modality to monitor muscle activity and has been extensively used as
a gold standard for assessing muscle electrical parameters for decades [29]. The signal of SEMG
represents the sum of the electrical activities generated by the muscles located near the biopotential
electrodes attached to the skin surface. The increase of contraction force is a result of the increase of
the motor unit recruitment and the firing frequency of activated motor units [30]. The quantification of
the muscle mechanical parameters from the SEMG signal has some limitation due to the relationship
complexity between the biological electrical signal and the mechanical activity of the muscles,
especially for a deeper muscle as the SEMG detects the electrical activity of muscles located near
the electrodes [29,31,32]. SEMG measures the muscle electrical activity, but might not provide the
direct measurement of the muscle mechanical function [33].

MMG is the measurement of the muscle mechanical activity at the skin surface that results from
the voluntary or electrically evoked contraction [33–35]. There are several types of sensors employed
in the MMG measurement technique such as: piezoelectric sensors, microphones, accelerometers,
and laser distance sensors [9,35–37]. Piezoelectric contact sensors and microphones are mechanically
coupled to the skin surface near the muscle of interest, usually using an elastic band or external
support to measure skin surface displacement or vibration [38–40]. Accelerometers detect the local
motion at the skin surface due to the muscle contraction by measuring the acceleration in one or more
axes of the motion directions [41–44]. Laser displacement sensors (LDS) are a non-contact sensor
that measures the distance between the laser-beam head and the skin surface above the muscle of
interest [36]. LDS allows a high-resolution measurement of the skin surface displacement due to the
muscle contraction [45–48]. In the MMG measurement, the motion artifacts could be resulted from the
sensor lateral displacement at the skin surface and/or the bulk motion of the limb/body where the
MMG sensors are attached [49,50]. In addition, the investigations of MMG measurement reliability
were reported by [42,43,51–55].

As one of the MMG methods, tensiomyography (TMG) was developed to quantify the muscle
contractile properties by measuring the muscle radial displacement during the electrically evoked
muscle contraction [15]. The TMG performs the examination of the electrically evoked contractions
and exclusively through isometric contraction [56]. The TMG method employs a high-precision
displacement sensor. The displacement sensor tip is pressed onto the skin surface with a controlled
pre-tension while the sensor body is attached to a fixed support [18]. TMG sensor measures the
displacements of the skin surface due to the electrically evoked muscle twitch. Thus, the TMG directly
measures the skin surface displacement [57]. The displacement–time curve could be further analyzed
to extract the contractile parameters such as maximum muscle displacement, contraction time, sustain
time, and relaxation time. During the TMG measurement, the subject is required to be still on the
examination table to minimize the limb or body movements in order to reduce the motion artifacts in
the measurement [58]. The TMG has gained popularity in recent years as a quantitative and consistent
tool for the assessment of the muscle contractile properties among the other MMG methods [9,59].

Ultrasound could provide real-time dynamic images of the internal tissue structure, including
skeletal muscles, non-invasively with high spatial and temporal resolutions [60]. This allows
a measurement of the internal tissue thickness even for deeper muscle [61,62]. Ultrasound imaging
has been widely used in the assessment of skeletal muscle function and tracking the muscle thickness
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changes during static and dynamic contractions [61,63–77]. These studies were based on B-mode
ultrasound images captured by a clinical ultrasound imaging system with an ultrasound imaging
probe composed of multiple-element piezoelectric ultrasonic transducer (UT). A bulky size of the
ultrasonic probe may cause undesired motion over the skin surface during the muscle contraction,
especially in that involving limb movement [65,69,72,78]. Such an undesired probe motion could cause
an inaccurate estimation of the underlying tissue thickness. A special zig or holder was often used to
attach the ultrasonic probe steadily on the desired location to monitor the muscle of interest. However,
the pressure exerted on the skin surface by the ultrasonic probe weight and/or the attachment method
would restrict the underlying tissue’s natural motion and muscle contraction [79].

Instead of B-mode ultrasound imaging, A-mode ultrasound measurement using a single-element
UT made of piezoceramic was proposed as a cost-effective and wearable alternative for the ultrasonic
measurement of the muscle thickness changes [80]. A-mode measurement is one-dimensional along
the tissue depth and capable of measuring the tissue thickness with a single-element UT [81,82]. Thus,
the A-mode single-element UT can be made into a smaller size, which could make the UT attachment
more accessible and stable at the desired location on the skin surface. The work of Guo et al. [80,83]
might be one of the earliest studies using a single-element UT for tracking the thickness changes
during the skeletal muscle contraction. They demonstrated the tracking of the extensor carpi radialis
muscle that controls the movement at the wrist. The ultrasonic measurement in their result showed
a higher accuracy of tracking the wrist extension in comparison to the SEMG measurement. The study
by Sun et al. [84] showed that the single-element UT, that was developed by Hettiarachchi et al. [85],
could effectively assess muscle fatigue from the measured muscle thickness changes. Yang et al. [75,86]
presented the finger motion prediction from A-mode ultrasound signals using single-element UTs.
These studies demonstrated the feasibility of using the A-mode UTs for tracking the muscle motion
and thickness changes during contraction. The single-element UTs employed in the above-mentioned
studies [75,80,84,86,87] were made of piezoelectric ceramic which is a rigid and inflexible material.
The piezoelectric ceramics such as lead zirconate titanate (PZT) are commonly used as a UT material
due to their superior electromechanical performance. Therefore, the issue of inconsistent placement
of the single-element UTs to the skin may still persist. Guo et al. [80,83] indicated in their work that
the ultrasonic tracking errors increased when the dynamic movement of the wrist joint extension
increased from 20 to 50 cycle/min. In addition, Shahshahani et al. [87] noted that the placement of
a single-element UT was challenging to track the diaphragm wall motion for the respiratory activity
monitoring. The single-element UT could be placed firmly on the skin surface using a body-worn
band. However, this approach might introduce inevitable compression to the local muscles and may
affect their contraction/relaxation behavior.

Comparing with the rigid UTs, a flexible, thin, and lightweight UT may have an advantage
for UT attachment to the skin surface since it could be conformably attached to the curved skin
surface. The microelectromechanical system (MEMS) technology has recently emerged for fabricating
a relatively flexible UT array for medical imaging. Yang et al. [88] and Wang et al. [89] introduced
fabricated piezoelectric micromachined (PMUT) arrays by mounting diced PZT piezoceramic into
patterned cavities on a flexible polyimide film. Similarly, Mastronardi et al. [90] and Sun et al. [91]
used aluminum nitride (AlN) as a piezoelectric material instated of PZT, to be embedded onto a flexible
polyimide substrate, enabling more flexible and thinner PMUT. Singh et al. [92], Sadeghpour et al. [93],
and Hu et al. [94] exploited the island-bridge technique by mounting small pieces of PZT
elements into a microfabricated array of silicon islands that were connected with flexible polyamide
joints. Cheng et al. [95] and Chong et al. [96] fabricated a flexible UT array based on capacitive
micromachined (CMUT) using a concave bottom electrode. In addition, Gerardo et al. [97] described
a method to reduce the fabrication cost for CMUT using polymeric materials that have the potential of
fabricating a flexible CMUT.

Several studies examined the wearable and flexible UTs for tracking the internal tissue motion on
human subjects. Lanata et al. [98] presented the monitoring of the heart wall motion using a wearable
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UT. The piezoelectric transducer was based on the flexible polyvinylidene fluoride (PVDF) polymer,
which was integrated into a flexible belt wrapped around the chest. Their results showed the potential
for the continuous monitoring of the cardiopulmonary activity. Wang et al. [99] demonstrated the
monitoring of blood pressure by measuring the arterial wall motion using a stretchable and thin
UT [94]. Their stretchable UT offers the capability of measuring human tissue up to a depth of 4 cm,
and they demonstrated the estimation of the blood pressure at the carotid, brachial, radial, and pedal
arteries using the ultrasonic wall-tracking technique.

The aim of this study is to investigate the feasibility of the developed single-element wearable
ultrasonic sensor (WUS) for assessing the contractile parameters of electrically evoked skeletal muscle
in A-mode ultrasound measurement. The WUS was made of polymer piezoelectric PVDF film due to
its flexibility and low-cost fabrication process for the WUS. The low-cost and simple fabrication process
allows the WUS to be disposable, which could be beneficial for medical applications. Monitoring of
the electrically evoked skeletal muscle contractions, tetanic contraction progression, and the extraction
of the muscle contractile parameters were demonstrated using the developed WUS.

2. Methodology

We have been developing a flexible and wearable ultrasonic sensor made of the PVDF polymer
piezoelectric film [100,101]. The PVDF piezoelectric film offers mechanical flexibility, thinness,
broadband response, and the close matching acoustic impedance to the biological soft tissue, which are
suitable features for an ultrasonic sensor to perform continuous monitoring of the tissue motion.
However, the PVDF has inherent disadvantages of the relatively weak piezoelectric effect, low dielectric
constant, high dielectric loss, and low electromechanical coupling coefficient, compared to piezoelectric
ceramics, which causes a poor signal-to-noise ratio (SNR) of the received ultrasonic signals reflected
from deeper tissue boundaries or propagated in thicker tissue. One approach to improve the ultrasonic
pulse strength of the PVDF WUS is to employ the multiple-layer PVDF films design [101–103]. Hence,
for the experiments conducted in this study, we have designed and constructed the WUSs using
double-layer PVDF films as described in Section 2.1.

In our previous works, the developed WUS measurement capability was successfully
demonstrated in monitoring the tissue thickness changes up to the depth of 34 mm due to the muscle
contraction in the ultrasonic pulse-echo (PE) mode [101,104–108]. Furthermore, cardiac motion at the
tissue depth of 30 mm was successfully monitored by the WUS [101]. In this study, we would like to
investigate the feasibility of the ultrasonic method for monitoring a thicker soft tissue (greater than
100 mm) and assess the skeletal muscle contractile parameters using the developed double-layer PVDF
WUSs in the ultrasonic through-transmission (TT) mode.

In the PE mode, ultrasound travels twice the distance (round trip) of the measured tissue thickness
since the ultrasound is transmitted and received by the same WUS. While the TT mode uses two
WUSs, the ultrasound just travels from the transmitter WUS to the receiver WUS making a single
trip. Since ultrasound attenuates during the propagation within the tissue due to the absorption,
scattering, and/or diffraction, the TT mode has an advantage for the measurement of a thick tissue as
it exhibits a superior SNR in comparison with the PE mode. Indeed, we were not able to observe the
target ultrasound signals to measure the total thickness of the lower leg in the PE mode under our
experimental configuration described in Section 2.2.

The detail of WUS design and construction is given in Section 2.1. The developed WUSs were
attached to the lower leg of a human subject to monitor the gastrocnemius (GC) muscle contraction,
as explained in Section 2.2. The experiments were conducted with one healthy human subject (male,
age 32) as a feasibility study to verify the proof of concept of the proposed WUSs and measurement
method of muscle contractile parameters. The GC muscle was evoked by electrical muscle stimulation
(EMS), and the tissue thickness changes were continuously measured in order to estimate the muscle
contractile parameters. The subject gave the informed consent for inclusion before participating in the
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study. The study was conducted in accordance with the protocol approved by the Carleton University’s
Research Ethics Board-B (protocol # 10496 12-0382).

2.1. Wearable Ultrasonic Sensor

The WUS was constructed using basic equipment and ordinary hand tools, such as scalpels
and soldering device, and did not require advanced technology such as microfabrication processing
and equipment used in MEMS-based UT fabrication [88–90,92,96]. The piezoelectric PVDF film
was chosen to construct the WUS operated in the thickness mode. When an alternating voltage is
applied along the thickness direction of the PVDF film, the thickness of the PVDF film increases and
decreases periodically according to the frequency of the alternative voltage applied, which will lead
to generation of ultrasound waves and vice versa for detection of ultrasound waves [109]. The WUS
design consisted of multiple layers, as shown in the schematic of Figure 1a. The WUS had two layers
of 52-µm-thick PVDF films as an active piezoelectric element. The PVDF piezoelectric film having
silver nanoparticle ink electrodes was obtained from Measurement Specialties (Model: 2-1004346-0,
Measurement Specialties Inc., Hampton, VA. USA). The PVDF film was cut into a desired size of the
WUS having the active ultrasonic area and the interconnection area, as shown in Figure 1b. The active
ultrasonic area is the functional part of the sensor to transmit and receive ultrasound where the
electrode layers at the top and bottom surface of the PVDF layer were overlapped. The interconnection
area is the part where the lead wires attached to the electrode layers, and there was no overlapping
between the electrode layers at the top and bottom surface of the PVDF layer.

Figure 1. The developed flexible, single-element, wearable ultrasonic sensor (WUS). A schematic
design of the WUS (a), a schematic of the single polyvinylidene fluoride (PVDF) film with electrodes
before the bonding (b), and photos of the constructed WUS (c).
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The uniformity of the thickness of the silver ink electrode layer was measured 10 ± 1 µm within
the active ultrasonic area. The two pieces of the PVDF films were arranged in antiparallel polarization
direction and bonded at the inner electrode layers by using a low-viscosity epoxy of 7.5 µm as
a bonding layer. Considerations were taken to ensure the uniformity of the epoxy thickness and
eliminating the trapped air microbubbles. Both the top and bottom outer electrode layers, next to the
acoustic insulator layer and the ultrasonic sensing area, respectively, were connected to the ground
electrical terminal. The inner electrode layers, between the two PVDF films, were bonded together and
connected to the active voltage source terminal. Thus, the two PVDF films were connected electrically
in parallel and acoustically in series with their piezoelectric polarization directions antiparallel.
The double-layer PVDF films configuration reduces the input electrical impedance of the sensor,
which consequently increases the intensity of the output ultrasonic wave from the available driving
voltage source [102]. A flexible brass film for electromagnetic shielding to reduce the environmental
noises and a polyimide film for WUS structure protection and electrical insulation were applied to wrap
the entire structure of WUS except for the ultrasonic sensing area where the ultrasound is transmitted
or received. The electromagnetic shielding and protection layers were removed from the ultrasonic
sensing area in order to avoid the ultrasonic attenuation and reflection within these layers. At the
backside of the double-layer PVDF films, a piece of paper as an acoustic insulator layer was inserted
without bonding between the electromagnetic shielding and the electrode layers. Thus, the WUS was
air-backed to eliminate the ultrasonic backward reflection, reduce the sensor thickness, and to improve
the electromechanical performance. The developed WUS dimensions were 50 mm × 24 mm with a
total thickness of 350 µm. The area of the ultrasonic sensing area was 20 mm × 20 mm. Figure 1c
shows photos of the constructed WUS used in this study.

2.2. Experimental Configuration

The tissue thickness changes due to GC muscle contraction evoked by the EMS at a lower leg
of a healthy male subject were measured using the WUSs in the ultrasonic TT mode. As shown
in Figure 2 of the experimental setup, the transmitter WUS was attached to the medial side of the
GC muscle at the back of the tibia and fibula bones, whereas the receiver WUS was placed on the
opposite side. A medical ultrasonic gel couplant was applied between the skin surfaces and the WUSs.
In order to maintain the stability of the WUSs attachment during the measurement, the WUSs and the
electric wires were fixed by non-elastic adhesive tapes. Considerations were taken to avoid exerting
pressure by the applied adhesive tape so that it would not impede the movements of the underlying
tissues including the muscle contraction. The pulsed ultrasound generated by the transmitter WUS
propagated through the tissues toward the receiver WUS. The distance, which is the tissue thickness
between the transmitter and the receiver WUSs, was estimated by measuring the time-of-flight (TOF)
of ultrasound. Average sound speed of 1540 m/s was assumed for soft tissue, including muscles.

Figure 3 shows the schematic diagram of the ultrasonic measurement configuration to monitor the
electrically evoked GC muscle contraction. The contractions of the GC muscle were evoked by an EMS
device (Model: EMS 7500, Compass Health, Middleburg Heights, OH, USA) at EMS frequencies of 2,
6, 8, 10, 12 and 30 Hz with an electric pulse width of 300 µs. The amplitude of the stimulation pulse
was adjusted to the comfort level of the human subject depending on the EMS frequency employed.
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Figure 2. Photos of the experimental setup for monitoring the tetanic contractions of the gastrocnemius
(GC) muscle in ultrasonic through-transmission (TT) mode. The two WUSs (transmitter and receiver)
and electrical muscle stimulation (EMS) electrodes were attached to the skin surface of a lower leg.

Figure 3. A schematic of the measurement configuration of GC muscle contractions at a lower leg.
The muscle contraction was evoked by EMS, and the tissue thickness changes were measured using
two developed WUSs in the TT mode.

The WUSs were operated by an ultrasonic pulser/receiver (Model: DPR300, JSR Ultrasonics,
Pittsford, NY, USA). The pulse repetition rate (PRR) was 1 kHz, controlled by a function generator.
Therefore, one frame of the ultrasonic radio-frequency (RF) signal was acquired every 1 ms.
The ultrasonic RF signals received by the receiver WUS were filtered by the pulser/receiver built-in
analog band-pass filter of 1–22.5 MHz bandwidth. Then, the received ultrasonic RF signals were
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digitized at a sampling frequency of 125 MHz and stored by the data acquisition (DAQ) system (Model:
ATS 9440, Alazartech, Montreal, QC, Canada) connected to a personal computer (PC). It is noted that
the sampling frequency of 125 MHz was the highest of the DAQ system employed, which was much
higher than the Nyquist frequency of the received pulsed ultrasound since the real-time measurement
was not the focus of this study. In the future study, the lower sampling frequency will be considered
and tested for real-time monitoring and signal analysis. The ultrasonic RF signals were acquired for
8 seconds, including a short period without EMS at the beginning of the acquisition at each EMS
frequency. Hence, a total of 8000 frames of the RF signals were acquired at each EMS frequency.

For the preprocessing of the acquired ultrasonic RF signals, a moving average of 15 frames was
applied to the digitized RF signals to remove the random noise and improve the SNR of the desired
signals. The moving averaging of 15 frames at the PRR of 1 kHz was equivalent to the frame rate
of 66.6 Hz, which was twice greater than the maximum EMS frequency of 30 Hz in the experiments
conducted. Thus, the motion smoothening effect on the measured tissue motion could be negligible.
It is noted that no increase of the noise level was observed on the received ultrasonic RF signals
after applying the EMS. Figure 4a shows an example of the received ultrasonic RF pulses at relaxed
(TOF = 74.95 µs) and contracted (TOF = 77.98 µs) states of the GC muscle indicated by the dashed line
and the solid line, respectively. The received ultrasonic pulses were clearly observed in the acquired
ultrasound RF signals with high SNR. The TOFs of the ultrasonic pulses were obtained using the peak
detection technique of the negative peaks of the received ultrasonic pulses. The tissue thicknesses
were calculated as 115.4 and 120.1 mm at the relaxed and contracted states, respectively, using each
measured TOF and the assumed ultrasound speed of 1540 m/s. The average center frequency and
the bandwidth of the received ultrasonic RF pulses were 1.25 and 1.36 MHz, respectively, as seen
in Figure 4b.

Figure 4. The received ultrasonic radio-frequency (RF) signals using the developed WUSs in the TT
mode (a) and their frequency spectra (b). The dashed line indicates a relaxed state of the GC muscle,
where the solid line indicates a contracted state.

3. Results and Discussions

3.1. Monitoring of Muscle Tetanic Contractions

Figure 5 shows the changes in tissue thickness obtained during the evoked GC muscle contraction
by the EMS at different EMS frequencies. The periodical change of the tissue thickness corresponding
to EMS frequency was clearly observed from the GC muscle contraction at the EMS frequency from
2 to 12 Hz. At the EMS frequencies of 2 and 4 Hz, the GC muscle was able to relax completely
between the intervals of two consecutive twitches. However, the partial relaxations between the
consecutive twitches were seen at the EMS frequencies of 6 to 12 Hz, indicating the progression of
tetanic contraction of the GC muscle. No relaxation was observed at the EMS frequency of 30 Hz under
our experimental conditions. From the monitored thickness changes at each EMS frequency, the tetanic
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contraction progression level can be quantified using a fusion index (FI) [110–112]. The FI is defined
(in %) by:

FI = (a/b)× 100 (1)

where a is the difference between the initial thickness (before the EMS applied) and the minimal
thickness during the contraction, whereas b is the difference between the initial thickness and the
maximal thickness during contraction, as illustrated in Figure 6. Thus, the FI of 0% means the twitch
contraction with complete relaxation of the muscle, and that of 100% means the completely fused
tetanic contraction.

Figure 5. Tissue thickness changes, measured by the WUSs, due to the electrically evoked contraction
of GC muscle at EMS frequencies of: 2 Hz (a), 4 Hz (b), 6 Hz (c), 8 Hz (d), 10 Hz (e), 12 Hz (f),
and 30 Hz (g).
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Figure 6. Definition of fusion index (FI) quantifying the tetanic contraction progression level [110–112].

The FI value at each EMS frequency was obtained by taking the average of the calculated FI
values between each electrical stimulation interval, after two seconds of initiating the EMS. Figure 7
presents the FI value, denoted by the cross mark, with the standard deviation (SD), denoted by the
error bar, obtained at each EMS frequency. As seen in Figure 5a,b at the EMS frequencies of 2 and 4 Hz,
respectively, the GC muscle had a complete relaxation between the consecutive stimuli, which indicates
the FI of 0%. As the EMS frequency increased to 6 Hz and 8 Hz, the muscle would progress a partial
relaxation represented by the FI values of 8.6 ± 4.4% and 15.7 ± 9.1% (mean ± SD), respectively.
At 10 and 12 Hz, the tetanic contraction progressed further, and the FI values became 83.8 ± 1.2% and
95.3 ± 0.5%, respectively. The FI value of 100% was assigned at 30 Hz since no muscular relaxation
between the consecutive stimuli was observed at 30 Hz, as shown in Figure 5g. In general, the unfused
and fused tetanus is considered at FI value greater than 10% and 90%, respectively [113]. Therefore,
based on the S-shaped (sigmoid function) curve fitting (solid line) of the obtained FI-EMS frequency
relationships shown in Figure 7, the minimum stimulation frequencies necessary to evoke the unfused
and fused tetanus were given at FI values of 10% and 90%, respectively, Thus, the GC muscle would be
evoked to the unfused and fused tetanic contraction at EMS frequencies of 6.7 and 10.7 Hz, respectively,
under our experimental conditions employed.

Figure 7. FI value (cross mark) with the standard deviation (error bar) at each EMS frequency, obtained
from the results shown in Figure 5. FI-EMS frequency curve denoted by the solid line was obtained by
curve fitting of a sigmoid function.

3.2. Muscle Contractile Parameters

The monitored muscle contractions of the GC muscle were further analyzed by extracting the
contractile parameters from a single twitch contraction such as maximum thickness changes, Th,
contraction time, Tc, contraction velocity, Vc, sustain time, Ts, and half-relaxation time, Tr [9,15].
Figure 8 shows the extraction of the contractile parameters from a chosen single contraction twitch
of the monitored GC muscle at each EMS frequency in the range from 2 to 10 Hz, which were not
fused tetanus state in our experiments. At the EMS frequency of 2 Hz, the Th was 2.24 mm from the
relaxed state to the maximum contracted state. The Tc during which the thickness increased from 10%
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to 90% of the Th was 38 ms. During the Tc, Vc was 47.21 mm/s. The Ts during which the GC muscle
sustained the 50% of the Th was 117.5 ms. After reaching the maximum thickness, the thickness began
to decrease, which indicates the relaxation period. The Tr during which the thickness decreased from
90% to 50% of the Th was 62.9 ms. Table 1 lists the average contractile parameters obtained from the
multiple twitches of the electrically evoked GC muscle contractions at each applied EMS frequency,
shown in Figure 5. Averaging was taken from the twitches observed after the first two seconds of
initiating the EMS, where the twitches became stables.

Figure 8. Extracted contractile parameters from a chosen single contraction twitch of the GC muscle
evoked at EMS frequencies of: 2 Hz (a), 4 Hz (b), 6 Hz (c), 8 Hz (d), and 10 Hz (e).

In Table 1, a coefficient of variation, CV, in percentage (CV = Mean / SD × 100) is also presented
for each contractile parameters. The CV values for Th, Vc, and Tc were 8.1% or less, and those for Ts
were 11% or less. The CV values for Tr showed greater values (8.3%–21.5%) comparing with the other
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parameters. It was reported in the TMG measurements with multiple subjects that the Tr parameter
exhibited high variability and was indicated as an unreliable parameter, whereas Th and Tc were more
reliable parameters with low variability [59]. Though our CV values were estimated from the multiples
twitches with only a single subject, a similar tendency of the measurement variability was shown in
our results.

Table 1. Average values with the standard deviation (SD) and coefficient of variation (CV) of the
contractile parameters from the monitored tetanic contraction of GC muscle at the EMS frequencies.

EMS
Extracted Parameters Mean ± SD (CV)

Th (mm) Vc (mm/s) Tc (ms) Ts (ms) Tr (ms)

2 Hz 2.20 ± 0.08 (3.6%) 46.13 ± 2.76 (6%) 38.25 ± 1.50 (3.9%) 116.28 ± 12.75 (11%) 63.49 ± 12.12 (19.1%)
4 Hz 2.77 ± 0.09 (3.2%) 59.68 ± 2.05 (3.4%) 37.12 ± 1.05 (2.8%) 77.57 ± 7.29 (9.4%) 31.46 ± 6.76 (21.5%)
6 Hz 2.04 ± 0.15 (7.4%) 50.22 ± 3.68 (7.3%) 32.54 ± 0.88 (2.7%) 61.77 ± 2.23 (3.6%) 19.54 ± 1.81 (9.3%)
8 Hz 2.36 ± 0.19 (8.1%) 68.56 ± 5.47 (8.0%) 27.51 ± 1.41 (5.1%) 58.10 ± 2.00 (3.4%) 19.72 ± 1.64 (8.3%)
10 Hz 0.59 ± 0.03 (5.1%) 22.03 ± 1.58 (7.2%) 21.62 ± 1.58 (7.3%) 40.07 ± 3.07 (7.7%) 10.80 ± 2.08 (19.3%)

Several studies have presented the measurement of the GC muscle contractile parameters [7,16,
114–118]. However, the lack of a standardized measurement protocol led to a variety of measurement
conditions that limits the comparison between the muscle contractile parameters, as discussed
in [59,119–121]. The sensor position, EMS conditions (amplitude, pulse width, and inter-electrode
distance), and individual differences (gender, age, body mass, and physical activity level) impose
difficulties for the direct comparison between the values of the contractile parameters. Therefore, the
comparison of the parameter values obtained in this study with those in other studies would not be
applicable due to the different measurement conditions employed and is beyond the scope of this
study. In future work, we will examine the reliability and repeatability of the WUS measurement
method and compare the results with those published values under the same measurement conditions.

The values of Tc, Ts, and Tr with respect to EMS frequencies from 2 to 10 Hz are presented
in Figure 9. It was observed from these extracted contractile parameters that the contraction and
relaxation periods of the GC muscle became shorter as the EMS frequency increase. As the EMS
frequency increased from 2 to 10 Hz, the average Tc values decreased from 38.25 to 21.62 ms, and the
average Tr values decreased from 63.49 to 10.80 ms. In addition, the GC muscle sustained a shorter
contraction as the frequency progressed further, which was indicated by the average Ts of 116.28 ms at
2 Hz compared to Ts of 40.07 ms at 10 Hz.

The conducted in vivo monitoring of the tetanic contraction demonstrates the ability of the
developed WUS and the ultrasonic method for the continuous and quantitative assessment of the
skeletal muscle contractile properties. The novel ultrasonic technique presented in this work allows
the measurement of the skeletal muscle contractile parameters beyond the limitations of TMG method,
such as fixed posture and/or limited measurement location, which is one of the current popular tools
for assessment of the muscle contractile properties [9]. The developed WUS could offer the advantage
of the ultrasonic A-mode method by measuring the internal thickness changes of the tissue where the
TMG method may not be feasible. The ultrasonic measurement method using the developed WUS
could provide a practical alternative with less strict posture conditions, in comparison with the TMG.
The proposed WUS and ultrasound method of the measurement of the skeletal muscle contractile
parameters would be applied for various medical applications, for instance: monitoring the treatment
progression before and after ligament reconstruction surgery [6,7,117], investigation of the fast and
slow muscle fibers ratio in muscle [15,16,18], assessment of muscle fatigue [20,122], and physical
training effectiveness [9,123]. In addition, the FI-EMS frequency curve would be used to investigate the
degree of muscle fatigue [110] and to evaluate the muscle fiber type and fiber composition ratio [111].
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Figure 9. The average contractile parameters of Tc, Ts, and Tr of the monitored muscle contractions
with respect to the EMS frequencies. The error bar indicates the standard deviation.

In addition, the WUS offers the measurement of both the voluntary and electrically evoked
contractions. In previous works, the developed WUS feasibility was demonstrated in monitoring
voluntary skeletal muscle contraction [100,101,104,124,125], measurement of arterial diameter [108],
and monitoring of mechanical properties of plantar soft tissue [105]. The developed WUS is
an inexpensive, flexible, and thin ultrasonic sensor which would provide the ability of the continuous
monitoring of the skeletal muscle contractile properties. Additionally, it facilitates the potential of
future exploring the skeletal muscle contractile parameters of voluntary contractions during various
physical activities.

4. Conclusions and Future Perspectives

In this paper, the developed flexible, lightweight, thin, and small WUSs were tested for monitoring
the eclectically evoked skeletal muscle contractions of a human subject. The WUSs were designed
and constructed using two 52-µm thick PVDF films bonded using a low-viscosity epoxy. The two
PVDF films were connected electrically in parallel and acoustically in series with their piezoelectric
polarization directions antiparallel for the improvement of the electromechanical performance.

The capability of the developed WUS in measuring the skeletal muscle contractile parameters
was demonstrated by the in vivo monitoring of the electrically evoked contractions of the GC muscle
at varying EMS frequencies from 2 up to 30 Hz. The tissue thickness changes due to GC muscle
contractions were successfully obtained at each EMS frequency by utilizing the ultrasonic TT mode
in A-mode data acquisition, where two WUSs employed as transmitter and receiver. The total
thickness changes of the tissues between the WUSs due to the muscle contraction were measured
using an ultrasound TOF method. The developed WUS was capable of monitoring the progression
of the tetanic contraction of the GC muscle at the varying EMS frequencies. The tetanic contraction
progression was quantified by the fusion index (FI) estimated from the monitored tissue thickness
changes at each EMS frequency. In addition, the fused and unfused tetanus frequencies were estimated
from the obtained FI-EMS frequency curve. Furthermore, the muscle contractile parameters such
as maximum thickness changes, Th, contraction time, Tc, contraction velocity, Vc, sustain time, Ts,
and half-relaxation time, Tr were successfully extracted from the monitored contraction of the GC
muscle. As the EMS frequency increased from 2 to 10 Hz, it was observed that the duration of Tc, Ts,
and Tr decreased.

This paper demonstrated for the first time, to the best of our knowledge, the monitoring of
the tetanic contractions progression of in vivo human skeletal muscle evoked by the EMS using the
single-element WUSs in A-mode ultrasonic measurement. It is our expectation that the WUS and
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ultrasonic method presented in this study would be a valuable tool for inexpensive, non-invasive,
and continuous monitoring of the skeletal muscle contractile properties. In addition, it is of our belief
that the proposed ultrasound method and the wearability of the developed ultrasonic sensor could
have advantages over the conventional methods, such as the reduction of motion artifacts and the
reliability during the measurements for both the static and dynamic muscle contractions. Following the
encouraging finding presented in this study, the next stage of future work would focus on the reliability
and repeatability investigation of the proposed WUS measurement method in comparison with other
conventional methods such as TMG and LDS. In addition, more subjects would be recruited in the
future evaluation study of the WUS measurement method of the skeletal muscle contractile parameters.
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