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Stroke is a leading cause of motor disability worldwide. Upper limb rehabilitation is particularly challenging since approximately
35% of patients recover significant hand function after 6 months of the stroke’s onset. Therefore, new therapies, especially those
based on brain-computer interfaces (BCI) and robotic assistive devices, are currently under research. Electroencephalography
(EEG) acquired brain rhythms in alpha and beta bands, during motor tasks, such as motor imagery/intention (MI), could
provide insight of motor-related neural plasticity occurring during a BCI intervention. Hence, a longitudinal analysis of
subacute stroke patients’ brain rhythms during a BCI coupled to robotic device intervention was performed in this study. Data
of 9 stroke patients were acquired across 12 sessions of the BCI intervention. Alpha and beta event-related
desynchronization/synchronization (ERD/ERS) trends across sessions and their association with time since stroke onset and
clinical upper extremity recovery were analyzed, using correlation and linear stepwise regression, respectively. More EEG
channels presented significant ERD/ERS trends across sessions related with time since stroke onset, in beta, compared to alpha.
Linear models implied a moderate relationship between alpha rhythms in frontal, temporal, and parietal areas with upper limb
motor recovery and suggested a strong association between beta activity in frontal, central, and parietal regions with upper limb
motor recovery. Higher association of beta with both time since stroke onset and upper limb motor recovery could be explained
by beta relation with closed-loop communication between the sensorimotor cortex and the paralyzed upper limb, and alpha
being probably more associated with motor learning mechanisms. The association between upper limb motor recovery and beta
activations reinforces the hypothesis that broader regions of the cortex activate during movement tasks as a compensatory
mechanism in stroke patients with severe motor impairment. Therefore, EEG across BCI interventions could provide valuable
information for prognosis and BCI cortical activity targets.

1. Introduction

Stroke is one of the leading causes of disability worldwide [1].
Ischemic stroke is the most common type and has a global
incidence of approximately 11.6 million new cases per year

[1]. One of the most disabling motor impairments produced
by stroke is hemiparesis which is comprised by the complete
or partial paralysis of one of the body sides, including the
arm, leg, foot, and hand. Furthermore, after six months of
the stroke’s onset, only 35% of patients recover enough hand
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motor function to be able to use it in daily activities [2].
Therefore, research involving new therapies focused on
stroke patients’ upper limb rehabilitation is needed to
increase the number of patients that achieve hand function
recovery. Particularly, therapies based on robot assistive
devices have shown potential for increasing stroke patients’
neuroplasticity, the main recovery mechanism of stroke [2].
Some of these devices are specifically designed for upper limb
motor rehabilitation by applying passive movement to stroke
patients’ paralyzed hand [3–6]. Another promising technol-
ogy for upper limb rehabilitation of stroke patients is brain-
computer interfaces (BCI). BCI allow control of external
devices by decoding users’ intentions from central nervous
system sources such as the electroencephalogram (EEG)
[7]. BCI systems are comprised by EEG signal acquisition,
signal preprocessing, feature extraction, feature selection,
classification, and external device communication stages
[7]. Several paradigms allow BCI users to achieve control of
the system, one of them is motor imagery/intention (MI),
which is the mental rehearsal (motor imagery) or intention
(motor intention) of movement execution and elicits similar
cortical activations as actual movement [8]. MI elicits a
power decrease and/or increase in alpha (8 to 13Hz) and/or
beta EEG frequencies (14 to 30Hz) with respect to a baseline,
known as event-related desynchronization or synchroniza-
tion (ERD/ERS) [9]. Studies have described that stroke
patients can still elicit ERD/ERS during MI of their paralyzed
hand [10, 11] and during passive movement provided by
robotic assistive devices [12]. Since ERD/ERS is associated
with increased or decreased brain activity, it has been
hypothesized that BCI systems controlled by hand MI and
coupled to robotic assistive devices could be used to promote
stroke patients’ neuroplasticity processes, increasing the
probability of upper limb function recovery [13, 14].

Although some studies have evaluated the effectiveness of
a BCI coupled to robotic assistive devices for upper limb
rehabilitation of stroke patients [15–18], to the authors’
knowledge, none has evaluated the longitudinal changes
and the relationship between upper limb motor recovery
with brain rhythms recorded during a complete BCI inter-
vention, in subacute stroke patients. Stroke patients’ EEG,
recorded during a BCI intervention, offers the possibly of
evaluating this relationship, since changes in EEG brain
rhythms have been related to neuroplasticity induced by
different types of noninvasive stimulation. For example,
Pellegrino et al. reported changes in EEG connectivity in
stroke patients before and after a robotic hand therapy. The
intervention lasted for 12 weeks, and changes in functional
connectivity were reported to correlate with improvement
in upper limb motor control [19]. In addition, Shindo et al.
reported alpha and beta power differences in EEG electrodes
placed above the somatosensory cortex of 8 stroke patients
before and after 4 to 7 months intervention with a BCI
coupled to a robotic hand orthosis. Half of the patients that
showed more pronounced ERD over the affected hemisphere
also had increased cortical excitability, measured by means of
transcranial magnetic stimulation (TMS), implying a rela-
tionship between EEG power and brain plasticity [20]. Both
studies reported preintervention and postintervention EEG

changes; however, a trend analysis performed from several
intraintervention EEG measurements could provide addi-
tional insights of neuroplasticity mechanisms involved in
upper limb motor recovery. This trend analysis could
comprise a longitudinal study of ERD/ERS features which
could offer additional information of the neuroplasticity
meaning of brain rhythms during a noninvasive intervention
for stroke patients’ hand rehabilitation.

The purposes of the present study are to describe changes
in cortical activations across a BCI intervention and to
analyze possible relationships between ERD/ERS trends and
upper limb motor recovery in stroke patients. The BCI
intervention was comprised by passive hand movement
provided by means of a robotic hand orthosis driven by MI
of the paralyzed hand of patients, undergoing an intervention
as part of a larger study. EEG alpha and beta brain rhythms
were recorded across 12 intervention sessions, and its associ-
ation with upper limb motor recovery was analyzed.

2. Materials and Methods

2.1. Stroke Patients. Data of 9 stroke patients were included
for the present study. Patients were recruited as part of a
BCI validation study being conducted in the National
Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”
with the approval of its research committee. All patients read
and signed an informed consent approved by the institute’s
ethical committee. Patients had an ischemic stroke diagnosis
confirmed through neuroimaging by a neurologist. During
the BCI intervention, patients were in the subacute phase of
their stroke; therefore, no more than 10 months and no less
than 2 months had passed since the stroke onset [21].
Patients were right handed before the stroke and had no pre-
vious history of neurological lesions and showed a cognitive
performance with slight alterations in attention and memory
processes, as well as adequate understanding of instructions,
according to the neuropsychological test NEUROPSI [22].
Table 1 shows patients’ information.

2.2. BCI System. The BCI system acquisition stage was com-
prised by a g.USBamp biosignal amplifier from g.tec and an
electrode cap with 11 g.LADYbird electrodes placed in the
F3, F4, Fz, P3, P4, Pz, C3, C4, Cz, T3, and T4 positions of
the international 10-20 system; ground electrode was placed
in the AFz position and reference electrode in the right
earlobe. All EEG recordings used for the BCI system were
performed with electrode impedances below 5KΩ. A
computer monitor was also part of the system and allowed
showing and playing visual and auditory cues to patients.
Preprocessing and processing stages of the BCI system were
programmed in a PC. The preprocessing stage of the BCI
was comprised by a notch 60Hz filter and bandpass filters
in the following frequency bands: 8-12Hz, 12-16Hz,
16-20Hz, 20-24Hz, 24-28Hz, and 28-32Hz, all are of FIR
type and order 30. The processing stage’s feature extraction
algorithm was a common spatial pattern (CSP) filter, applied
to each one of the 6 frequency subbands [24], following a
methodology similar to the Filter Bank Common Spatial
Patterns (FBCSP) [25]. Features extracted with the spatial
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filters were selected using particle swarm optimization (PSO)
and classified with linear discriminant analysis (LDA) [26].
The system’s classification output was sent to a robotic hand
orthosis through wireless communication. When activated
by the BCI system, the robotic orthosis provided passive
flexion followed by extension of the fingers of the hand. A
more detailed description of the BCI system can be found
in the work by Cantillo-Negrete et al. [27]. A depiction of
the BCI system is shown in Figure 1.

2.3. BCI Intervention. Patients underwent therapy with the
BCI system during a 4-week intervention, with 3 sessions
per week. Therefore, each patient had 12 BCI intervention
sessions. Each session was comprised by 3 runs of 20 trials

and lasted between 45 and 60 minutes. Patients rested for
at least 3 minutes between runs. BCI sessions were conducted
in a sound-attenuated room with the same illumination
conditions and at the same time of the day. Patients were
instructed to sit in a comfortable armed chair, with a com-
puter monitor placed at approximately 1.5m in front of
them. The trials’ time structure was based on the Graz
paradigm [28] and was comprised by a first rest period of
3 s in which patients observed a white cross on the computer
screen. At 2 s from initiating this rest period, a beep sound
was played by the monitor’s loudspeakers, notifying the
patient that the task is about to begin. Three seconds after
trials’ onset, an arrow pointing to the direction of the
patient’s paralyzed hand appeared in the computer screen,

Table 1: Clinical and demographic information of stroke patients’ data included in the present study. Each patient’s time since the beginning
of the BCI of intervention, relative to stroke onset, and time at the end of the BCI intervention is shown. Percentage of infarct in regions
related to the middle cerebral artery was assessed using the ASPECTS scale [23].

Patients’
identifier

Age (years) Gender
BCI intervention
period relative to
stroke onset (days)

Paralyzed
hand

Lesion, type, and location of the
affected area

Percentage of infarct
in the middle
cerebral artery

P1 54 Female 280 - 302 Right
Subcortical. L. lentiform nucleus,

L. internal capsule, and L. thalamus
50%

P2 85 Female 111 - 137 Left Subcortical. R. pontine tegmentum NM

P3 58 Female 190 - 222 Right
Subcortical. L. lentiform nucleus and

L. internal capsule
30%

P4 54 Female 176 - 204 Left
Cortical-subcortical. R. insula,

R. lentiform nucleus, and R. internal capsule
40%

P5 43 Male 61 - 90 Left Subcortical. R. pontine tegmentum NM

P6 48 Male 99 - 125 Right Subcortical. L. internal capsule 20%

P7 53 Male 127 - 156 Right Cortical. L. insula 20%

P8 63 Male 260 - 285 Right
Subcortical. L. lentiform nucleus and

L. internal capsule
20%

P9 65 Male 119 - 142 Left
Subcortical. R. internal capsule and

R. thalamus
10%

Mean (±STD) 59.9 (±2.8) 158 (±74) – 185 (±73)
NM: not measured if location did not comprise the middle cerebral artery; L.: left; R.: right.

Acquisition

EEG electrode cap
(11 channels)

Amplification
and A/D conversion

Bank of bandpass
filters Notch filter

Preprocessing Processing

Feature extraction
FBCSP 

Feature selection
PSO

Classification
LDA

External device control 

Hand orthosis
Finger flexion extension

Figure 1: Stages of the BCI system employed for stroke patients’ intervention.
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signaling the patient to performMI of the affected hand. This
arrow lasted 1.5 s and afterwards disappeared with the
monitor’s screen turning black for another 3.5 s. During this
time (arrow or black screen shown in the monitor), patients
were instructed to perform MI of their paralyzed hand. After
this time, the BCI system processed 3 s of EEG data seg-
mented in 1-second length windows, from 4 to 7 seconds of
the trial’s structure. If 2 of these time windows were classified
as MI, then the robotic orthosis was activated; if 1 or no time
windows were classified as MI, then the robotic orthosis was
not activated. Regardless of the orthosis activation, after 8 s
from the trial onset, the screen turned grey for 4 s. Finally,
each trial ended with a blue screen that lasted between 3
and 5 s, to prevent habituation, in which patients could blink
their eyes, move, and rest. Figure 2 shows a trial’s structure.

2.4. Patients’ Clinical Assessment. Clinical assessment of
patients’ upper extremity motor recovery after the BCI
intervention was performed using the upper extremity
Fugl-Meyer assessment (FMA-UE) [29], by applying the
scale to each patient before and after the BCI intervention.
FMA-UE ranks upper extremity motor recovery in a 0-66
scale, with a lower score representing a lower motor impair-
ment. Differences in the scale’s scores between preinterven-
tion and postintervention were used as clinical upper limb
motor recovery markers.

2.5. EEG Signal Processing. Patients’ raw EEG data recorded
from each session were analyzed. Data were preprocessed
with a 30th-order FIR filter from 8 to 32Hz and a common
average reference (CAR) spatial filter for reducing ground
placement effects in EEG data [30]. For each trial and EEG
channel, alpha and beta time-frequency features were com-
puted by means of the Morlet wavelet transform as explained
by Tallon-Baudry et al. [31]. In order to eliminate trials with
excessive noise artifacts, the interquartile ranges from the 60
trials of each patients’ session were computed. Trials that
exceeded power values 3 times higher than the 3rd quartile
or 3 times lower than the 1st quartile were regarded as outliers
and eliminated from the session’s trial sample. Less than 5%
of the total recorded trials were eliminated with this proce-
dure. Afterwards, percentage of ERD/ERS was computed
for each trial by subtracting averaged power from the 3 s time
interval that comprised the rest condition (0-3 s of the trials’

time structure) from the trial’s power during MI (4-7 s of the
trials’ time structure) and dividing it by the rest condition’s
averaged power and afterwards multiplying it by 100 [32];
this procedure is described in

%ERD
ERS = PMI − Prest

Prest
∗ 100, 1

with PMI being MI task’s power and Prest averaged power
during the rest condition. Alpha features were extracted by
averaging ERD/ERS values from the 8-13Hz band and beta
features by averaging values from 14-32Hz. Afterwards,
averaged MI-related ERD/ERS (4-7 s of the trials’ time struc-
ture) were computed from alpha and beta bands. Therefore,
for all patients’ EEG channels to represent information from
the same affected and unaffected hemisphere, regardless of
the lesioned hemisphere, ERD/ERS for the left hemisphere’s
channels (F3, C3, T3, and P3) of patients with right
hemisphere lesions were interchanged with those for the
right hemisphere’s channels (F4, C4, T4, and P4). This
allowed the affected hemisphere’s (AH) cortical activity to
be shown over the left hemisphere’s channels (FAH, CAH,
TAH, and PAH) and unaffected hemisphere’s (UH) activity
to be shown over the right channels (FUH, CUH, TUH, and
PUH). Grand average brain topographic maps of ERD/ERS
were computed for each of the 12 intervention sessions, sep-
arately for alpha and beta frequency bands. To quantitatively
analyze ERD/ERS across sessions, a trend analysis, proposed
by López-Larraz et al., was performed by computing the
slope of a least squares fitted linear regression model from
the averaged ERD/ERS values of each session and sessions’
time since stroke onset (stated in days), separately, for each
channel and for alpha and beta bands [33].

2.6. ERD/ERS Association with Clinical Recovery. A stepwise
linear regression model [34] was used to explore the relation-
ship between clinical hand motor recovery and ERD/ERS
trends across BCI intervention sessions. The predicted
variable (dependent variable) was set as each patients’ differ-
ences between preintervention and postintervention of the
FMA-UE scores. Predictor variables (independent variables)
were set as computed ERD/ERS slopes for each channel
and patient. All possible combinations of initial predictor
variables included in the model were assessed. Models

Rest

3

Random interval

3-5 s

1.5 s

A
ffe

ct
ed

ha
nd

0 1 4 7 9 10 12 s2 5 6 8 11

Motor intention Feedback

Beep

Cue

4 s3 s 3 s

Orthosis activation

Figure 2: Structure of trials during the BCI intervention.
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were calculated separately for alpha and beta ERD/ERS
slopes.

2.7. Statistical Analysis. ERD/ERS data were tested for
Gaussian distribution by means of a Lilliefors-corrected
Kolmogorov-Smirnov test (α = 0 05) [35]. After this test
implied non-Gaussian distribution, statistically significant
(α = 0 05) differences between ERD/ERS across sessions were
assessed for each channel, separately for alpha and beta
bands, with Friedman nonparametric tests for repeated
measures design [36]. ERD/ERS linear trends across sessions
were evaluated for significance by computing the Spearman
correlation between mean ERD/ERS with time since stroke’s
onset, as performed by López-Larraz et al. [33]. Slope signif-
icance values were FDR corrected for multiple comparisons.
For the stepwise linear regression analysis, only models that
presented a statistically significant (α = 0 05) prediction of
the dependent variable, measured by means of p values
obtained from an F distribution and whose coefficients’ con-
fidence intervals (α = 0 05) did not included the 0 value, were
included. If more than one model was statistically significant
per frequency band, then the model with the lowest p value
was presented for each band as advised by Draper and Smith
[37]. All computations were performed using MATLAB®
software from MathWorks.

3. Results

3.1. Patients’ Clinical Assessment. Table 2 shows the
FMA-UE scores obtained for each of the 9 patients that
underwent the BCI intervention. Three patients (P3, P5,
and P9) had score gains equal or higher than 3. Three
patients (P4, P7, and P8) had score gains between 2 and
1, while 3 other patients (P1, P2, and P6) did not have
score gains.

3.2. ERD/ERS Longitudinal Brain Maps. Figure 3 shows
grand average ERD/ERS topographic maps separately for
alpha and beta bands. In the alpha band, significant
(p < 0 05) differences across sessions were observed in AH
frontal, central, and temporal electrodes (FAH, CAH, and
TAH). In the UH, significant (p < 0 05) differences were
observed in central, temporal, and parietal electrodes (CUH,
TUH, and PUH). In the sagittal region, only the central
channel (CZ) showed significant (p < 0 05) differences across
sessions. In beta, all channels in the AH (FAH, CAH, TAH, and
PAH) and UH (FUH, CUH, TUH, and PUH) presented signifi-
cant (p < 0 05) differences across sessions, while only the
central channel (CZ) of the sagittal region did not present
significant (p < 0 05) differences. Therefore, for four channels
in alpha and one in beta, significant ERD/ERS (p < 0 05)
differences were not observed across sessions. Since maps
showed ERD (cortical activations) mainly in frontal and cen-
tral areas, Wilcoxon signed-rank tests were used to assess if
significant (α = 0 05) differences were found between central
and frontal ERD/ERS for each session. In both alpha and
beta, the comparisons that showed consistent differences
across sessions were the ones observed between FAH and
CUH. In alpha, FAH and CUH were not significantly different

in sessions 1 to 6 and 12, while more pronounced (p < 0 05)
ERD in FAH compared to CUH were observed in sessions 7
to 11, while in beta, FAH and CUH were not significantly dif-
ferent in sessions 1 to 6 and 9, while more pronounced
(p < 0 05) ERD in FAH compared to CUH were observed in
sessions 7, 8, 10, 11, and 12.

3.3. ERD/ERS Longitudinal Trends. Central channel’s (CAH
and CUH) linear trends computed from patient P5 mean
%ERD/ERS across sessions can be observed in Figure 4. In
alpha, a negative slope implied a trend towards ERD in the
central AH, while a positive slope suggested a trend towards
ERS in the central UH. In beta, trends towards ERS were
observed in both AH and UH central channels.

Table 3 shows ERD/ERS slopes computed from each
patient and channel calculated for alpha. A total of 45 slopes
implied more pronounced ERD trends (negative slope),
while the other 54 suggested less pronounced ERS (positive
slope) across intervention sessions. Negative and positive
ERD/ERS slopes that presented significant correlation with
stroke’s onset were observed in 24 and 36 channels, respec-
tively. The trend with more pronounced ERD (lowest
ERD/ERS slope) was observed in the UH parietal channel
(PUH) of P5 (-2.81). The trend with less pronounced ERD
(highest ERD/ERS slope) was observed in the UH central
channel (CUH) of P5 (2.12).

Table 4 shows ERD/ERS slopes computed from each
patient and channel calculated for beta. Approximately half
of the slopes (49) implied more pronounced ERD trends
(negative slope), while the others suggested (50) less pro-
nounced ERS (positive slope) across intervention sessions.
Negative and positive ERD/ERS slopes that presented signif-
icant correlation with stroke’s onset were observed in 34 and
39 channels, respectively. The trend with more pronounced
ERD (lowest ERD/ERS slope) was observed in the UH parie-
tal channel (FUH) of P4 (-1.23). The trend with more pro-
nounced ERD (highest ERD/ERS slope) was observed in the
UH temporal channel (TUH) of P4 (2.09).

3.4. ERD/ERS Association with Clinical Recovery. Equations
(2) and (3) show linear models computed with alpha and beta

Table 2: FMA-UE scores for 9 patients. Score ranges from 0 to 66;
higher score’s values imply lesser upper limb motor impairment.

Patient
Pre-BCI

intervention
Post-BCI

intervention
Intervention
difference

P1 12 12 0

P2 13 13 0

P3 9 12 3

P4 11 12 1

P5 32 36 4

P6 15 14 -1

P7 16 17 1

P8 59 61 2

P9 16 20 4
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ERD/ERS trends’ slopes, respectively. Negative coefficients
in the models implied that a negative channel trend slope,
observed when more pronounced ERD was presented across
sessions, was associated with lower upper limb motor

impairment after the BCI intervention. On the other hand,
positive coefficients in the model suggested that a positive
channel trend slope, which was observed when less pro-
nounced ERD was presented across sessions, was associated
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Figure 3: Grand average topographic maps of ERD/ERS during MI are observed across each session. Blue tones show ERD and red tones
show ERS. All maps are plotted using the same scale. Affected (AH) and unaffected hemispheres (UH) are shown. Channels with
significant differences across sessions are marked (∗).
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Figure 4: Example of linear trends, computed from average ERD/ERS across sessions and taking into account days since stroke onset. Slopes
were calculated from central channels of the AH and UH of patient P5. Trends were computed separately for alpha and beta bands.

Table 3: Slopes of ERD/ERS computed for each patient in the alpha band and for each AH (FAH, CAH, TAH, and PAH), sagittal (Fz,
Cz, and Pz), and UH (FUH, CUH, TUH, and PUH) channels. Slopes computed from ERD/ERS with a significant correlation with time
since stroke onset (∗) are shown.

Patient FAH CAH TAH PAH Fz Cz Pz FUH CUH TUH PUH
P1 0.73∗ -0.05 0.17 0.52∗ 0.41∗ 0.10 0.13 0.65∗ 0.43∗ 0.43∗ -0.28

P2 0.09 0.34∗ 0.00 0.13 0.18 0.03 0.07 -0.19 0.32∗ -0.20∗ 0.22∗

P3 1.01∗ -0.14 0.34∗ 0.60∗ 0.98∗ 0.20∗ 0.51∗ 0.69∗ 0.22∗ 0.25∗ 0.22∗

P4 -0.29∗ -0.27∗ -0.13 -0.41∗ -0.19 -0.44∗ -0.30∗ -1.10∗ -0.40∗ -0.13∗ -0.02

P5 -0.38∗ -0.74∗ 0.35∗ -1.05∗ -1.03∗ -2.03∗ -0.46 -0.92∗ 2.12∗ -1.63∗ -2.81∗

P6 0.23∗ 0.47∗ 0.35∗ -1.12∗ -0.02 -0.80 -0.11 -0.22∗ 1.14∗ -0.19 0.45∗

P7 0.09 0.66∗ -0.52∗ 0.43∗ 0.44∗ 0.10 -0.31∗ 0.17∗ 0.50∗ 0.68 0.62∗

P8 -0.16 -0.15 -0.07 -0.32∗ -0.11 -0.07 0.18 -0.11 -0.55∗ -0.03 -0.25∗

P9 0.49∗ 0.06 0.71 0.65 0.54∗ 0.74∗ -0.16 -0.09 0.06 0.93∗ 0.32
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with lower upper limb motor impairment after the BCI
intervention. The intercept term shows how much changes
in motor impairment could be observed if a patient did not
present ERD/ERS trends in channels included in the model
(zero-magnitude slopes).

Equation (2) shows the linear model, obtained through
stepwise regression that best fitted stroke patient’s hand
motor recovery for the alpha band (p = 0 02). Channels from
the frontal and temporal AH (FAH and TAH), frontal sagittal
(Fz), and parietal UH (PUH) regions were included in the
model. Coefficients’ confidence intervals (α = 0 05) were not
zero inclusive. The model’s adjusted R2 was of 0.83, implying
that the model successfully predicts 83% of FMA-UE scores’
variability. The alpha model implies that trends across the
intervention of more pronounced ERD in the FAH and
PUH, coupled to less pronounced ERD in the TAH and Fz,
are associated with less upper limb motor impairment at
the end of the BCI intervention. The intercept term of the
model implies an average gain of 0.89 points in patients’
post-BCI intervention FMA-UE, if no changes of included
channels’ ERD/ERS were presented across the intervention
sessions (channels’ slopes included in the model equal
to zero).

FMUEpost − FMUEpre = − 8 64 −13 8,−3 4 FAH

+ 3 9 1 1, 6 8 TAH …
+ 10 19 4 8, 15 1 Fz
− 3 16 −4 7,−1 6 PUH + 0 89

2

Equation 3 shows the linear model, obtained with step-
wise regression, that best fitted stroke patients’ hand motor
recovery for the beta band (p = 0 001). The ERD/ERS slopes
of the parietal (PAH) channel of the AH(PAH), coupled to
the parietal sagittal (Pz) and frontal (FUH) and central (CUH
) UH channels were included in the model. All coefficient
confidence intervals (α = 0 05) were not zero inclusive. The
model’s adjusted R2 was of 0.96, implying that the model suc-
cessfully predicts approximately 96% of patients’ FMA-UE

scores’ variability. The beta model implies that more pro-
nounced ERD in FUH and Pz regions, coupled to less pro-
nounced ERD in PAH and CUH, are associated with less
motor impairment at the end of the BCI intervention. The
intercept term of the model was of 0.7; therefore, if no
changes of included channels’ mean ERD/ERS were pre-
sented across the intervention session (channels’ slopes
included in the model equal to zero), patients would have a
0.7 increase in their FMA-UE scores after the BCI interven-
tion.

FMUEpost − FMUEpre = 4 11 2 9, 5 3 PAH

− 6 25 −7 8,−4 8 Pz …
− 3 55 −4 4,−2 7 FUH
+ 1 28 0 8, 1 8 CUH + 0 7

3

4. Discussion

Cortical activation differences were observed in several
regions across sessions of the BCI intervention. In both alpha
and beta, activation changes were observed over the somato-
sensory cortex, which could be expected since MI-BCI
systems coupled to robotic assistive devices have shown to
elicit activity above this area in stroke patients [15, 27]. How-
ever, these central area significant changes across sessions
were not associated in all patients with time since stroke
onset. Other areas such as frontal, temporal, and parietal
regions also showed significant changes across sessions in
alpha and/or beta and in some patients these changes pre-
sented a significant association with time since stroke. This
implied that regions usually not associated with motor tasks
could be recruited in stroke patients during MI of their
impaired upper limb. This is also reinforced by the observed
evolution of compared activity in frontal AH and central UH
across sessions, since similar activations were more likely to
be observed over these regions in alpha and beta in earlier
sessions and afterwards changed towards more pronounced
activations in frontal AH compared to central UH, in later

Table 4: Slopes of ERD/ERS computed for each patient in the beta band and for each AH (FAH, CAH, TAH, and PAH), sagittal (Fz, Cz, and Pz),
and UH (FUH, CUH, TUH, and PUH) channels. Slopes computed from ERD/ERS with a significant correlation with time since stroke onset (∗)
are shown.

Patient FAH CAH TAH PAH Fz Cz Pz FUH CUH TUH PUH
P1 -0.02 0.10∗ 0.05 0.10∗ 0.24∗ 0.08 0.13∗ -0.02 0.04 0.25∗ 0.10

P2 0.69∗ 1.05∗ 0.24∗ 0.99∗ 0.69∗ 1.36∗ 0.77∗ 0.32∗ 0.58∗ 0.69∗ 0.62∗

P3 -0.42∗ -0.58∗ -0.50∗ -0.05∗ -0.02 -0.08 -0.24∗ -0.28∗ -0.06 -0.36∗ -0.46∗

P4 1.37∗ -0.17 -0.03 1.03∗ 2.02∗ 0.42∗ 1.24∗ -1.23∗ -0.35 -0.26 0.17

P5 0.24 0.29 0.50∗ -0.07 0.04 0.05 0.10∗ -0.54∗ 1.68∗ 0.05 -0.47∗

P6 -1.11∗ -0.90∗ -0.81∗ -1.09∗ -0.52∗ -0.97∗ -0.46∗ -0.12∗ -0.34∗ -0.31∗ -0.44∗

P7 0.41∗ 0.93∗ -0.17∗ 0.97∗ 0.90∗ 0.54∗ 0.44∗ 0.88∗ 1.87∗ 2.09∗ 0.85∗

P8 -0.03 0.46∗ 0.50∗ -0.23∗ -0.23∗ -0.34∗ -0.30∗ -0.21∗ -0.46∗ -1.13∗ -0.16∗

P9 -0.12 -0.22∗ 0.75∗ 0.28∗ -0.27 -0.58∗ -0.24∗ -0.23 -0.03 1.12∗ 0.08
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sessions of the intervention. This could suggest that the fron-
tal region of the AH could have been recruited, during the
contralateral MI task, as a compensatory mechanism
enhanced across the intervention. Recruitment of parietal
and frontal regions has also been reported during stroke
patients’ evolution using fMRI by Ward et al. and hypothe-
sized a possible enlargement of the motor region for compen-
sating damage of the corticospinal tract [38]. Fewer patients’
cortical areas in the alpha band showed activation trends
across sessions, which had a significant association with
stroke’s onset, compared to beta. This could imply that a
BCI intervention in stroke patients is more likely to elicit beta
band modulation across time. It has been theorized that beta
oscillations are associated with neural networks that propa-
gate activity between primary motor cortex and muscles
[39], while alpha has been related to motor information
processes, such as learning of motor tasks [40]. Therefore,
less ERD/ERS significant trends associated with time since
stroke onset in alpha could be related to these processes, since
patients’ changes in alpha activity across sessions could be
more associated with learning of the MI task. On the other
hand, beta could reflect changes in motor cortex information
processing within the corticospinal tract, as a consequence of
neuroplasticity mechanisms, and thus could have a closer
relationship with stroke time evolution compared to alpha
oscillations. A similar hypothesis was also suggested by
Gandolfi et al. since alpha and beta changes were also pre-
sented across a BCI intervention in a single stroke patient.
The authors proposed that the alpha band was related with
MI training processes, which could have aided to modulate
beta, associated with corticospinal excitability [41].

An association between alpha ERD/ERS trends in frontal,
temporal, and parietal regions with upper limb motor recov-
ery was observed. However, the model’s significance is less
than the one recommended for linear regression analysis
[37] and its prediction of upper limb recovery is moderate;
therefore, it needs to be further confirmed with a higher
sample of patients. A possible reason for this moderate
association could be that alpha rhythm evolution across ses-
sions is more related to the learning of the MI task, rather
than to upper limb motor recovery, as previously suggested
[39, 40, 42]. Interestingly, the alpha model did not include
activity over electrodes directly located above the somatosen-
sory cortex; this could also highlight the need for a larger
sample of patients, to further assess somatosensory cortex
alpha oscillation’s association with upper limb motor recov-
ery. On the other hand, an association with a recommended
significance [36], between beta cortical activity trends across
sessions in frontal, central, and parietal areas, with upper
limb motor recovery, was observed. The model included the
central UH implying that less pronounced cortical activity
across sessions in this region was related to upper limb motor
recovery during the intervention. However, it did not include
an association between motor impairment with central AH
cortical activity across sessions. Kaiser et al. reported in the
alpha band of 27 stroke patients (which performed MI of
their affected hand) that less pronounced cortical activation
(less pronounced ERD) in the central UH, during patients’
affected hand MI, was related to less motor impairment,

while no association was found between cortical activations
in the central AH with motor impairment [11]. Although,
Kaiser et al. only reported similar central region observations
in alpha, both alpha and beta have been associated with
motor-related processes. Therefore, both Kaiser et al. obser-
vations and those of the present study's suggest that less pro-
nounced central UH cortical activity could be related to less
motor impairment, while AH activity could not be as associ-
ated with motor impairment. A possible explanation for
these similar observations could be that it is more likely that
patients’ UH somatosensory cortex becomes less involved in
ipsilateral motor processes as the corticospinal tract becomes
more functional, compared to the possibility of the AH
somatosensory cortex becoming more involved in contralat-
eral motor processes, due to lesion heterogeneity presented in
stroke. This hypothesis is reinforced by the observations
reported by Lotze et al. in well-recovered subcortical stroke
patients using MRI-derived measurements and TMS, since
higher AH corticospinal tract integrity was associated with
less pronounced activity in areas within the UHmotor cortex
[42]. The present study’s beta model also implies that activa-
tion trends in areas usually not related with motor processes
such as frontal and parietal regions could be associated with
upper limb motor recovery after stroke. The model suggests
that higher cortical activity trends (more pronounced ERD)
in the UH frontal and parietal sagittal regions, combined
with lower activity trends (more pronounced ERS) in parietal
AH and central UH, were associated with higher motor
recovery during the intervention. This could imply that an
enlargement of the motor area, by including frontal and
parietal regions, during motor-related processes, could be a
neuroplasticity mechanism for improving upper limb
function. Therefore, different degrees of activation in areas
less related with motor processing, implied by the beta
model, further reinforce previously observed enlargement
of motor-processing areas during stroke recovery [38]. In
addition, involvement of larger AH and UH areas during
motor tasks has been described as a possible compensatory
mechanism in patients with severe stroke motor impairment
as reviewed by Cassidy and Cramer [43]. This could possibly
explain the association of these regions in the present study,
with upper limb motor impairment, as implied by alpha
and beta linear models, since most patients included in the
present study had moderate to severe upper limb stroke
impairment. This is reinforced by the observations reported
by Rondina et al. when predicting motor recovery in patients
with severe stroke upper limb impairment, using features
extracted from structural MRI and machine learning, to
classify good or poor motor recovery, and suggested that
prediction accuracy increased when larger areas of the
somatosensory cortex were included in the model [44].
Furthermore, the longitudinal observations of Park et al. in
stroke patients’ resting state functional connectivity, com-
puted from fMRI, reported connectivity changes comprising
frontal and parietal cortex AH regions [45], reinforcing the
hypothesis that normally non-motor-related regions could
play a significant role during stroke recovery.

It has also been reported that interhemispheric differ-
ences in beta, between homologous somatosensory cortex
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areas, could play an important role in stroke motor recovery
processes. For example, Shiner et al. reported an association
between higher central AH and lower UH cortical activity
in stroke patients’ beta band, with lower motor impairment
using magnetoencephalography, a high spatial and temporal
resolution acquisition modality [46]. Furthermore, Pichiorri
et al. reported that interhemispheric connectivity measure-
ments, computed from EEG over somatosensory cortex
regions in lower beta, can be associated with corticospinal
integrity, evaluated by means of TMS [47]. Although the
present work did not explore connectivity measurements
among interhemispheric homologous areas, the beta model
in the present work included the somatosensory cortex in
the UH and implied that less beta cortical activity in this
region was associated with higher motor recovery. Therefore,
a trend towards less activity in the UH somatosensory cortex
could be related with the recovery of interhemispheric
balance across the BCI intervention. This could further
reinforce the hypothesis of an association between inter-
hemispheric differences with upper limb motor recovery;
however, a larger sample and functional connectivity mea-
surements should be computed in order to further assess
this relationship.

According to the FMA-UE, patients’motor recovery was
heterogenous along the sample. After the BCI intervention, 6
of 9 patients showed gains in upper limb motor recovery,
while 2 patients showed no gains and one patient showed a
decrease. All FMA-UE gains were in the range (4 55 ± 6 07)
reported by Ang et al. with a 1-month intervention with a
BCI coupled to a robotic assistive device [16]. Two-thirds
of the patients with higher FMA-UE gains were in the range
of other BCI stroke intervention studies, such as the one
reported by Frolov et al. (5 25 ± 4 5) with a 1.5-month
intervention [17] and Ramos-Murguialday et al. (3 4 ± 2 2)
with a 1-month intervention [18]. Therefore, patients’ clini-
cal assessments show that the BCI intervention allowed most
patients to achieve some degree of upper extremity motor
recovery and that these recoveries are similar to the ones
reported with other BCI interventions.

The present study has limitations that need to be
acknowledged. One of them is the limited spatial resolution
of EEG. This limited resolution, although acceptable for
BCI applications, makes the association of more specific
brain regions with upper limb recovery unfeasible, requiring
the use of modalities like fMRI for further description of the
evolution of brain rhythms across BCI interventions.
Another limitation is the small sample of 9 patients’ data,
with heterogenous motor impairment (9 to 59 in the FMA),
analyzed in the current study. This limited sample makes
necessary the confirmation in a higher sample of patients of
the presented regression models’ association with upper limb
motor impairment, especially the model computed from
alpha ERD/ERS trends which showed lower than recom-
mended significance. Also, most patients in the present study
presented moderate to severe upper limb motor impairment
and computed linear models could be mostly applicable to
patients with these degrees of impairment. Therefore, studies
that include a more balanced sample of patients with differ-
ent degrees of stroke upper limb impairment are still needed

for a more complete description of associations between
upper limb impairment and brain rhythms. Taking into
account these limitations, the present study’s beta rhythm-
described associations with upper limb motor recovery,
which is thought to be more involved in closed-loop motor
training processes [39], could bring more insight to the neu-
roplasticity mechanisms associated to good or poor upper
limb recovery prognosis. This is important for establishing
EEG brain rhythm longitudinal analysis as a complementary
tool to other clinical assessments, for stroke patients’ upper
limb function prognosis. Also, specifically targeting trends
and regions of AH and UH cortical activations during hand
rehabilitation interventions, such as the ones implemented
with BCI systems coupled to robotic devices, could poten-
tially increase the number of patients that can achieve good
rehabilitation outcomes.

5. Conclusion

This study presents a trend analysis of stroke patients’ corti-
cal activity during a BCI intervention aimed for hand rehabil-
itation. EEG trends in alpha seemed to be moderately related
with time since stroke onset and recovery of upper limb
motor function, probably reflecting neuroplasticity effects
related to learning of the hand motor tasks. On the other
hand, EEG trends in beta showed a higher association with
time since stroke onset, compared to alpha, and a strong
association with upper limb motor recovery. These beta band
changes in hemispheres’ nonhomologous activity along the
BCI intervention suggested that longitudinal measurements
could be associated with motor recovery of the upper limb.
Although these findings need to be further confirmed with
studies with higher spatial resolution and larger patient sam-
ples, it can be inferred that longitudinal analysis of EEG brain
rhythms during stroke patients’ hand rehabilitation interven-
tions could provide valuable clinical information for both
stroke prognosis and BCI intervention goals.
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